## MATH1B, FALL 2010. MIDTERM 1 SOLUTION

Multiple choice: 1.D, 2.A, 3.C, 4.E, 5.C, 6.A, 7.D, 8.D.

## Problem 1

(a) Since the degree of the numerator equals that of the denominator, we must use long division, or just rewrite the integrand

$$
\frac{x^{2}}{4 x^{2}+4 x+10}=\frac{1}{4} \frac{4 x^{2}}{4 x^{2}+4 x+10}=\frac{1}{4} \frac{4 x^{2}+4 x+10-4 x-10}{4 x^{2}+4 x+10}=\frac{1}{4}-\frac{1}{4} \frac{4 x+10}{4 x^{2}+4 x+10}
$$

The discriminant of the denominator is negative, so partial fractions is unnecessary. Instead we just manipulate a bit. Ignoring the first term for the moment, and noticing that the derivative of the denominator is $8 x+4$, we rewrite the numerator of the second term:

$$
\frac{1}{4} \frac{4 x+10}{4 x^{2}+4 x+10}=\frac{1}{8} \frac{8 x+20}{4 x^{2}+4 x+10}=\frac{1}{8} \frac{8 x+4}{4 x^{2}+4 x+10}+\frac{1}{8} \frac{16}{4 x^{2}+4 x+10}
$$

Finally, we can complete the square of the denominator: $4 x^{2}+4 x+10=(2 x+1)^{2}+3^{2}$. Putting all this back together, we have:

$$
\begin{aligned}
\int \frac{x^{2}}{4 x^{2}+4 x+10} d x & =\int \frac{1}{4} d x-\frac{1}{8} \int \frac{8 x+4}{4 x^{2}+4 x+10} d x-\int \frac{2}{(2 x+1)^{2}+3^{2}} d x \\
& =\frac{1}{4} x-\frac{1}{8} \ln \left(4 x^{2}+4 x+10\right)-\frac{1}{3} \arctan \frac{2 x+1}{3}+C .
\end{aligned}
$$

(b) Make the substitution $x=\sqrt{t}$, so $t=x^{2}$, and $d t=2 x d x$. Then our integral looks like

$$
\begin{aligned}
\int x^{2} e^{x}(2 x) d x & =2 \int x^{3} e^{x} d x \\
& =2\left[x^{3} e^{x}-3 \int x^{2} e^{x} d x\right] \\
& =2\left[x^{3} e^{x}-3\left[x^{2} e^{x}-2 \int x e^{x} d x\right]\right] \\
& =2\left[x^{3} e^{x}-3\left[x^{2} e^{x}-2\left[x e^{x}-\int e^{x} d x\right]\right]\right] \\
& =2 e^{x}\left[x^{3}-3 x^{2}+6 x-6\right]+C \\
& =2 e^{\sqrt{t}}\left[t^{3 / 2}-3 t+6 \sqrt{t}-6\right]+C
\end{aligned}
$$

(c) Make the substitution $u=\ln (\tan x)$, so that $d u=\frac{1}{\tan x} \sec ^{2} x d x=\frac{1}{\sin x \cos x} d x$. When $x=\pi / 4$, $u=\ln 1=0$, and when $x=\pi / 3, u=\ln \sqrt{3}$. Now our integral looks like

$$
\int_{0}^{\ln \sqrt{3}} u d u=\frac{1}{2}\left[u^{2}\right]_{0}^{\ln \sqrt{3}}=\frac{1}{2}(\ln \sqrt{3})^{2}=\frac{1}{2}\left(\frac{1}{2} \ln 3\right)^{2}=\frac{1}{8}(\ln 3)^{2}
$$

## Problem 2

(a) This integral is improper since it is taken over an unbounded domain. To check that there are no other problems, make sure the denominator is not undefined or zero: $\cos x+\sin x>0$ for $0 \leq x<3 \pi / 4$, so $\cos x+\sin x+x^{6}>0$ for $0 \leq x<3 \pi / 4$. On the other hand, when $x \geq 3 \pi / 4$, we have $x^{6}>2$ and $\cos x+\sin x>-2$ (this is true for every $x$ ), so $\cos x+\sin x+x^{6}>0$ when $x>3 \pi / 4$.

