a) Fix an n, and set

$$
g(x)=\sum_{k=0}^{\infty}\binom{n}{k} x^{k}
$$

Our eventual goal is to show $g(x)=(1+x)^{n}$, but more immediately we're to show

$$
g^{\prime}(x)=\frac{n g(x)}{(1+x)}
$$

as this identity is satisfied by $(1+x)^{n}$. Clearing denominators, it is equivalent to show $(1+x) g^{\prime}(x)=$ $n g(x)$. We compute the derivative of g term-by-term as

$$
g^{\prime}(x)=\sum_{k=1}^{\infty}\binom{n}{k} k x^{k-1}
$$

and we substitute our expressions into the left-hand side of the identity to get

$$
\begin{aligned}
g^{\prime}(x)+x g^{\prime}(x) & =\sum_{k=1}^{\infty}\binom{n}{k} k x^{k-1}+\sum_{k=1}^{\infty}\binom{n}{k} k x^{k} \\
& =\sum_{k=0}^{\infty}\binom{n}{k+1}(k+1) x^{k}+\sum_{k=1}^{\infty}\binom{n}{k} k x^{k} \\
& =n+\sum_{k=1}^{\infty}\left[\binom{n}{k+1}(k+1)+\binom{n}{k} k\right] x^{k} .
\end{aligned}
$$

Hence, by equating coefficients with the right-hand side, which is

$$
n g(x)=n+\sum_{k=1}^{\infty} n\binom{n}{k} x^{k}
$$

we reduce to verifying the identity

$$
\binom{n}{k+1}(k+1)+\binom{n}{k} k=n\binom{n}{k} .
$$

The left-most summand can be written as

$$
\begin{aligned}
\binom{n}{k+1} & =\frac{n \cdots(n-k)}{(k+1)!} \cdot(k+1) \\
& =n \cdot \frac{(n-1) \cdots \cdots(n-k)}{k!} \\
& =n \cdot\binom{n-1}{k}
\end{aligned}
$$

and the middle summand can similarly be written as

$$
\begin{aligned}
\binom{n}{k} k & =\frac{n \cdots \cdot(n-k+1)}{k!} \cdot k \\
& =n \cdot \frac{(n-1) \cdots \cdots(n-k+1)}{(k-1)!} \\
& =n \cdot\binom{n-1}{k-1} .
\end{aligned}
$$

Then, we use Pascal's identity, which we've discussed in class before. It states

$$
\binom{a}{b}+\binom{a}{b+1}=\binom{a+1}{b+1} .
$$

This means our expression above simplifies as

$$
\begin{aligned}
\binom{n}{k+1}(k+1)+\binom{n}{k} k & =n \cdot\binom{n-1}{k}+n \cdot\binom{n-1}{k-1} \\
& =n \cdot\binom{n}{k}
\end{aligned}
$$

as desired. So, the coefficients of the original two power series are equal, proving part a).
b) Now we're to show that $h^{\prime}(x)=0$ for the function $h(x)=(1+x)^{-n} g(x)$. This is not so bad:

$$
\begin{aligned}
\frac{d}{d x} h(x) & =\frac{d}{d x}\left((1+x)^{-n}\right) \cdot g(x)+(1+x)^{-n} \cdot \frac{d}{d x} g(x) \\
& =-k(1+x)^{-n-1} g(x)+(1+x)^{-n} g^{\prime}(x) \\
& =(1+x)^{n}\left(-n(1+x) g(x)+g^{\prime}(x)\right),
\end{aligned}
$$

which by part a) is zero.
c) Since $h^{\prime}(x)=0$, we know that it is a constant ${ }^{1}$, hence we just need to figure out what constant it is! Evaluation at zero makes this easy: $h(0)=(1+0)^{-n} g(0)=1 \cdot 1=1$. Hence,

$$
1=(1+x)^{-n} g(x)
$$

or

$$
g(x)=(1+x)^{n} .
$$

[^0]
[^0]: ${ }^{1}$ Or locally constant, anyway. Whatever.

