Math 1A
 Midterm 2
 2006

1. Differentiate $\sin (\cos (\tan (x)))$.

Solution. If $f(x)=\sin (\cos (\tan (x)))$ then by the chain rule we have that

$$
f^{\prime}(x)=[\cos (\cos (\tan (x)))] \cdot\left[-\sin (\tan (x)] \cdot\left[\sec ^{2}(x)\right]\right.
$$

The brackets are only there to emphasize the applications of the chain rule.
2. Find an equation of the tangent line to the curve $y=\frac{1}{\sin (x)+\cos (x)}$ at the point $(0,1)$.

Solution. $y^{\prime}=\frac{-(\cos (x)-\sin (x))}{(\sin (x)+\cos (x))^{2}}$ so $y^{\prime}(0)=\frac{-(1-0)}{(0+1)^{2}}=\frac{-1}{1}=-1$ and so the equation of the tangent line at the point $(0,1)$ is

$$
y-1=-x
$$

3. Find $\frac{d y}{d x}$ by implicit differentiation if $1+x=\sin \left(x y^{2}\right)$.

Solution. Differentiate both sides of $1+x=\sin \left(x y^{2}\right)$ with respect to x :

$$
\begin{aligned}
\frac{d}{d x}(1+x) & =\frac{d}{d x}\left(\sin \left(x y^{2}\right)\right) \\
1 & =\cos \left(x y^{2}\right)\left(y^{2}+2 x y y^{\prime}\right) \\
\sec \left(x y^{2}\right) & =y^{2}+2 x y y^{\prime} \\
\sec \left(x y^{2}\right)-y^{2} & =2 x y y^{\prime} \\
y^{\prime} & =\frac{\sec \left(x y^{2}\right)-y^{2}}{2 x y}
\end{aligned}
$$

4. Find a formula for the nth derivative of x^{-3}.

Solution. The strategy here is to find the derivative for a few values of n (e.g. $n=$ $1,2,3)$ and recognize a pattern. To this end, let $f(x)=x^{-3}$. Then

$$
\begin{aligned}
f^{\prime}(x) & =-3 x^{-4} \\
f^{\prime \prime}(x) & =12 x^{-5} \\
f^{\prime \prime \prime}(x) & =-60 x^{-6}
\end{aligned}
$$

We see that the exponent keeps coming down and the sign keeps alternating. Formally,

$$
f^{(n)}(x)=(-1)^{n} \frac{(n+2)!}{2} x^{-3-n}
$$

5. Differentiate $x^{\sin (x)}$.

Solution. Let $f(x)=x^{\sin (x)}=e^{\ln (x) \sin (x)}$. Then

$$
f^{\prime}(x)=e^{\ln (x) \sin (x)}\left(\frac{\sin (x)}{x}+\ln (x) \cos (x)\right)=x^{\sin (x)}\left(\frac{\sin (x)}{x}+\ln (x) \cos (x)\right)
$$

6. Find the derivative of $\sinh (x) \tanh (x)$.

Solution. Let $f(x)=\sinh (x) \tanh (x)$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\cosh (x) \tanh (x)+\sinh (x) \operatorname{sech}^{2}(x) \\
& =\sinh (x)+\tanh (x) \operatorname{sech}(x)
\end{aligned}
$$

7. Use differentials or a linear aproximation to estimate $\ln (.97)$.

Solution. Let $f(x)=\ln (x)$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x} \\
f^{\prime}(1) & =1
\end{aligned}
$$

and so the tangent line to $f(x)$ at the point $(1,0)$ is

$$
\begin{aligned}
y-0 & =1(x-1) \\
y & =x-1
\end{aligned}
$$

meaning our approximation is this line evaluated at $x=.97$ so

$$
\ln (.97) \approx .97-1=-.03
$$

8. Find the absolute maximum and absolute minimum values $f(x)=x^{3}-3 x-1$ on the interval $[-3,3]$.

Solution.

$$
f^{\prime}(x)=3 x^{2}-3
$$

so

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longleftrightarrow 3 x^{2}-3=0 \\
& \Longleftrightarrow 3 x^{2}=3 \\
& \Longleftrightarrow x^{2}=1 \\
& \Longleftrightarrow x= \pm 1
\end{aligned}
$$

Now

$$
\begin{aligned}
f(1) & =1-3-1=-3 \\
f(-1) & =-1+3-1=1 \\
f(3) & =27-9-1=17 \\
f(-3) & =-27+9-1=-19
\end{aligned}
$$

so -19 is the absolute minimum and 17 is the absolute maximum on the interval $[-3,3]$.
9. Find all critical numbers of the function $f(x)=5 x^{\frac{2}{3}}+x^{\frac{5}{3}}$.

