1). Shift the graph of $y = \sqrt{x}$ to the left by 3 units. 2). Let $\epsilon > 0$, and set $\delta := \sqrt{\epsilon}$. If $|x - 0| = |x| < \delta$, then $|x^2 - 0| = |x|^2 < \delta^2 = \epsilon$, which shows that $\lim_{x\to 0} x^2 = 0$. 3). Let $f(x) = e^x + x - 2$. f is continuous everywhere on \mathbb{R} , and f(0) = -1, f(1) = e - 1 > 0. By the Intermediate Value Theorem, f has a root in (0, 1). 4). $\frac{d}{dx}\left(\frac{e^x}{x^2}\right) = \frac{x^2(e^x) - e^x(2x)}{(x^2)^2} = \frac{e^x(x-2)}{x^3}.$ 5). $\frac{d}{dx}(\tan(\cos x)) = \sec^2(\cos(x))(\frac{d}{dx}(\cos x)) = -\sec^2(\cos x)\sin x.$ 6. Applying $\frac{d}{dx}$ to both sides of $x^2y + xy^2 = 3x$ gives $(2xy + x^2\frac{dy}{dx}) + (y^2 + 2xy\frac{dy}{dx}) = 3$, so $\frac{dy}{dx}(x^2+2xy) = 3 - 2xy - y^2$, i.e. $\frac{dy}{dx} = \frac{3 - 2xy - y^2}{r^2 + 2ry}$. 7. If $f(x) = \frac{x}{x^2 + 1}$, $f'(x) = \frac{(x^2 + 1)(1) - x(2x)}{(x^2 + 1)^2} = \frac{1 - x^2}{(1 + x^2)^2}$, so the critical numbers of f are 1, -1. As -1 is not in in [0, 2], and f(0) = 0, f(1) = 1/2, f(2) = 2/5, we see that f(0) = 0 is the absolute minimum, and f(1) = 1/2 is the absolute maximum, of f on [0, 2]. 8. Notice that $2\sin^{-1}x|_{x=0} = 0 = \cos^{-1}(1-2x^2)|_{x=0}$. It is thus enough to show that $\frac{d}{dx}(2\sin^{-1}x) = \frac{d}{dx}(\cos^{-1}(1-2x^2))$ on [0,1]. Now $\frac{d}{dx}(2\sin^{-1}x) = \frac{2}{\sqrt{1-x^2}}$. On the other hand, $\frac{d}{dx}(\cos^{-1}(1-2x^2)) = \frac{-1}{\sqrt{1-(1-2x^2)^2}}(-4x) = \frac{4x}{\sqrt{1-(1-4x^2+4x^4)}} = \frac{2(2x)^2}{\sqrt{4x^2(1-x^2)}} = \frac{2(2x)}{2x\sqrt{1-x^2}} = \frac{2}{\sqrt{1-x^2}}.$ 9. $\lim_{x \to 1^+} \ln(x) \tan(\pi x/2) = \lim_{x \to 1^+} \frac{\ln x}{\cot(\pi x/2)}$. As $\lim_{x \to 1^+} \ln x = 0 = \lim_{x \to 1^+} \cot(\pi x/2)$, we may apply L'Hospital's Rule, so that $\lim_{x \to 1^+} \frac{\ln x}{\cot \pi x/2} = \lim_{x \to 1^+} \frac{1/x}{-\csc^2(\pi x/2)(\pi/2)} = \frac{1}{-\pi/2} = -\frac{2}{\pi}.$

10. View the triangle in the xy-plane with one side on the x-axis, corresponding to the line segment between (-L/2, 0) and (L/2, 0). Then the equation describing the left side of the triangle is $y = \sqrt{3}(x + L/2)$ (and the right side is $y = -\sqrt{3}(x - L/2)$). Now, if area is to be maximized, the rectangle must be symmetric with respect to the y-axis. If the rectangle has vertices (-a, 0) and (a, 0), then the two other vertices must be $(-a, \sqrt{3}(-a + L/2))$ and $(a, \sqrt{3}(L/2-a))$. Thus the area of the rectangle is $2a(\sqrt{3}(L/2-a))$, which achieves a maximum when $a = -(L\sqrt{3})/(2(-2\sqrt{3})) = L/4$. This gives $\sqrt{3}(L/2-a) = \sqrt{3}L/4$, so the rectangle has dimensions $L/2 \times \sqrt{3}L/4$.

