Math 1A 2005 Midterm 2

1). The graph of f has a horizontal tangent precisely when $f^{\prime}(x)=0$. Since $f^{\prime}(x)=1-2 \cos (x)$, this happens when $1-2 \cos (x)=0$, i.e. $\cos (x)=1 / 2$. The values of x which satisfy this are $x=\frac{\pi}{3}+2 n \pi, \frac{5 \pi}{3}+2 n \pi$, for $n \in \mathbb{Z}$.
2). We have $y^{\prime}=10(1+3 x)^{9}(3)$ by the Chain Rule, so $y^{\prime}(0)=10(1+3 \cdot 0)^{9}(3)=30$. The equation of the tangent line is $y-1=30(x-0)$, or $y=30 x+1$.
3). Taking derivatives implicitly yields

$$
\begin{aligned}
\frac{1}{2 \sqrt{x y}} \cdot \frac{d}{d x}[x y] & =\frac{d}{d x}\left[x^{2} y\right] \\
\frac{1}{2 \sqrt{x y}}\left(y+x \frac{d y}{d x}\right) & =2 x y+x^{2} \frac{d y}{d x} \\
y+x \frac{d y}{d x} & =2 \sqrt{x y}\left(2 x y+x^{2} \frac{d y}{d x}\right) \\
\left(x-2 x^{2} \sqrt{x y}\right) \frac{d y}{d x} & =4(x y)^{3 / 2}-y \\
\frac{d y}{d x} & =\frac{4(x y)^{3 / 2}-y}{x-2 x^{2} \sqrt{x y}}
\end{aligned}
$$

4). Notice $y=\frac{x}{2 x-1}=\frac{1}{2}\left(\frac{2 x}{2 x-1}\right)=\frac{1}{2}\left(\frac{2 x-1+1}{2 x-1}\right)=\frac{1}{2}\left(1+\frac{1}{2 x-1}\right)$. Therefore $y^{\prime}=-(2 x-1)^{-2}, y^{\prime \prime}=4(2 x-1)^{-3}, y^{\prime \prime \prime}=-24(2 x-1)^{-4}$.
5). By the Chain Rule,

$$
\begin{aligned}
\frac{d}{d x}[\ln (\ln (\ln (\ln (x))))] & =\frac{1}{\ln (\ln (\ln (x)))} \frac{d}{d x}[\ln (\ln (\ln (x)))] \\
& =\frac{1}{\ln (\ln (\ln (x)))} \frac{1}{\ln (\ln (x))} \frac{d}{d x}[\ln (\ln (x))] \\
& =\frac{1}{\ln (\ln (x)) \cdot \ln (\ln (\ln (x)))} \frac{1}{\ln x} \frac{d}{d x}[\ln x] \\
& =\frac{1}{x \cdot \ln x \cdot \ln (\ln (x)) \cdot \ln (\ln (\ln (x)))}
\end{aligned}
$$

6). By the Product Rule, $\frac{d}{d x}[\sinh (x) \tanh (x)]=\frac{d}{d x}[\sinh (x)] \tanh (x)+\sinh (x) \frac{d}{d x}[\tanh (x)]=$ $\cosh (x) \tanh (x)+\sinh (x) \operatorname{sech}^{2}(x)=\sinh (x)\left(1+\operatorname{sech}^{2}(x)\right)$.
7). Let $f(x)=\sqrt{x}$, and $a=100$. Then $f(a)=10$, and $f^{\prime}(a)=\frac{1}{2 \sqrt{100}}=\frac{1}{20}$, so the linear approximation to f at a is $L(x)=f(a)+f^{\prime}(a)(x-a)=10+\frac{1}{20}(x-100)$. Since 99.8 ≈ 100, $\sqrt{99.8}=f(99.8) \approx L(99.8)=10+\frac{1}{20}(99.8-100)=10+\frac{1}{20}(-0.2)=10-0.01=9.99$.

