Math 1A
 2009 Final

1. Evaluate the limit $\lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4}$.

Solution. For $x \neq-4$,

$$
\begin{aligned}
\frac{\sqrt{x^{2}+9}-5}{x+4} & =\frac{\sqrt{x^{2}+9}-5}{x+4} \frac{\sqrt{x^{2}+9}+5}{\sqrt{x^{2}+9}+5} \\
& =\frac{\left(x^{2}+9\right)-25}{x+4\left(\sqrt{x^{2}+9}+5\right)} \\
& =\frac{x^{2}-16}{(x+4)\left(\sqrt{x^{2}+9}+5\right)} \\
& =\frac{(x+4)(x-4)}{(x+4)\left(\sqrt{x^{2}+9}+5\right)} \\
& =\frac{x-4}{\sqrt{x^{2}+9}+5}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4} & =\lim _{x \rightarrow-4} \frac{x-4}{\sqrt{x^{2}+9}+5} \\
& =\frac{(-4)-4}{\sqrt{(-4)^{2}+9}+5} \\
& =\frac{-8}{10} \\
& =-\frac{4}{5}
\end{aligned}
$$

2. Differentiate $e^{x} / \sin (x)$.

Solution.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{e^{x}}{\sin (x)}\right) & =\frac{\sin (x) e^{x}-e^{x} \cos (x)}{\sin ^{2}(x)} \\
& =e^{x} \csc (x)(1-\cot (x))
\end{aligned}
$$

3. Find the derivative of the function $y=\ln (\ln (\ln (x)))$.

Solution. If we let $f(x)=\ln (x)$ then $f^{\prime}(x)=\frac{1}{x}$ and so

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(f(f(f(x)))) \\
& =f^{\prime}(f(f(x))) f^{\prime}(f(x)) f^{\prime}(x) \text { by the chain rule } \\
& =\frac{1}{\ln (\ln (x))} \frac{1}{\ln (x)} \frac{1}{x} \\
& =\frac{1}{x \ln (x) \ln (\ln (x))}
\end{aligned}
$$

4. Find $d y / d x$ if $x \sin \left(y^{2}\right)=y \sin \left(x^{2}\right)$.

Solution.

$$
\begin{aligned}
x \sin \left(y^{2}\right)=y \sin \left(x^{2}\right) & \Longleftrightarrow \sin \left(y^{2}\right)+x \cos \left(y^{2}\right) 2 y \frac{d y}{d x}=\frac{d y}{d x} \sin \left(x^{2}\right)+y \cos \left(x^{2}\right) 2 x \\
& \Longleftrightarrow\left(\sin \left(y^{2}\right)-2 x y \cos \left(x^{2}\right)\right)=\frac{d y}{d x}\left(\sin \left(x^{2}\right)-2 x y \cos \left(y^{2}\right)\right) \\
& \Longleftrightarrow \frac{d y}{d x}=\frac{\sin \left(y^{2}\right)-2 x y \cos \left(x^{2}\right)}{\sin \left(x^{2}\right)-2 x y \cos \left(y^{2}\right)}
\end{aligned}
$$

5. A bacteria culture initially contains 1000 cells, and grows at a rate proportional to its size. After 1 hour the population is 1100 cells. Find an expression for the approximate number of cells after t hours.

Solution. Let $C(t)$ be the number of cells after t hours. Then

$$
\frac{d C}{d t}=k C \text { for some constant } k
$$

Thus $C(t)=C_{0} e^{k t}$ for some constant C_{0}. Since $C(0)=C_{0}$ and $C(0)=1000$ we have that $C_{0}=1000$. We are also told that $C(1)=1100$ but $C(1)=1000 e^{k}$ and so

$$
\begin{aligned}
1100=1000 e^{k} & \Longleftrightarrow 1.1=e^{k} \\
& \Longleftrightarrow k=\ln (1.1)
\end{aligned}
$$

Thus

$$
C(t)=1000 e^{\ln (1.1) t}
$$

6. Find $\lim _{x \rightarrow \infty} x e^{1 / x}-x$.

Solution.

$$
x e^{1 / x}-x=x\left(e^{1 / x}-1\right)=\frac{e^{1 / x}-1}{1 / x}
$$

where

$$
\lim _{x \rightarrow \infty} e^{1 / x}-1=0, \quad \lim _{x \rightarrow \infty} 1 / x=0
$$

