
Math 1A 2005 Midterm 2

1). The graph of f has a horizontal tangent precisely when f ′(x) = 0. Since f ′(x) = 1−2 cos(x),
this happens when 1 − 2 cos(x) = 0, i.e. cos(x) = 1/2. The values of x which satisfy this are

x =
π

3
+ 2nπ,

5π

3
+ 2nπ, for n ∈ Z.

2). We have y′ = 10(1 + 3x)9(3) by the Chain Rule, so y′(0) = 10(1 + 3 · 0)9(3) = 30.
The equation of the tangent line is y − 1 = 30(x− 0), or y = 30x+ 1.
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4). Notice y =
x
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. Therefore

y′ = −(2x− 1)−2, y′′ = 4(2x− 1)−3, y′′′ = −24(2x− 1)−4.

5). By the Chain Rule,
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6). By the Product Rule, d
dx

[sinh(x) tanh(x)] = d
dx

[sinh(x)] tanh(x) + sinh(x) d
dx

[tanh(x)] =

cosh(x) tanh(x) + sinh(x) sech2(x) = sinh(x)(1 + sech2(x)).

7). Let f(x) =
√
x, and a = 100. Then f(a) = 10, and f ′(a) = 1

2
√
100

= 1
20

, so the linear

approximation to f at a is L(x) = f(a) + f ′(a)(x − a) = 10 + 1
20

(x − 100). Since 99.8 ≈ 100,√
99.8 = f(99.8) ≈ L(99.8) = 10 + 1

20
(99.8− 100) = 10 + 1

20
(−0.2) = 10− 0.01 = 9.99.

Alternative approach (with differentials): For f(x) as above, we have dy = f ′(x)dx =
dx

2
√
x

.

For a = 100, x = 99.8, we have dx = ∆x = −0.2, so
√

99.8 =
√

100 + ∆y ≈ 10 + dy =

10 +
−0.2

2
√

100
= 9.99.
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8). We first find the critical numbers of f . Since f ′(x) = 3x2 − 3, f ′(x) = 0 when x = 1
or x = −1. As we only consider values in [0, 3], the only critical number we check is x = 1.
Evaluating at the critical number and the endpoints, we find f(0) = 1, f(1) = −1, f(3) = 19,
so the absolute minimum is −1 and the absolute maximum is 19.

9). We compute f ′(x) = 1
3x2/3 − 2

3x1/3 . f ′ is undefined for x = 0, and is 0 when 1
3x2/3 = 2

3x1/3 iff

x1/3 = 2x2/3 iff x = 8x2 iff x = 0, 1/8. The critical numbers are thus 0, 1
8
.

10). As f is a polynomial, it is continuous on [0, 4] and differentiable on (0, 4). Also f(0) =
1 = f(4), so f satisfies the hypotheses of Rolle’s Theorem on [0, 4]. The conclusion is then that
there exists at least one value c in (0, 4) with f ′(c) = 0. We have f ′(x) = 2x − 4, which is 0
precisely when c = 2.

11). f ′(x) = 2xex + exx2 = xex(2 + x), so f ′ = 0 when x = 0,−2. We see that f ′(x) < 0 for
−2 < x < 0 (e.g., substitute x = −1), and f ′(x) > 0 when x > 0 or x < −2. So by the First
Derivative Test, (−2, 4/e2) is a local maximum and (0, 0) is a local minimum for f , and f is
increasing on (−∞,−2) ∪ (0,∞) and decreasing on (−2, 0).
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∣∣
x=0

= 0 = x2
∣∣
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, we may use L’Hospital’s Rule (0/0 indeterminate

form) to evaluate the limit. We have lim
x→0

ex − 1− x
x2

= lim
x→0

ex − 1

2x
if the latter limit exists.
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, we apply L’Hospital’s Rule again to conclude that
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13). Notice sin(x), sinh(x) are continuous functions on R, and sin(0) = 0 = sinh(0). Thus

we substitute x = 0 to obtain lim
x→0

sin(x)

sinh(x) + 1
=

0

0 + 1
= 0.

14). Domain: f is undefined when 1 + cos(x) = 0, which occurs when x = (2n + 1)π, for
n ∈ Z. Thus the domain of f is {x ∈ R | x 6= (2n+ 1)π, n ∈ Z}.

Local Extrema: f ′(x) =
(1 + cos(x))(cos(x))− sin(x)(− sin(x))

(1 + cos(x))2
=

cos(x) + 1

(1 + cos(x))2
=

1

1 + cos(x)
.

This is always > 0, and is undefined when 1 + cos(x) = 0, precisely where f is undefined. Thus
f is always increasing, and has no local maxima or minima.
Behavior at infinity: Both cos(x), sin(x) are periodic of period 2π, so f is also periodic with the
same period. Also, sin(x) is odd and 1+cos(x) is even, so f is odd. Thus the graph of f is just
obtained by horizontal translates of its restriction to [−π, π]. f also has vertical asymptotes at
x = (2n+ 1)π, n ∈ Z.
Zeros: f has zeros where it is defined and sin(x) = 0, i.e. when x = 2nπ, n ∈ Z.
Behavior at 0: As seen above, f has a root at 0, and is continuous at (and increasing in a
neighborhood of) 0.

15). Domain: {x ∈ R | x > 0} (we only look at x > 0)

Local Extrema: f(x) = e
ln(x)
x ⇒ f ′(x) = e

ln(x)
x

(
1− ln(x)

x2

)
=
x1/x(1− ln(x))

x2
. Thus f ′ = 0

when x = e. For 0 < x < e, f ′(x) > 0, and for x > e, f ′(x) < 0. Thus f has a local max at
(e, e1/e), is increasing on (0, e), and decreasing on (e,∞).

Zeros: f(x) = e
ln(x)
x is never 0 for x > 0.

Behavior at ∞: lim
x→∞

ln(x)

x
= 0, so lim

x→∞
f(x) = lim

x→∞
e

ln(x)
x = e0 = 1.

Behavior at 0: Substituting 0 for x gives the non-indeterminate form 0∞ = 0, so f(0) = 0.
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