Solution.

$$
f^{\prime}(x)=\frac{10}{3 x^{\frac{1}{3}}}+\frac{5 x^{\frac{2}{3}}}{3}
$$

so immediately we see that $x=0$ is a critical point. Now we want to solve $f^{\prime}(x)=0$:

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longleftrightarrow \frac{10}{3 x^{\frac{1}{3}}}+\frac{5 x^{\frac{2}{3}}}{3}=0 \\
& \Longleftrightarrow \frac{10}{3 x^{\frac{1}{3}}}=-\frac{5 x^{\frac{2}{3}}}{3} \\
& \Longleftrightarrow-2=x
\end{aligned}
$$

Thus the critical points of $f(x)$ are

$$
x=0,-2
$$

10. Show that the equation $2 x-1-\sin (x)=0$. has exactly one real root.

Solution. Let $f(x)=2 x-1-\sin (x)$. First we show that $f(x)$ has at least one real root. Observe that $f(x)$ is a continuous function. Now

$$
\begin{aligned}
& f(0)=-1<0 \\
& f(\pi)=2 \pi-1>0
\end{aligned}
$$

so by the intermediate value theorem

$$
\exists c \in(0, \pi): f(c)=0 .
$$

Now

$$
f^{\prime}(x)=2-\cos (x) \geq 1
$$

so $f^{\prime}(x)$ has no real roots. Suppose, for a contradiction, $f(x)$ has two or more real roots. By Rolle's theorem, $f^{\prime}(x)$ would have a real root which contradicts the fact that $f^{\prime}(x) \geq 1$ has no real roots. Thus it must be the case that $f(x)$ has at most one real root. Since we know that $f(x)$ has at least one real root, we now have that $f(x)$ has exactly one real root.
11. Find the intervals on which f is increasing or decreasing and all local maximum and minimum values of $f(x)=3 x^{\frac{2}{3}}-x$.

Solution.

$$
f^{\prime}(x)=\frac{2}{x^{\frac{1}{3}}}-1
$$

so

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longleftrightarrow \frac{2}{x^{\frac{1}{3}}}-1=0 \\
& \Longleftrightarrow \frac{2}{x^{\frac{1}{3}}}=1 \\
& \Longleftrightarrow 2=x^{\frac{1}{3}} \\
& \Longleftrightarrow 8=x
\end{aligned}
$$

and so the critical points of $f(x)$ are $x=0,8$. Now we solve for when $f^{\prime}(x)<0$:

$$
\begin{aligned}
f^{\prime}(x)<0 & \Longleftrightarrow \frac{2}{x^{\frac{1}{3}}}-1<0 \\
& \Longleftrightarrow \frac{2}{x^{\frac{1}{3}}}<1 \\
& \Longleftrightarrow 2<x^{\frac{1}{3}} \text { or } x<0 \\
& \Longleftrightarrow 8<x \text { or } x<0
\end{aligned}
$$

and so

$$
f^{\prime}(x)<0 \Longleftrightarrow x \in(-\infty, 0) \cup(8, \infty)
$$

Then the only remaining possibility is that

$$
f^{\prime}(x)>0 \Longleftrightarrow x \in(0,8)
$$

Thus f is increasing on $(0,8)$, decreasing on $(-\infty, 0) \cup(8, \infty), f(8)$ is a local maximum, and $f(0)$ is a local minimum.
12. Find the limit $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x}$.

