1). Shift the graph of $y=\sqrt{x}$ to the left by 3 units.
2). Let $\epsilon>0$, and set $\delta:=\sqrt{\epsilon}$. If $|x-0|=|x|<\delta$, then $\left|x^{2}-0\right|=|x|^{2}<\delta^{2}=\epsilon$, which shows that $\lim _{x \rightarrow 0} x^{2}=0$.
3). Let $f(x)=e^{x}+x-2 . f$ is continuous everywhere on \mathbb{R}, and $f(0)=-1, f(1)=e-1>0$. By the Intermediate Value Theorem, f has a root in $(0,1)$.
4). $\frac{d}{d x}\left(\frac{e^{x}}{x^{2}}\right)=\frac{x^{2}\left(e^{x}\right)-e^{x}(2 x)}{\left(x^{2}\right)^{2}}=\frac{e^{x}(x-2)}{x^{3}}$.
5). $\frac{d}{d x}(\tan (\cos x))=\sec ^{2}(\cos (x))\left(\frac{d}{d x}(\cos x)\right)=-\sec ^{2}(\cos x) \sin x$.
6. Applying $\frac{d}{d x}$ to both sides of $x^{2} y+x y^{2}=3 x$ gives $\left(2 x y+x^{2} \frac{d y}{d x}\right)+\left(y^{2}+2 x y \frac{d y}{d x}\right)=3$, so $\frac{d y}{d x}\left(x^{2}+2 x y\right)=3-2 x y-y^{2}$, i.e. $\frac{d y}{d x}=\frac{3-2 x y-y^{2}}{x^{2}+2 x y}$.
7. If $f(x)=\frac{x}{x^{2}+1}, f^{\prime}(x)=\frac{\left(x^{2}+1\right)(1)-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}$, so the critical numbers of f are $1,-1$. As -1 is not in in $[0,2]$, and $f(0)=0, f(1)=1 / 2, f(2)=2 / 5$, we see that $f(0)=0$ is the absolute minimum, and $f(1)=1 / 2$ is the absolute maximum, of f on $[0,2]$.
8. Notice that $\left.2 \sin ^{-1} x\right|_{x=0}=0=\left.\cos ^{-1}\left(1-2 x^{2}\right)\right|_{x=0}$. It is thus enough to show that $\frac{d}{d x}\left(2 \sin ^{-1} x\right)=\frac{d}{d x}\left(\cos ^{-1}\left(1-2 x^{2}\right)\right)$ on $[0,1]$. Now $\frac{d}{d x}\left(2 \sin ^{-1} x\right)=\frac{2}{\sqrt{1-x^{2}}}$. On the other hand, $\frac{d}{d x}\left(\cos ^{-1}\left(1-2 x^{2}\right)\right)=\frac{-1}{\sqrt{1-\left(1-2 x^{2}\right)^{2}}}(-4 x)=\frac{4 x}{\sqrt{1-\left(1-4 x^{2}+4 x^{4}\right)}}=\frac{2(2 x)}{\sqrt{4 x^{2}\left(1-x^{2}\right)}}=\frac{2(2 x)}{2 x \sqrt{1-x^{2}}}=\frac{2}{\sqrt{1-x^{2}}}$.
9. $\lim _{x \rightarrow 1^{+}} \ln (x) \tan (\pi x / 2)=\lim _{x \rightarrow 1^{+}} \frac{\ln x}{\cot (\pi x / 2)}$. As $\lim _{x \rightarrow 1^{+}} \ln x=0=\lim _{x \rightarrow 1^{+}} \cot (\pi x / 2)$, we may apply L'Hospital's Rule, so that $\lim _{x \rightarrow 1^{+}} \frac{\ln x}{\cot \pi x / 2}=\lim _{x \rightarrow 1^{+}} \frac{1 / x}{-\csc ^{2}(\pi x / 2)(\pi / 2)}=\frac{1}{-\pi / 2}=-\frac{2}{\pi}$.
10. View the triangle in the $x y$-plane with one side on the x-axis, corresponding to the line segment between $(-L / 2,0)$ and $(L / 2,0)$. Then the equation describing the left side of the triangle is $y=\sqrt{3}(x+L / 2)$ (and the right side is $y=-\sqrt{3}(x-L / 2)$). Now, if area is to be maximized, the rectangle must be symmetric with respect to the y-axis. If the rectangle has vertices $(-a, 0)$ and $(a, 0)$, then the two other vertices must be $(-a, \sqrt{3}(-a+L / 2))$ and $(a, \sqrt{3}(L / 2-a))$. Thus the area of the rectangle is $2 a(\sqrt{3}(L / 2-a))$, which achieves a maximum when $a=-(L \sqrt{3}) /(2(-2 \sqrt{3}))=L / 4$. This gives $\sqrt{3}(L / 2-a)=\sqrt{3} L / 4$, so the rectangle has dimensions $L / 2 \times \sqrt{3} L / 4$.
