
MATH1B, FALL 2010. MIDTERM 1 SOLUTION

Multiple choice: 1.D, 2.A, 3.C, 4.E, 5.C, 6.A, 7.D, 8.D.

Problem 1

(a) Since the degree of the numerator equals that of the denominator, we must use long division, or just
rewrite the integrand
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The discriminant of the denominator is negative, so partial fractions is unnecessary. Instead we just
manipulate a bit. Ignoring the first term for the moment, and noticing that the derivative of the
denominator is 8x+ 4, we rewrite the numerator of the second term:
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Finally, we can complete the square of the denominator: 4x2 + 4x+ 10 = (2x+ 1)2 + 32. Putting all this
back together, we have:∫
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(b) Make the substitution x =
√
t, so t = x2, and dt = 2xdx. Then our integral looks like∫
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(c) Make the substitution u = ln(tanx), so that du = 1
tan x sec2 x dx = 1

sin x cos xdx. When x = π/4,
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Problem 2

(a) This integral is improper since it is taken over an unbounded domain. To check that there are no other
problems, make sure the denominator is not undefined or zero: cosx + sinx > 0 for 0 ≤ x < 3π/4, so
cosx + sinx + x6 > 0 for 0 ≤ x < 3π/4. On the other hand, when x ≥ 3π/4, we have x6 > 2 and
cosx+ sinx > −2 (this is true for every x), so cosx+ sinx+ x6 > 0 when x > 3π/4.
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Thus the integrand is defined for all 0 ≤ x ≤ ∞, so the convergence of the integral depends only
on what happens near ∞. Roughly, the idea is that for large x, we can ignore the cosx + sinx in the
denominator, so the integrand looks like x√

x6
= 1

x2 , which converges. To make this precise, we want to

use the comparison test. The only problem is that the integral of 1/x2 doesn’t actually converge near
zero. This isn’t really a problem, we just have to break up the integral into two pieces:∫ ∞
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The integrand is continuous for x ≥ 0, so the first piece is finite, and we can ignore it. For the second
integral, the tricky part is that since cosx+sinx is sometimes positive, sometimes negative, we cannot say
that cosx+sinx+x6 > x6. We must be just a little bit more careful: for any x, we have −2 < sinx+cosx,
which means x6 − 2 < cosx + sinx + x6. Also, when x ≥ 2, then certainly x6 > 4, so 1
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(b) This integral is improper because the integrand is undefined at x = 0. So we must rewrite it as∫ π/2
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To compute this integral, we set u = ex, so x = lnu and dx = 1/u du. Ignoring the limits of integration
briefly, our integral becomes∫
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Now we use this to compute the improper integral:
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Problem 3

(a) Let SN = ΣNn=1an = a1 + a2 + . . .+ aN . Then Σ∞n=1an converges if limN→∞ SN = L <∞.
(b) We must find an explicit formula for the sequence of partial sums. Using partial fractions,
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All the positive terms except the first three cancel out all but the last three negative terms, leaving
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(serious skeptics should prove this by induction). Now take the limit:

lim
N→∞

SN =
1

3

[
1

2
+

1

3
+

1

4

]
=

13

36

According to the definition in (a), this means in particular that Σan converges.