Solution. We do not need to apply L'Hôpital's rule. The numerator tends to $-\infty$. The bottom tends to 0 but stays positive. Thus

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x}=-\infty
$$

13. Find the limit $\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{x^{2}}{2}}{x^{4}}$

Solution. The numerator and denominator both tend to 0 so we may apply L'Hôpital's rule:

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{x^{2}}{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{-\sin (x)+x}{4 x^{3}}
$$

Again, the numerator and denominator both tend to 0 so we may apply L'Hôpital's rule another time:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{-\sin (x)+x}{4 x^{3}} & =\lim _{x \rightarrow 0} \frac{-\cos (x)+1}{12 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{\sin (x)}{24 x} \text { (again we have used L'Hôpital's rule) } \\
& =\lim _{x \rightarrow 0} \frac{\cos (x)}{24} \text { (again we have used L'Hôpital's rule) } \\
& =\frac{1}{24} .
\end{aligned}
$$

14. Sketch the curve $y=\sqrt[3]{x^{2}-1}$.

Solution. The domain of $y=\sqrt[3]{x^{2}-1}$ is \mathbb{R}, the entire real line. Now

$$
y^{\prime}=\frac{2 x}{3\left(x^{2}-1\right)^{\frac{2}{3}}}
$$

so immediately we see that the critical points are $x=0, \pm 1$. Notice that the denominator is always positive since

$$
\left(x^{2}-1\right)^{\frac{2}{3}}=\left(\sqrt[3]{x^{2}-1}\right)^{2}
$$

meaning the sign of y^{\prime} is determined by the numerator, $2 x$. Thus

$$
\begin{aligned}
& y^{\prime}>0 \Longleftrightarrow 0<x<1 \text { and } 1<x \\
& y^{\prime}<0 \Longleftrightarrow x<-1 \text { and }-1<x<0 .
\end{aligned}
$$

Thus $\sqrt[3]{0^{2}-1}=-1$ is a local minimum. We also see that y is decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$. y clearly has zeroes at $x= \pm 1$. For large $|x|$, we have that

$$
x^{2}-1 \sim x^{2} \text { so } \sqrt[3]{x^{2}-1} \sim \sqrt[3]{x^{2}}=x^{\frac{2}{3}}
$$

The function obtains a local minimum when $x=0$ as we observed earlier. The function is not differentiable at $x= \pm 1$. In fact, from our formula for the derivative, it is easy to see that

$$
\begin{aligned}
\lim _{x \rightarrow-1} y^{\prime} & =\lim _{x \rightarrow-1} \frac{2 x}{3\left(x^{2}-1\right)^{\frac{2}{3}}}=-\infty \\
\lim _{x \rightarrow 1} y^{\prime} & =\lim _{x \rightarrow 1} \frac{2 x}{3\left(x^{2}-1\right)^{\frac{2}{3}}}=\infty
\end{aligned}
$$

Click here to see the graph. Zoom in/out as necessary.
15. Sketch the curve $y=\frac{\ln (x)}{x}$ for $x>0$.

Solution. The domain of y is $\mathbb{R}_{>0}$, the positive real axis. Now

$$
y^{\prime}=\frac{x \cdot \frac{1}{x}-\ln (x)}{x^{2}}=\frac{1-\ln (x)}{x^{2}} .
$$

We proceed to solve $y^{\prime}=0$:

$$
\begin{aligned}
y^{\prime}=0 & \Longleftrightarrow \frac{1-\ln (x)}{x^{2}}=0 \\
& \Longleftrightarrow 1-\ln (x)=0 \\
& \Longleftrightarrow 1=\ln (x) \\
& \Longleftrightarrow e=x
\end{aligned}
$$

so the only critical point is $x=e$. Again, notice that the denominator of the derivative is always postive so the sign of the derivative is determined by the sign of the numerator. Thus

$$
\begin{aligned}
& y^{\prime}>0 \Longleftrightarrow 1-\ln (x)>0 \Longleftrightarrow 1>\ln (x) \Longleftrightarrow x<e \\
& y^{\prime}<0 \Longleftrightarrow 1-\ln (x)<0 \Longleftrightarrow 1<\ln (x) \Longleftrightarrow e<x
\end{aligned}
$$

whence y is decreasing on (e, ∞), increasing on $(0, e)$. Moreover, $\frac{\ln (e)}{e}=\frac{1}{e}$ is a local maximum. The function has a zero at $x=1$. Now we want to compute $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}$:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1} \quad \text { (by L'Hôpital's rule) } \\
& =\lim _{x \rightarrow \infty} \frac{1}{x} \\
& =0
\end{aligned}
$$

Next, we compute $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x}=-\infty$ (this was problem \#12). The function is differentiable for every $x \in \mathbb{R}_{>0}$. Click here to see the graph. Zoom in/out as necessary.

