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0.1 Foreword
Mathematics is a field where computations lead theory, and this is especially evi-
dent in the subfield of algebraic topology, which is positively rife with computations.
These often take the form of spectral sequences, which are notorious among students
of any field that makes use of homological algebra for being pathologically cryptic
and complex. Nevertheless, their utility is immense, and students, often with much
groaning, at least learn to stomach the sight of them, if not fully embrace the idea of
computing with one.

There are many reasons spectral sequences are viewed as impossibly complex,
large parts of which are due to the following two reasons. First, spectral sequences
are often triply-indexed — and each index is often infinite, or bi-infinite, or indexed
over a group more complicated than the integers! This means that an enormous
amount of information is available in a spectral sequence, which begets the second
point: effective computation with a spectral sequence appears to require that one
keep an outlandish number of things in mind while working, along with an array of
subtle tricks and facts from elsewhere in topology, not presently visible on the page.
In turn, these have lead to a derth of textbooks covering the art of computing with
spectral sequences; if they’re so difficult to think about, then the situation is even
worse when trying to linearize them into writing and then typeset the whole mess.
For this reason, knowing how to compute with spectral sequences is often referred
to as an “oral tradition,” passed down in ritual form from advisor to student, behind
closed doors and with endless scratch paper.

The purpose of this text is to fill this gap. In conversation with an expert, time
plays the role of linearizer, as one watches the spectral sequence play out on a page in
real time. Our goal is to turn these conversations into text, where the linearization
instead takes place across pages, in the form of an elementary school student’s “flip
book.” On each page the reader can find a single step of the larger computation
highlighted and dissected, then turn to the next to find the diagram slightly modified,
as in real-time. This should dramatically ease the learning curve for students who
are interested in spectral sequences but who don’t enjoy ready access to lunches with
Doug Ravenel and crew.

This book does not have exercises; instead, it is written more like a solutions
manual for a text that does not exist. However, the methods described are extremely
general, and the reader looking to try them out for himself should be able to pick
a favorite space and plug it into these machines, following roughly the same process
to compute its associated invariants. For this reason, the examples worked here have
been selected with illustration kept in mind rather than exhaustiveness.

An important thing to remind the reader of is that spectral sequences, as massive
mathematical machines, are designed to take their users’ minds off the details of a
problem. Some of these details will be addressed and discussed lightly in the text sur-
rounding the computations, but the uninterested, bored, or befuddled reader should
not hesitate to skip over these parts of the text for now. In the same way, schoolchil-
dren are taught arithmetic algorithms long before they investigate what makes the
algorithms tick, and in this intervening period the utility of knowing how to per-
form long division is not diminished.



6 CONTENTS

We should also immediately mention other textbooks on this subject. McCleary’s
book A User’s Guide to Spectral Sequences is excellent and contains all of the details
we omit here and then some. Mosher & Tangora’s Cohomology Operations and Appli-
cations in Homotopy Theory centers around the interactions of the Steenrod algebra
with spectral sequences, and is rife with the computations that spurred the develop-
ment of this field. Every homological algebra textbook in existence (Weibel’s Homo-
logical algebra, Cartan and Eilenberg’s Homological algebra, . . . ) contains a section
on the construction and maintenance of spectral sequences, where technical details
can be found. Hatcher has made available an unfinished book project on spectral se-
quences at http://www.math.cornell.edu/~hatcher/SSAT/SSATpage.html. Miller
has published course notes that use in a central way the EHP spectral sequence, avail-
able in full at http://www-math.mit.edu/~hrm/papers/ and in the process of be-
ing converted to LATEX. Ravenel’s Complex cobordism and stable homotopy groups of
spheres remains the standard reference for the analysis of the beginning of the Adams
spectral sequence for the sphere. And, of course, there are many others.

Finally, this is a draft version of this textbook, compiled on August 6, 2012. I’m
sure that it’s rife with errors, inconsistencies, omissions, and generally confused lan-
guage, and I would greatly appreciate any or all of corrections, remarks, and expan-
sions. I can easily be reached at ericp@math.berkeley.edu. This project progresses
slowly, as I tend to work on it only when I’m stuck on and tired of my other mathe-
matical projects, but I hope that it grows into something genuinely useful as it goes.