Thus the integrand is defined for all $0 \leq x \leq \infty$, so the convergence of the integral depends only on what happens near $\infty$. Roughly, the idea is that for large $x$, we can ignore the $\cos x+\sin x$ in the denominator, so the integrand looks like $\frac{x}{\sqrt{x^{6}}}=\frac{1}{x^{2}}$, which converges. To make this precise, we want to use the comparison test. The only problem is that the integral of $1 / x^{2}$ doesn't actually converge near zero. This isn't really a problem, we just have to break up the integral into two pieces:

$$
\int_{0}^{\infty} \frac{x}{\sqrt{\cos x+\sin x+x^{6}}} d x=\int_{0}^{2} \frac{x}{\sqrt{\cos x+\sin x+x^{6}}} d x+\int_{2}^{\infty} \frac{x}{\sqrt{\cos x+\sin x+x^{6}}} d x
$$

The integrand is continuous for $x \geq 0$, so the first piece is finite, and we can ignore it. For the second integral, the tricky part is that since $\cos x+\sin x$ is sometimes positive, sometimes negative, we cannot say that $\cos x+\sin x+x^{6}>x^{6}$. We must be just a little bit more careful: for any $x$, we have $-2<\sin x+\cos x$, which means $x^{6}-2<\cos x+\sin x+x^{6}$. Also, when $x \geq 2$, then certainly $x^{6}>4$, so $\frac{1}{4} x^{6}<x^{6}-2$, which implies that $\frac{1}{4} x^{6}<\cos x+\sin x+x^{6}$. So

$$
\frac{x}{\sqrt{\cos x+\sin x+x^{6}}}<\frac{x}{\sqrt{\frac{1}{4} x^{6}}}=\frac{2}{x^{2}}
$$

Since $\int_{2}^{\infty} \frac{2}{x^{2}} d x$ converges, so does $\int_{2}^{\infty} \frac{x}{\sqrt{\cos x+\sin x+x^{6}}} d x$, by the comparison test.
(b) This integral is improper because the integrand is undefined at $x=0$. So we must rewrite it as

$$
\int_{0}^{\pi / 2} \frac{1}{1-e^{x}} d x=\lim _{t \rightarrow 0^{+}} \int_{t}^{\pi / 2} \frac{1}{1-e^{x}} d x
$$

To compute this integral, we set $u=e^{x}$, so $x=\ln u$ and $d x=1 / u d u$. Ignoring the limits of integration briefly, our integral becomes

$$
\int \frac{1}{1-u} \frac{1}{u} d u=\int \frac{1-u+u}{(1-u) u} d u=\int\left[\frac{1}{u}+\frac{1}{1-u}\right] d u=\ln u-\ln |1-u|=\ln \left|\frac{u}{1-u}\right|
$$

Now we use this to compute the improper integral:

$$
\lim _{t \rightarrow 0^{+}} \int_{t}^{\pi / 2} \frac{1}{1-e^{x}} d x=\lim _{t \rightarrow 0^{+}}\left[\ln \left|\frac{e^{x}}{1-e^{x}}\right|\right]_{t}^{\pi / 2}
$$

Since $\lim _{t \rightarrow 0^{+}} \frac{e^{t}}{1-e^{t}}=\infty$, and $\ln$ is increasing, $\lim _{t \rightarrow 0^{+}} \ln \left[\frac{e^{t}}{1-e^{t}}\right]=\infty$, so the integral diverges.

## Problem 3

(a) Let $S_{N}=\Sigma_{n=1}^{N} a_{n}=a_{1}+a_{2}+\ldots+a_{N}$. Then $\Sigma_{n=1}^{\infty} a_{n}$ converges if $\lim _{N \rightarrow \infty} S_{N}=L<\infty$.
(b) We must find an explicit formula for the sequence of partial sums. Using partial fractions,

$$
\begin{gathered}
\frac{1}{n^{2}-n-2}=\frac{1}{(n-2)(n+1)}=\frac{1 / 3}{n-2}-\frac{1 / 3}{n+1}, \text { so } \\
S_{N}=\frac{1}{3}\left(\left[\frac{1}{2}-\frac{1}{5}\right]+\left[\frac{1}{3}-\frac{1}{6}\right]+\left[\frac{1}{4}-\frac{1}{6}\right]+\left[\frac{1}{5}-\frac{1}{7}\right]+\left[\frac{1}{6}-\frac{1}{8}\right] \ldots+\left[\frac{1}{N-2}-\frac{1}{N+1}\right]\right)
\end{gathered}
$$

All the positive terms except the first three cancel out all but the last three negative terms, leaving

$$
S_{N}=\frac{1}{3}\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{N-1}-\frac{1}{N}-\frac{1}{N+1}\right]
$$

(serious skeptics should prove this by induction). Now take the limit:

$$
\lim _{N \rightarrow \infty} S_{N}=\frac{1}{3}\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right]=\frac{13}{36}
$$

According to the definition in (a), this means in particular that $\Sigma a_{n}$ converges.

