STEWART’S CALCULUS, EXERCISE 11.10.71

a) Fix an n, and set

k=0
Our eventual goal is to show g(x) = (1 4+ x)™, but more immediately we’re to show
oy ng(e)
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as this identity is satisfied by (1+x)". Clearing denominators, it is equivalent to show (1+xz)g'(z) =
ng(x). We compute the derivative of g term-by-term as
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and we substitute our expressions into the left-hand side of the identity to get
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Hence, by equating coefficients with the right-hand side, which is

) :n+§;n(z>m’“

+

we reduce to verifying the identity
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The left-most summand can be written as
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Then, we use Pascal’s identity, which we’ve discussed in class before. It states
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This means our expression above simplifies as
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as desired. So, the coefficients of the original two power series are equal, proving part a).
b) Now we’re to show that h'(x) = 0 for the function h(xz) = (1 + x) "g(x). This is not so bad:
d d o ., d
(@) = o (L 2)7") - g(e) + (L 2) " ()
= k(1 +2)7"g(z) + (1 +2)7"g(x)
= (1 +a)" (—n(l+2)g(x) +¢'(z)),
which by part a) is zero.
c) Since h/(z) = 0, we know that it is a constant®, hence we just need to figure out what constant it is!
Evaluation at zero makes this easy: h(0) = (1+0)""g(0) =1-1 = 1. Hence,
1= (1+2)"g(x),
or
g(z) = (1 +2)"

lor locally constant, anyway. Whatever.