Drafts of this document are available at http://math.berkeley.edu/~ericp/
ss-book/main.pdf, and the software used to generate it is available in the directory
http://math.berkeley.edu/~ericp/ss-book/.

0.2 Acknowledgements
People who directly taught me: Matthew Ando

People who have helped substantially with this book, through contributions or
editing: Aaron Mazel-Gee

Topologists whose computations have had a profound influence on me: Mike
Hill, Mike Hopkins, Robert Mosher, Justin Noel, Doug Ravenel, Neil Strickland,
Martin Tangora, W. Steve Wilson

More facilitators: Peter Teichner, Constantin Teleman
Locations and funding sources: UC-Berkeley, MPIM-Bonn

http://www.math.cornell.edu/~hatcher/SSAT/SSATpage.html
http://www-math.mit.edu/~hrm/papers/
http://math.berkeley.edu/~ericp/ss-book/main.pdf
http://math.berkeley.edu/~ericp/ss-book/main.pdf
http://math.berkeley.edu/~ericp/ss-book/


Chapter 1

Spectral sequences in general

BEFORE we start in on computations with spectral sequences, we should take a
moment to outline what they are and where they come from. Once we’ve pinned
these down, we will also mention some of the most common complications and use-
ful structures.

1.1 Homology theories

Spectral sequences arise naturally in homological algebra, which is the study in the
abstract of where homology functors come from. Since this book is geared toward al-
gebraic topologists, we will not be so abstract; instead, a (reduced) homology functor
for us is a sequence of functors (H̃n)n∈Z : H o(PointedSpaces)→ AbelianGroups from
the category of pointed homotopy types to abelian groups which collectively satisfy
the following two axioms:

• Wedge sum: For any collection of spaces1 {Xα}α∈A, we have a natural isomor-
phism

H̃n

 

∨

α

Xα

!

∼=
⊕

α

H̃nXα.

• Triangulation: For A a subspace2 of X , the “short exact sequence”

A
i−→X

p
−→X /A

of spaces begets a long exact sequence

1Throughout this book, we will suppress the basepoint we carry along with our spaces. It’s an impor-
tant technicality, but it’s not worth dwelling on constantly by bringing into the notation.

2We require i : A→ X to be quite reasonable, namely a cofibration. For example, the inclusion of a
subcomplex counts.

7



8 CHAPTER 1. SPECTRAL SEQUENCES IN GENERAL

· · · H̃n+1(X /A)

H̃nA H̃nX H̃n(X /A)

Hn−1A · · · .

The middle maps are specified by functoriality, but the maps labeled ∂ are new
data.

TODO: Mention unreduced.
These axioms alone can be used to compute a small handful of things. For in-

stance, the first axiom tells us that the homology of a point must vanish, since
pt∨pt ' pt. To see the utility of the second axiom, let X be a (d + 1)-dimensional
hemisphere, and let A be the inclusion of the equatorial band, itself a d -dimensional
sphere. The space X is homotopy equivalent to a point, so has vanishing homology,
whereas the quotient X /A is homeomorphic to a (d + 1)-dimensional sphere. The
long exact sequence in homology reads

· · · → H̃n+1Sd+1 ∂−→ H̃n Sd H̃n i
−→ H̃n pt

H̃n p
−→ H̃n Sd+1 ∂−→ H̃n−1Sd → ·· · .

Hence, the homology of the (d + 1)-sphere is exactly the homology of the d -sphere,
shifted up by one degree.

TODO: Mention cohomology. TODO: A useful fact is H∗ colim F = colim H∗F .

1.2 Filtrations and spectral sequences

This is all well and good, and one can compute a great many things manually by
specifying H∗S

0 and working with these two axioms from there. For more complex
situations, manual computations become tedious, and this is where spectral sequences
enter the picture. To perform the homology computation of a complex space X , we
must first break it down into a sequence of simple spaces Xq , each including into the
next. Not only should all of them include into X , but we should have X = colimq Xq .
On the other end, we require X−1 = pt. Here is a diagram of the situation:

· · · Xq−1 Xq Xq+1 · · · X .
iq−1 iq

We’re seeking to relate the homology of X to the homologies of these pieces Xq .
Looking back at our axioms for a homology theory, we do see that inclusions play a
special role in the triangulation axiom, but to apply the triangulation axiom we must
also consider various quotients. We extend our diagram to match:
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· · · Xq−1 Xq Xq+1 · · · X .