Thus

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x e^{1 / x}-x & =\lim _{x \rightarrow \infty} \frac{e^{1 / x}-1}{1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{-\frac{1}{x^{2}} e^{1 / x}}{-1 / x^{2}} \text { by l'Hôpital's rule } \\
& =\lim _{x \rightarrow \infty} e^{1 / x} \\
& =1
\end{aligned}
$$

7. Sketch the graph of $y=\sin \left(x^{2}\right)$.

Solution. Click here to see the graph.
8. Explain why Newton's method does not converge to the root -1 of $2 x^{3}-x^{2}+3=0$ if the initial approximation is chosen to be $x_{1}=1$.

Solution. Let $f(x)=2 x^{3}-x^{2}+3$. Then $f^{\prime}(x)=6 x^{2}-2 x$. Thus

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right.}{f^{\prime}\left(x_{1}\right)} \\
& =1-\frac{f(1)}{f^{\prime}(1)} \\
& =0
\end{aligned}
$$

But then $f^{\prime}\left(x_{2}\right)=0$ and we cannot use Newton's method to obtain a third approximation.
9. Find the most general anti-derivative of $\left(2+x^{2}\right) /\left(1+x^{2}\right)$.

Solution.

$$
\begin{aligned}
\int \frac{2+x^{2}}{1+x^{2}} d x & =\int \frac{1+\left(1+x^{2}\right)}{1+x^{2}} d x \\
& =\int \frac{1}{1+x^{2}}+1 d x \\
& =\arctan (x)+x+C
\end{aligned}
$$

10. A stone is dropped off a cliff and hits the ground after 2 seconds. What is the height of the cliff, assuming that acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{-2}$.

Solution. Let $a(t)$ be the acceleration of the stone as a function of time. Let $v(t)$ be the velocity of the stone as a function of time. Let $s(t)$ be the height of the stone as a function of time. Then

$$
\begin{aligned}
a(t)=-10 & \Longrightarrow v(t)=-10 t+v_{0} \\
& \Longrightarrow v(t)=-10 t \text { since } \mathrm{v}(0)=0 \\
& \Longrightarrow s(t)=-5 t^{2}+s_{0} \\
& \Longrightarrow s_{0}=5(2)^{2} \text { since } s(2)=0 \\
& \Longrightarrow s_{0}=20
\end{aligned}
$$

Thus the height of cliff is 20 m .
11. Use the midpoint rule for 3 points to approximate the integral $\int_{0}^{6} x^{2} d x$.

Solution.

$$
\begin{aligned}
\int_{0}^{6} x^{2} d x & \approx(1)^{2}(2)+(3)^{2}(2)+(5)^{2}(2) \\
& =2+18+50 \\
& =70
\end{aligned}
$$

12. Evaluate the integral $\int_{-3}^{3} \sqrt{9-x^{2}} d x$ by interpreting it as an area.

Solution. The integral represents the half the area of a circle of radius 3 (see picture) and so

$$
\int_{-3}^{3} \sqrt{9-x^{2}} d x=\frac{1}{2} \pi(3)^{2}=\frac{9 \pi}{2}
$$

13. Find the derivative of the function $g(x)=\int_{x}^{1} e^{-t^{2}} d t$.

Solution.

$$
\begin{aligned}
\frac{d}{d x}\left(\int_{x}^{1} e^{-t^{2}} d t\right) & =\frac{d}{d x}\left(-\int_{1}^{x} e^{-t^{2}} d t\right) \\
& =-\frac{d}{d x}\left(\int_{1}^{x} e^{-t^{2}} d t\right) \\
& =-e^{-x^{2}}
\end{aligned}
$$

14. The Fresnel integral is given by $S(x)=\int_{0}^{x} \sin \left(\pi t^{2} / 2\right) d t$. Sketch its graph, and find the values of x at which it has local maximum values.