11. Let (x, y) be a point on the line $y=4 x+7$. Then the square of the distance from (x, y) to the origin is $x^{2}+y^{2}=x^{2}+(4 x+7)^{2}=17 x^{2}+56 x+49$, which has a minimum at $x=-56 /(2(17))=-28 / 17$. Then $(x, y)=(-28 / 17,7 / 17)$ is the point on the line which minimizes the square of the distance, hence also minimizes the distance to the origin.
12. Let $f(x)=x^{3}-30$, so $f^{\prime}(x)=3 x^{2}$, and $f(x) / f^{\prime}(x)=x / 3-10 / x^{2}$. To start, try $x_{0}=3$. Newton's method gives $x_{1}=3-f(3) / f^{\prime}(3)=3-\left(3 / 3-10 / 3^{2}\right)=3-(-1 / 9)=28 / 9$. Next, $x_{2}=28 / 9-f(28 / 9) / f^{\prime}(28 / 9)=28 / 9-\left(28 / 27-10 /(28 / 9)^{2}\right)=3+2 / 27+26 /(28)^{2}$. The difference between these two answers is $\left|1 / 9-2 / 27-26 /(28)^{2}\right|=\left|1 / 27-1 / 28+2 /(28)^{2}\right|=$ $|1 /(27 \cdot 28)+2 /(28 \cdot 28)|<3 /(27)^{2}=1 /(9 \cdot 27)<1 / 200=0.005$, so x_{2} approximates $30^{1 / 3}$ to an accuracy of 0.005 , i.e. 2 decimal places.
13. $\int\left(5 x^{1 / 4}-7 x^{3 / 4}\right) d x=4 x^{5 / 4}-4 x^{7 / 4}+C$.
14. If $f^{\prime \prime}(x)=2-12 x$, then $f^{\prime}(x)=-6 x^{2}+2 x+C$, and so $f(x)=-2 x^{3}+x^{2}+C x+D$. Now $9=f(0)=D$, so $15=f(2)=-2(2)^{3}+2^{2}+C(2)+9 \Rightarrow 2 C=18 \Rightarrow C=9$. Thus $f(x)=-2 x^{3}+x^{2}+9 x+9$.
15. The first rectangle will go from $x=-1$ to $x=0$, the second from $x=0$ to $x=1$, and the third from $x=1$ to $x=2$. Using right endpoints, the heights will be $f(0)=1, f(1)=2, f(2)=$ 5 , respectively. Thus the area under $1+x^{2}$ between $x=-1$ and $x=2$ is approximated by the total area of the 3 rectangles, which is $1(1)+1(2)+1(5)=8$.
16. Using a right Riemann sum gives the area under $x \cos x$ from 0 to $\pi / 2$ as $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{2 n}\left(\frac{i \pi}{2 n} \cos \frac{i \pi}{2 n}\right)$.
17. $\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x=\int_{-3}^{0} d x+\int_{-3}^{0} \sqrt{9-x^{2}} d x=3+\frac{\pi(3)^{2}}{4}=3\left(1+\frac{3 \pi}{4}\right)$, as the second integral is one quarter of the area of a circle of radius 3.
18. For x in the interval $[0, \pi / 4], \sin x$ takes values between 0 and 1 , so $\sin ^{3} x \leq \sin ^{2} x$ on $[0, \pi / 4]$, and thus $\int_{0}^{\pi / 4} \sin ^{3} x d x \leq \int_{0}^{\pi / 4} \sin ^{2} x d x$.
19. By the First Fundamental Theorem of Calculus, $\frac{d}{d x} \int_{0}^{x} \sqrt{1+2 t} d t=\sqrt{1+2 x}$.
20. $\int_{\sqrt{x}}^{x^{3}} \sqrt{t} \sin (t) d t=\int_{0}^{x^{3}} \sqrt{t} \sin (t) d t+\int_{\sqrt{x}}^{0} \sqrt{t} \sin (t) d t=\int_{0}^{x^{3}} \sqrt{t} \sin (t) d t-\int_{0}^{\sqrt{x}} \sqrt{t} \sin (t) d t$.