11. Let (x, y) be a point on the line y = 4x + 7. Then the square of the distance from (x, y) to the origin is $x^2 + y^2 = x^2 + (4x + 7)^2 = 17x^2 + 56x + 49$, which has a minimum at x = -56/(2(17)) = -28/17. Then (x, y) = (-28/17, 7/17) is the point on the line which minimizes the square of the distance, hence also minimizes the distance to the origin.

12. Let $f(x) = x^3 - 30$, so $f'(x) = 3x^2$, and $f(x)/f'(x) = x/3 - 10/x^2$. To start, try $x_0 = 3$. Newton's method gives $x_1 = 3 - f(3)/f'(3) = 3 - (3/3 - 10/3^2) = 3 - (-1/9) = 28/9$. Next, $x_2 = 28/9 - f(28/9)/f'(28/9) = 28/9 - (28/27 - 10/(28/9)^2) = 3 + 2/27 + 26/(28)^2$. The difference between these two answers is $|1/9 - 2/27 - 26/(28)^2| = |1/27 - 1/28 + 2/(28)^2| = |1/(27 \cdot 28) + 2/(28 \cdot 28)| < 3/(27)^2 = 1/(9 \cdot 27) < 1/200 = 0.005$, so x_2 approximates $30^{1/3}$ to an accuracy of 0.005, i.e. 2 decimal places.

13.
$$\int (5x^{1/4} - 7x^{3/4}) \, dx = 4x^{5/4} - 4x^{7/4} + C.$$

14. If f''(x) = 2 - 12x, then $f'(x) = -6x^2 + 2x + C$, and so $f(x) = -2x^3 + x^2 + Cx + D$. Now 9 = f(0) = D, so $15 = f(2) = -2(2)^3 + 2^2 + C(2) + 9 \Rightarrow 2C = 18 \Rightarrow C = 9$. Thus $f(x) = -2x^3 + x^2 + 9x + 9$. 15. The first rectangle will go from x = -1 to x = 0, the second from x = 0 to x = 1, and the third from x = 1 to x = 2. Using right endpoints, the heights will be f(0) = 1, f(1) = 2, f(2) = 5, respectively. Thus the area under $1 + x^2$ between x = -1 and x = 2 is approximated by the total area of the 3 rectangles, which is 1(1) + 1(2) + 1(5) = 8.