Solution.

$$
S^{\prime}(x)=\sin \left(\pi x^{2} / 2\right)
$$

and so

$$
\begin{aligned}
S^{\prime}(x)=0 & \Longleftrightarrow \pi x^{2} / 2=\pi n \text { for some } n \in \mathbb{Z} \\
& \Longleftrightarrow x^{2}=2 n \text { for some } n \in \mathbb{Z} \\
& \Longleftrightarrow x= \pm \sqrt{2 n}
\end{aligned}
$$

$S^{\prime}(x)$ changes sign, from positive to negative, at $x=\sqrt{4 n-2}$ and $x=-2 \sqrt{n}$ for $n \geq 1$. Thus the local maximum occur at $x=\sqrt{4 n-2}$ and $x=-2 \sqrt{n}$ for $n \geq 1$. See page 390 of the textbook for the graph (Figure 8).
15. Evaluate the integral $\int_{0}^{3 \pi / 2}|\sin (x)| d x$.

Solution.

$$
\sin (x) \geq 0 \text { for } x \in[0, \pi] \text { and } \sin (x) \leq 0 \text { for } x \in\left[\pi, \frac{3 \pi}{2}\right]
$$

so

$$
\begin{aligned}
\int_{0}^{3 \pi / 2}|\sin (x)| d x & =\int_{0}^{\pi} \sin (x) d x+\int_{\pi}^{3 \pi / 2}-\sin (x) d x \\
& =\left(-\left.\cos (x)\right|_{0} ^{\pi}\right)+\left(\left.\cos (x)\right|_{\pi} ^{3 \pi / 2}\right) \\
& =(1-(-1))+(0-(-1)) \\
& =3
\end{aligned}
$$

16. Find the area of the finite region bounded by the lines $x=0, y=1, y=x^{1 / 4}$.

Solution. Click here to see the region. Thus the area is

$$
\begin{aligned}
\int_{0}^{1} 1-x^{1 / 4} d x & =x-\left.\frac{4}{5} x^{5 / 4}\right|_{0} ^{1} \\
& =1-\frac{4}{5} \\
& =\frac{1}{5}
\end{aligned}
$$

17. Prove that if n is a positive integer then $1+1 / 2+1 / 3+\cdots+1 / n>\ln (n)$.

Solution.

$$
\ln (n)=\ln (n)-\ln (1)=\int_{1}^{n} 1 / x d x
$$

while

$$
1+1 / 2+1 / 3+\cdots+1 / n
$$

corresponds to a left Riemann sum for $1 / x$ from 1 to $n+1$. Since $1 / x$ is a decreasing function, a left Riemann sum produces an upper sum which overapproximates the area under $1 / x$ from 1 to $n+1$. Click here to see a picture. The sum

$$
1+1 / 2+\cdots+1 / n
$$

corresponds to the area of the rectangles in the picture while

$$
\ln (n)
$$

corresponds to the area under the curve $f(x)=1 / x$ from 1 to n in the picture.
18. Evaluate the indefinite integral $\int \frac{\cos (\ln (x))}{x} d x$.

Solution.

$$
\begin{aligned}
\int \frac{\cos (\ln (x))}{x} d x & =\int \cos (u) d u \text { where } u=\ln (x) \\
& =\sin (u)+C \\
& =\sin (\ln (x))+C
\end{aligned}
$$

19. Evaluate the definite integral $\int_{0}^{2}(x-1)^{10} d x$.

Solution.

$$
\begin{aligned}
\int_{0}^{2}(x-1)^{10} d x & =\left.\frac{1}{11}(x-1)^{11}\right|_{0} ^{2} \\
& =\frac{1}{11}-\left(-\frac{1}{11}\right) \\
& =\frac{2}{11}
\end{aligned}
$$

20. Evaluate the indefinite integral $\int \tan (x) d x$.

Solution.

$$
\begin{aligned}
\int \tan (x) d x & =\int \frac{\sin (x)}{\cos (x)} d x \\
& =\int-\frac{1}{u} d u \text { where } u=\cos (x) \\
& =-\ln (|u|)+C \\
& =-\ln (|\cos (x)|)+C \\
& =\ln (|\sec (x)|)+C
\end{aligned}
$$

21. Find the volume of the region obtained by rotating the region bounded by the curves $y=x^{3}, y=0, x=1$, about the x-axis.

Solution.

$$
\begin{aligned}
\int_{0}^{1} \pi\left(x^{3}\right)^{2} d x & =\pi \int_{0}^{1} x^{6} d x \\
& =\left.\frac{\pi}{7} x^{7}\right|_{0} ^{1} \\
& =\frac{\pi}{7}
\end{aligned}
$$