Fq−1 Fq Fq+1

iq−1

pq−1

iq

pq pq+1

Now we apply homology H̃ ∗ to our diagram, and in doing so we also apply the
triangulation axiom to each of these angled arms:

· · · H̃∗Xq−1 H̃∗Xq H̃∗Xq+1 · · · H̃∗X .

H̃∗Fq−1 H̃∗Fq H̃∗Fq+1

H̃∗iq−1

H̃∗ pq−1

H̃∗iq

H̃∗ pq H̃∗ pq+1
∂ ∂

Note that each of these maps ∂ is not degree-preserving3 but shifts the degree down
by 1.

Now that we have this picture, we are tasked with tying this discussion up and
saying something meaningful about H̃∗X . Before formalizing the process, we will
describe its goal. Suppose that we pick some homology class α ∈ H̃∗Fq ; the question
we then pose is whether α is in some way visible in H∗X . The only map we have
in front of us by which we can push back up into the X es is ∂ , so we produce an
element ∂ α ∈ H∗−1Xq−1. Naïvely, we’d want to then push forward into H∗X by
tracking the maps to the right, but because the triangles in our diagram are exact we
immediately know that (H̃∗iq ) ◦ ∂ α= 0. We must be more creative.

Another thing we could try to do is to find an element β ∈ H̃∗Xq for which
(H̃∗ pq )β = α. Again employing exactness of the triangle, such a β exists exactly
when ∂ α= 0. However, at the moment we have no way of telling whether this is the
case, since the rules of the game are that we only understand the groups H̃∗F∗. So, to
get back into the land of things we understand, we follow the vertical map down to
produce (H̃∗ pq ) ◦ ∂ α.

At this point there are two options. First, (H̃∗ pq )◦∂ α could be nonzero, in which
case ∂ α itself must have been nonzero, and there is no hope for producing β. In this
case, we should discard α as an unfortunate artifact of the filtering process, without
contribution to the total homology. On the other hand, if (H̃∗ pq ) ◦ ∂ α = 0, it’s
possible that either ∂ α= 0 or merely that ∂ α ∈ ker H̃∗ pq . But, in either case, we can
employ the exactness of the next triangle in the sequence to preimage the element ∂ α
through the map H̃∗iq−1 to produce an element (H̃∗iq−1)

−1∂ α, with which we can
play the same game.

3A key to successfully doing homological algebra successfully is to suppress as many indices as possible,
so we don’t draw this in the diagram.
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Eventually, however, we will hit the bottom of our filtration. If we can play this
game all the way back to then, then we have produced an element γ = (H̃∗i∗)

◦(−q)∂ α
for which (H̃∗i∗)

◦qγ = α. However, because X−1 = pt, we know that γ = 0, and
hence ∂ α= (H̃∗i∗)

◦q (0) = 0, and we win — β exists!
This process is formalized by packaging up these composites. We write E1

∗,q =

H̃∗Fq , and the map (H̃∗ p∗) ◦ ∂ is called d 1 : E1
∗,q → E1

∗−1,q−1. One quickly checks

that d 1 is a differential, as the two maps in the middle of d 1 ◦ d 1 = (H̃∗ p∗) ◦ ∂ ◦
(H̃∗ p∗) ◦ ∂ belong to the same exact triangle, and hence compose to zero. We are
interested only in keeping classes in the kernel of the outgoing d 1 while deleting
all the classes in the kernel of the incoming d 1, and so advancing to the next stage
in the game corresponds exactly to taking cohomology against the differentials d 1.
This cohomology group we label E2

∗,q . By a small miracle, it turns out that this same
quotient is what is required to eliminate the indeterminacy in picking the preimage
(H̃∗ pq−1) ◦ (H̃∗iq−1)

−1 ◦ ∂ α, and this composite we label d 2 : E2
∗,q → E2

∗−1,q−2. This
pattern in producing differentials and computing their cohomology continues, and
in general we have groups E r

∗,q , which are sub-quotients of E r−1
∗,q , and differentials

d r : E r
∗,q → E r

∗−1,q−r . The index r is called the “page” or “sheet,” and altogether this
data forms a “spectral sequence.”

