MATH 1A: 2004 Final Solutions

1. $x=\left(\frac{y-2}{3}\right)^{1 / 3}$.
2. By Binomial Theorem $\lim _{x \rightarrow 0} \frac{(2+x)^{3}-8}{x}=12$.
3. Set $f(x)=(2+x)-e^{x}$. Note $f(x)$ continuous. Note $f(0)=2-e^{0}>0$ and $f(-2)=$ $-e^{-2}<0$. Therefore I.V.T. implies that $f(x)$ has a root.
4. By Quotient Rule $f^{\prime}(x)=\frac{a d-b c}{(c x+d)^{2}}$.
5. By Chain Rule $\frac{d}{d x}[y]=6 \tan ^{2}(2 x) \sec ^{2}(2 x)$.
6. Implicit differentiation of y with respect to x gives $\frac{d}{d x}[y]=\tan x \tan y$.
7. Note $f(x)$ is differentiable on all real numbers. Have $f^{\prime}(x)=e^{2 x}+2 x e^{2 x}=0$ if and only if $x=-1 / 2$. Therefore $x=-1 / 2$ critical point of $f(x)$.
8. Set $f(x)=x^{4}+4 x+c$. By Rolle's Theorem there exists a root of $f^{\prime}(x)=4 x^{3}+4$ between two consecutive roots of $f(x)$. Since $4 x^{3}+4=0$ if and only if $x=-1$, this implies that $f(x)$ has at most two roots.
9. By L'Hospital's Rule have $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{-\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{-\cos x}{2}=-1 / 2$.
10. Consider ellipse $x^{2}+(y / 2)^{2}=1$. Distance between (x, y) on ellipse and $(1,0)$ is $\sqrt{(x-1)^{2}+4-4 x^{2}}$. Set $f(x)=(x-1)^{2}+4-4 x^{2}$. Note $f^{\prime}(x)=-6 x-2=0$ if and only if $x=-1 / 3$. Have $f(-1)=4, f(1)=0$, and $f(-1 / 3)=5 \frac{1}{3}$. Therefore $f(x)$ maximized on the interval $[-1,1]$ at $x=-1 / 3$. Conclude distance maximized on ellipse at $(-1 / 3, \pm 4 \sqrt{2} / 3)$.
11. Tangent line is horizontal at $x_{1}=1$.
12. $x_{2}=2-\frac{32-36}{5 \cdot 16}=2.05$.
13. $f(x)=\frac{1}{4} x^{4}+\frac{3}{4}$. Note $f(x)$ tangent to $x+y=0$ at $(-1,1)$.
14. Set $f(x)=c x+d-\ln x$. Note $0=f(1)=c+d$ implies $c=-d$; note $0=f(2)=c-\ln 2$ implies $c=-d=\ln 2$. Therefore $f(x)=\ln (2) x-\ln (2)-\ln x$.
15. $1 \cdot f(2)+1 \cdot f(3)+1 \cdot f(4)=1 / 2+1 / 3+1 / 4=13 / 12$.
16. $\int_{1}^{2} f(x) d x+\int_{2}^{5} f(x) d x=\int_{1}^{5} f(x) d x$ implies $\int_{1}^{2} f(x) d x+14=12$. Therefore $\int_{1}^{2} f(x) d x=$ -2 .
17. Integral corresponds to area of region between $y=0$ and $x^{2}+y^{2}=4$ for $y>0$. Since $x^{2}+y^{2}=4$ equation of a circle of radius 2 , have $\int_{-2}^{2} \sqrt{4-x^{2}} d x=2 \pi$.
18. Since $1 \leq \sqrt{1+x^{2}} \leq \sqrt{2}$ for x in $[-1,1]$, have
$2=\int_{-1}^{1} 1 d x \leq \int_{-1}^{1} \sqrt{1+x^{2}} d x \leq \int_{-1}^{1} \sqrt{2} d x=2 \sqrt{2}$.
19. By F.T.C. 1 have $g^{\prime}(x)=\ln x$.
20. By F.T.C. 1 and Chain Rule have $\frac{d}{d x}[y]=\cos x-\cos (x) \cos (\sin x)$.
21. By F.T.C. 2 have $\int_{-1}^{0} 2 x-e^{x} d x=x^{2}-\left.e^{x}\right|_{x=-1} ^{x=0}=e^{-1}-2$.
22. By F.T.C. 2 have $\int_{0}^{\pi / 4} \frac{1+\cos ^{2} x}{\cos ^{2} x} d x=\tan x+\left.x\right|_{x=0} ^{x=\pi / 4}=1+\pi / 4$.
23. $\int x^{3} \sqrt{2 x^{4}-1} d x=\frac{1}{12}\left(2 y^{4}-1\right)^{3 / 2}+C$.
24. $\int \tan x d x=\ln |\sec x|+C$.
25. By F.T.C. 2 have $\int_{0}^{4}(x-2)^{7} d x=\left.\frac{1}{8}(x-2)^{8}\right|_{x=0} ^{x=4}=0$.
26. Note $\int_{1}^{n} 1 / x d x=\ln n$. Take left endpoint approximation with $n-1$ rectangles of width
27. Since respective heights are $1, \ldots, \frac{1}{n-1}$, have $1+\frac{1}{2}+\cdots+\frac{1}{n-1}>\ln n$.
28. Area enclosed by curves is $\int_{-6}^{2}\left(3-\frac{1}{4} y^{2}\right)-y d y=24-\frac{56}{3}+16=\frac{64}{3}$.
29. Volume of solid is $\int_{0}^{1} \pi e^{2 x} d x=\frac{\pi}{2}\left(e^{2}-1\right)$.
30. Volume of sphere of radius r is $2 \int_{0}^{r} 2 \pi r \sqrt{r^{2}-x^{2}} d x=4 \pi\left[\frac{-1}{3}\left(r^{2}-x^{2}\right)^{3 / 2}\right]_{x=0}^{x=r}=4 \pi r^{3} / 3$.
31. $\frac{1}{4} \int_{0}^{4} \sqrt{x} d x=4 / 3$.