By the Chain Rule, the derivative is equal to $\left(\sqrt{x^{3}} \sin \left(x^{3}\right)\right)\left(3 x^{2}\right)-(\sqrt{\sqrt{x}} \sin (\sqrt{x}))\left(\frac{1}{2 \sqrt{x}}\right)=$ $3 x^{7 / 2} \sin \left(x^{3}\right)-\frac{\sin \sqrt{x}}{2 x^{1 / 4}}$.
21. $\int_{0}^{2}\left(6 x^{2}-4 x+5\right) d x=2 x^{3}-2 x^{2}+\left.5 x\right|_{0} ^{2}=2(2)^{3}-2(2)^{2}+5(2)-0=18$.
22. $\int_{0}^{\pi / 4}\left(1+\cos ^{2} \theta\right) /\left(\cos ^{2} \theta\right) d \theta=\int_{0}^{\pi / 4}\left(\sec ^{2} \theta+1\right) d \theta=\tan \theta+\left.\theta\right|_{0} ^{\pi / 4}=1+\pi / 4$.
23. $\int \frac{1+4 x}{\sqrt{1+x+2 x^{2}}} d x \xlongequal{u=1+x+2 x^{2}} \int \frac{1}{\sqrt{u}} d u=2 u^{1 / 2}+C=2 \sqrt{1+x+2 x^{2}}+C$.
24. $\int \cot x d x=\int \frac{\cos x}{\sin x} d x \xrightarrow{u=\sin x} \int \frac{1}{u} d u=\ln |u|+C=\ln |\sin x|+C$.
25. $\int_{0}^{2}(x-1)^{25} d x \stackrel{u=x-1}{\Longrightarrow} \int_{-1}^{1} u^{25} d u=0\left(u^{25}\right.$ is an odd function).
26. First, notice that $\ln x=\int_{1}^{x} \frac{1}{t} d t$, as the derivatives of both sides equal $1 / x$ (by FTC1), and both sides evaluate to 0 at $x=1$. Since $1 / t$ is monotone decreasing, a right Riemann sum will give a (strict) lower bound on the area under the curve. This gives $\ln (n)=$ (area under $1 / t$ from 1 to $n)>($ right Riemann sum, with rectangles of width 1$)=1 / 2+1 / 3+\ldots+1 / n$. 27. The curves $x=2 y^{2}, x+y=1$ intersect when $2 y^{2}=1-y$, i.e. $y=-1,1 / 2$. For $y \in[-1,1 / 2], 2 y^{2} \leq 1-y$, so the area between the curves is given by the integral (in y) $\int_{-1}^{1 / 2}\left|(1-y)-2 y^{2}\right| d y=\int_{-1}^{1 / 2}\left(-2 y^{2}-y+1\right) d y=-\frac{2 y^{3}}{3}-\frac{y^{2}}{2}+\left.y\right|_{-1} ^{1 / 2}=\frac{9}{8}$.
28. Using the disk method, a typical (horizontal) disk will have volume $\pi(\sqrt{y})^{2} \Delta y$, so the volume of the solid is given by $\int_{0}^{4} \pi y d y=\left.\frac{\pi y^{2}}{2}\right|_{0} ^{4}=8 \pi$.
29. We first find the volume of a hemisphere. A hemisphere of radius r is obtained as a solid of revolution by rotating the curve $y=\sqrt{r^{2}-x^{2}}, 0 \leq x \leq r$, about the y-axis. By the shell method, the volume of this solid of revolution is $\int_{0}^{r} 2 \pi x \sqrt{r^{2}-x^{2}} d x \stackrel{u=r^{2}-x^{2}}{\Longrightarrow} \int_{r^{2}}^{0}-\pi \sqrt{u} d u=$ $\pi \int_{0}^{r^{2}} \sqrt{u} d u=\left.\frac{2 \pi u^{3 / 2}}{3}\right|_{0} ^{r^{2}}=\frac{2 \pi r^{3}}{3}$. Doubling gives the volume of a sphere of radius $r, \frac{4 \pi r^{3}}{3}$.
30. Average value $=\frac{1}{5-2} \int_{2}^{5}(x-3)^{2} d x=\left.\frac{1}{3}\left(\frac{1}{3}(x-3)^{3}\right)\right|_{2} ^{5}=\frac{1}{9}\left(2^{3}-(-1)^{3}\right)=1$.