1.3 Convergence and the endgame

One can produce spectral sequences for cohomology as well, using an identical setup.
The only difference is in the endgame: in homology, we kept lowering filtration
degree, so we eventually hit the bottom and deduced something about our element
α. In cohomology, we will instead raise filtration degree, and so we will never hit
bottom and be able to conclude something solid. We will, however, continuously
march toward H̃ ∗X with which filtration degree we climb up, and so our spectral
sequence will compute something about limq H ∗Xq , the limit of the cohomology
groups. Whether this compares well with H ∗X is one of the things we discuss now.

The general theory of spectral sequences is quite wild, and it is possible to con-
struct spectral sequences not arising naturally from a filtration in the way we’ve de-
scribed. However, almost all of the examples witnessed in the wild (and certainly
those with which one should learn to compute) do come from this construction, and
assuming we’re in this situation simplifies the theory of convergence considerably.

Label the groups H∗Xq of the above construction by F∗,q , and label H∗X by G∗.
The spectral sequence is said to be . . .

• . . . weakly convergent (to G∗) if colimq F∗,q =G∗ and E∞q = F∗,q/F∗,q−1.

• . . . convergent if it is weakly convergent and furthermore limq F∗,q = 0.

• . . . strongly convergent if it is convergent and furthermore lim1
q F∗,q = 0.
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• . . . conditionally convergent if lim F∗,q = 0.4

The first three conditions neatly summarize what extra steps we will need to
take in the end to compare the “result” of our spectral sequence with the target of
convergence. In the case of strong convergence, we need only to deal with extension
problems. The individual homology groups Gp are, by construction, sliced up and
scattered through the homology groups {E∞p,q}q as q ranges. To recover Gp from this
sequence, we are faced with a nest of extension problems: there is some intermediate
group extending E∞p,0 by E∞p,1, which in turn has an intermediate group extending it
by E∞p,2, and so forth. In the strongly convergent case, the limit of this process yields
Gp .

In the convergent case, we are faced exactly with the issue presented by the coho-
mological spectral sequence above. We can attempt to solve the extension problem,
just as before, but the resulting groups G′p sit in a short exact sequence 0→ G′p →
Gp → lim1

q F∗,q → 0 obstructing honest equality, so we must also address this.
In the weakly convergent case, we are faced with the above two issues, but we ad-

ditionally ... uh actually I’m not sure what we have to do. Throw in the intersection
as a summand?

The conditionally convergent case is differently flavored from the rest. Condi-
tional convergence on its own is worse than weak convergence, but it appears fre-
quently, and there are various extra mild assumptions, easily verified in practice, that
turn conditional convergence into strong convergence. For example, if F∗,q stabilizes
for q � 0, the spectral sequence converges conditionally, and if lim1

q E∞∗,q = 0, the
convergence is strong.

There are two more vocabulary words worth knowing: in the case X−1 = pt, the
spectral sequence lives entirely on one half of the full doubly-integer-indexed plane,
and so is called a half-plane spectral sequence. In the homological case, where the
differentials eventually land in the unoccupied half-plane, the associated spectral se-
quence is said to have exiting differentials. In the cohomological case, where all differ-
entials eventually land in the occupied half-plane, the associated spectral sequence is
said to have entering differentials.

In the exiting case, we have few convergence issues to worry about: provided the
filtration is Hausdorff, we have strong convergence. If the differentials are entering,
however, we need conditional convergence together with the vanishing lim1-term to
get strong convergence.

1.4 Grading conventions and multiplicative structures
Pairings. The Leibniz rule.

4In this situation, the filtration is said to be Hausdorff.
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Chapter 2

Atiyah-Hirzebruch-Serre

2.1 The Atiyah-Hirzebruch spectral sequence
The essential building blocks of the spaces in non-pathological topology (including
algebraic topology) are the unit balls Dn of dimension n, and their surface spheres
Sd−1 of dimension (d−1). A topological space X is said to be a CW-complex when it
can be decomposed into a sequence of spaces X (d ), called d -skeleta1, such that X (−1) =
pt a single point and X (d+1) is formed from X (d ) by gluing in (unpointed) (d+1)-balls
along their d -spherical surface shells, and such that X is given as the colimit of the
X (d ) as d grows large. These are somehow the most reasonable spaces on which we
can “do homotopy theory,” and from here on out all our spaces will be assumed to
be CW-complexes2.