Alternative approach (with differentials): For $f(x)$ as above, we have $d y=f^{\prime}(x) d x=\frac{d x}{2 \sqrt{x}}$. For $a=100, x=99.8$, we have $d x=\Delta x=-0.2$, so $\sqrt{99.8}=\sqrt{100}+\Delta y \approx 10+d y=$ $10+\frac{-0.2}{2 \sqrt{100}}=9.99$.
8). We first find the critical numbers of f. Since $f^{\prime}(x)=3 x^{2}-3, f^{\prime}(x)=0$ when $x=1$ or $x=-1$. As we only consider values in $[0,3]$, the only critical number we check is $x=1$. Evaluating at the critical number and the endpoints, we find $f(0)=1, f(1)=-1, f(3)=19$, so the absolute minimum is -1 and the absolute maximum is 19 .
9). We compute $f^{\prime}(x)=\frac{1}{3 x^{2 / 3}}-\frac{2}{3 x^{1 / 3}}$. f^{\prime} is undefined for $x=0$, and is 0 when $\frac{1}{3 x^{2 / 3}}=\frac{2}{3 x^{1 / 3}}$ iff $x^{1 / 3}=2 x^{2 / 3}$ iff $x=8 x^{2}$ iff $x=0,1 / 8$. The critical numbers are thus $0, \frac{1}{8}$.
10). As f is a polynomial, it is continuous on $[0,4]$ and differentiable on $(0,4)$. Also $f(0)=$ $1=f(4)$, so f satisfies the hypotheses of Rolle's Theorem on $[0,4]$. The conclusion is then that there exists at least one value c in $(0,4)$ with $f^{\prime}(c)=0$. We have $f^{\prime}(x)=2 x-4$, which is 0 precisely when $c=2$.
11). $f^{\prime}(x)=2 x e^{x}+e^{x} x^{2}=x e^{x}(2+x)$, so $f^{\prime}=0$ when $x=0,-2$. We see that $f^{\prime}(x)<0$ for $-2<x<0$ (e.g., substitute $x=-1$), and $f^{\prime}(x)>0$ when $x>0$ or $x<-2$. So by the First Derivative Test, $\left(-2,4 / e^{2}\right)$ is a local maximum and $(0,0)$ is a local minimum for f, and f is increasing on $(-\infty,-2) \cup(0, \infty)$ and decreasing on $(-2,0)$.
12). Since $e^{x}-1-\left.x\right|_{x=0}=0=\left.x^{2}\right|_{x=0}$, we may use L'Hospital's Rule ($0 / 0$ indeterminate form) to evaluate the limit. We have $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}$ if the latter limit exists. Again, since $e^{x}-\left.1\right|_{x=0}=0=\left.2 x\right|_{x=0}$, we apply L'Hospital's Rule again to conclude that $\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}=\lim _{x \rightarrow 0} \frac{e^{x}}{2}=\frac{1}{2}$. Thus the original limit is $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\frac{1}{2}$.
13). Notice $\sin (x), \sinh (x)$ are continuous functions on \mathbb{R}, and $\sin (0)=0=\sinh (0)$. Thus we substitute $x=0$ to obtain $\lim _{x \rightarrow 0} \frac{\sin (x)}{\sinh (x)+1}=\frac{0}{0+1}=0$.
14). Domain: f is undefined when $1+\cos (x)=0$, which occurs when $x=(2 n+1) \pi$, for $n \in \mathbb{Z}$. Thus the domain of f is $\{x \in \mathbb{R} \mid x \neq(2 n+1) \pi, n \in \mathbb{Z}\}$.
Local Extrema: $f^{\prime}(x)=\frac{(1+\cos (x))(\cos (x))-\sin (x)(-\sin (x))}{(1+\cos (x))^{2}}=\frac{\cos (x)+1}{(1+\cos (x))^{2}}=\frac{1}{1+\cos (x)}$.
This is always >0, and is undefined when $1+\cos (x)=0$, precisely where f is undefined. Thus f is always increasing, and has no local maxima or minima.
Behavior at infinity: Both $\cos (x), \sin (x)$ are periodic of period 2π, so f is also periodic with the same period. Also, $\sin (x)$ is odd and $1+\cos (x)$ is even, so f is odd. Thus the graph of f is just obtained by horizontal translates of its restriction to $[-\pi, \pi] . f$ also has vertical asymptotes at $x=(2 n+1) \pi, n \in \mathbb{Z}$.
Zeros: f has zeros where it is defined and $\sin (x)=0$, i.e. when $x=2 n \pi, n \in \mathbb{Z}$.
Behavior at 0 : As seen above, f has a root at 0 , and is continuous at (and increasing in a neighborhood of) 0 .
15). Domain: $\{x \in \mathbb{R} \mid x>0\}$ (we only look at $x>0$)

Local Extrema: $f(x)=e^{\frac{\ln (x)}{x}} \Rightarrow f^{\prime}(x)=e^{\frac{\ln (x)}{x}}\left(\frac{1-\ln (x)}{x^{2}}\right)=\frac{x^{1 / x}(1-\ln (x))}{x^{2}}$. Thus $f^{\prime}=0$
when $x=e$. For $0<x<e, f^{\prime}(x)>0$, and for $x>e, f^{\prime}(x)<0$. Thus f has a local max at $\left(e, e^{1 / e}\right)$, is increasing on $(0, e)$, and decreasing on (e, ∞).
Zeros: $f(x)=e^{\frac{\ln (x)}{x}}$ is never 0 for $x>0$.
Behavior at $\infty: \lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=0$, so $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} e^{\frac{\ln (x)}{x}}=e^{0}=1$.
Behavior at 0: Substituting 0 for x gives the non-indeterminate form $0^{\infty}=0$, so $f(0)=0$.