16. Using a right Riemann sum gives the area under $x \cos x$ from 0 to $\pi/2$ as $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\pi}{2n} (\frac{i\pi}{2n} \cos \frac{i\pi}{2n})$. 17. $\int_{-\infty}^{0} (1 + \sqrt{9 - x^2}) dx = \int_{-\infty}^{0} dx + \int_{-\infty}^{0} \sqrt{9 - x^2} dx = 3 + \frac{\pi(3)^2}{4} = 3(1 + \frac{3\pi}{4}), \text{ as the second}$ integral is one quarter of the area of a circle of radius 3. 18. For x in the interval $[0, \pi/4]$, $\sin x$ takes values between 0 and 1, so $\sin^3 x \leq \sin^2 x$ on $[0, \pi/4]$, and thus $\int_0^{\pi/4} \sin^3 x \, dx \leq \int_0^{\pi/4} \sin^2 x \, dx$. 19. By the First Fundamental Theorem of Calculus, $\frac{d}{dx} \int_{0}^{x} \sqrt{1+2t} dt = \sqrt{1+2x}$. 20. $\int_{-\pi}^{x^3} \sqrt{t} \sin(t) dt = \int_{0}^{x^3} \sqrt{t} \sin(t) dt + \int_{-\pi}^{0} \sqrt{t} \sin(t) dt = \int_{0}^{x^3} \sqrt{t} \sin(t) dt - \int_{0}^{\sqrt{x}} \sqrt{t} \sin(t) dt.$ By the Chain Rule, the derivative is equal to $(\sqrt{x^3}\sin(x^3))(3x^2) - (\sqrt{\sqrt{x}}\sin(\sqrt{x}))(\frac{1}{2\sqrt{x}}) =$ $3x^{7/2}\sin(x^3) - \frac{\sin\sqrt{x}}{2\pi^{1/4}}$ 21. $\int_{-\infty}^{\infty} (6x^2 - 4x + 5) \, dx = 2x^3 - 2x^2 + 5x \Big|_{0}^{2} = 2(2)^3 - 2(2)^2 + 5(2) - 0 = 18.$ 22. $\int_{-\pi/4}^{\pi/4} (1 + \cos^2\theta) / (\cos^2\theta) \, d\theta = \int_{-\pi/4}^{\pi/4} (\sec^2\theta + 1) \, d\theta = \tan\theta + \theta \Big|_{0}^{\pi/4} = 1 + \pi/4.$ 23. $\int \frac{1+4x}{\sqrt{1+x+2x^2}} dx \xrightarrow{u=1+x+2x^2} \int \frac{1}{\sqrt{u}} du = 2u^{1/2} + C = 2\sqrt{1+x+2x^2} + C.$ 24. $\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx \xrightarrow{u=\sin x} \int \frac{1}{u} \, du = \ln |u| + C = \ln |\sin x| + C.$ 25. $\int^{2} (x-1)^{25} dx \xrightarrow{u=x-1} \int^{1} u^{25} du = 0$ (u^{25} is an odd function). 26. First, notice that $\ln x = \int_{1}^{x} \frac{1}{t} dt$, as the derivatives of both sides equal 1/x (by FTC1), and both sides evaluate to 0 at x = 1. Since 1/t is monotone decreasing, a right Riemann sum will give a (strict) lower bound on the area under the curve. This gives $\ln(n) = ($ area under 1/t from 1 to n) > (right Riemann sum, with rectangles of width 1) = 1/2 + 1/3 + ... + 1/n. 27. The curves $x = 2y^2, x + y = 1$ intersect when $2y^2 = 1 - y$, i.e. y = -1, 1/2. For $y \in [-1, 1/2], 2y^2 \leq 1 - y$, so the area between the curves is given by the integral (in y) $\int_{-1}^{1/2} |(1-y) - 2y^2| \, dy = \int_{-1}^{1/2} (-2y^2 - y + 1) \, dy = -\frac{2y^3}{3} - \frac{y^2}{2} + y \Big|_{-1}^{1/2} = \frac{9}{8}.$ 28. Using the disk method, a typical (horizontal) disk will have volume $\pi(\sqrt{y})^2 \Delta y$, so the

volume of the solid is given by $\int_0^4 \pi y \, dy = \frac{\pi y^2}{2} \Big|_0^4 = 8\pi$. 29. We first find the volume of a hemisphere. A hemisphere of radius r is obtained as a solid of revolution by rotating the curve $y = \sqrt{r^2 - x^2}$, $0 \le x \le r$, about the y-axis. By the shell method, the volume of this solid of revolution is $\int_0^r 2\pi x \sqrt{r^2 - x^2} \, dx \xrightarrow{u=r^2 - x^2} \int_{r^2}^0 -\pi \sqrt{u} \, du = \pi \int_0^{r^2} \sqrt{u} \, du = \frac{2\pi u^{3/2}}{3} \Big|_0^{r^2} = \frac{2\pi r^3}{3}$. Doubling gives the volume of a sphere of radius r, $\frac{4\pi r^3}{3}$. 30. Average value $= \frac{1}{5-2} \int_2^5 (x-3)^2 \, dx = \frac{1}{3} (\frac{1}{3}(x-3)^3) \Big|_2^5 = \frac{1}{9} (2^3 - (-1)^3) = 1$.