This gives an ascending filtration of X by X (d ) which is Hausdorff (the condition
on X (−1)) and exhaustive (the condition X = colimd X (d )). Moreover, the filtration
quotients are easy to compute: the cofiber of the map X (d−1) ,→ X (d ) collapses the
(d−1)-skeleton to a point, to which all the d -cells get attached, resulting in a bouquet
of spheres X (d )/X (d−1) '

∨

α Sd
α

in filtration grading d . Selecting our favorite homol-
ogy theory h∗ and cohomology theory h∗, this gives a pair of spectral sequences with
signatures

E1
s ,t = hs

 

∨

α

S t
α

!

= hs−t (pt)⇒ hs X , d r : E1
s ,t → E1

s−1,t−r ,

E s ,t
1 = h s

 

∨

α

S t
α

!

= h s−t (pt)⇒ h s X , dr : E s ,t
1 → E s+1,t+r

1 .

In fact, we can do better: the differential on the first pages of these spectral sequences
is exactly the differential that appears in the (s− t )th degree of the cellular chain com-
plex for computing cohomology with h s−t (pt)-coefficients. This spectral sequence

1Skeleta is the mathematician’s plural of skeleton.
2The exact decomposition into the spaces X (d ) isn’t so important, just that there exists one.

13



14 CHAPTER 2. ATIYAH-HIRZEBRUCH-SERRE

also carries the structure of a h∗(pt)-module in the case that h takes its values in
rings, though not with this grading. TODO: Straighten out this grading discussion.
Putting all this together produces the more familiar form of these spectral sequences:

E2
p,q =H c e l l

p (X ; hq (pt))⇒Hp+q X , d r
p,q : E r

p,q → E r
p−r,q+r−1,

E p,q
2 =H p

ce l l
(X ; hq (pt))⇒H p+q X , d p,q

r : E p,q
r → E p+r,q−r+1

r .

2.2 H ∗CP∞

The motivic cell decomposition.

2.3 H ∗RP∞

The motivic cell decomposition.

2.4 KU ∗BZ/2
Even-concentrated, but has extension problems. See Strickland’s bestiary. This might
be hard to do before the Gysin sequence description of h∗RP∞...

2.5 The Serre spectral sequence
The E1-page is easy, but d1 is hard. Multiplicative structure.
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2.6 H ∗CP∞ redux

Consider the spherical fibration

S1→C∞ \ {0}→CP∞.

The total space,C∞\{0} ' S∞, is contractible, hence has vanishing cohomology. The
fiber S1 has known cohomology groups, H ∗(S1;Z) = Λ[e]. We know that, CP∞ is
connected, and hence we can compute, H 0(CP∞; H ∗S1)— it has two free, generators
1 and e in q -degrees 0 and 1.
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The Serre spectral sequence associated to a singular theory is a first-quadrant spec-
tral sequence, and hence E p,q

2 = 0 whenever p or q is negative. The differentials have
the type signature

dr : E p,q
r oE p+r,q−r+1

r

and hence if the class e is to be killed by a differential — and it must, since H ∗(S∞,Z) =
Z — it must happen on this page. Therefore, there must be a class x in E2,0

2 =
H 2(CP∞; H 0(S1;Z)) with d2(e) = x.



2.6. H ∗CP∞ REDUX 19

0 1 2 3 4 5 6 7 8 p
0

1

2

3

4

5

q

Z

x

Ze

Z Z

x2

Z

Z

x3

Z

Z

x4

Z Z



20 CHAPTER 2. ATIYAH-HIRZEBRUCH-SERRE

But, if E2,0
2 = H 2(CP∞; H 0(S1;Z)) is nonzero, then E2,1

2 = H 2(CP∞; H 1(S1;Z))
is also nonzero, since H 0(S1;Z) ∼= H 1(S1;Z) ∼= Z. The Serre spectral sequence is
multiplicative, and so we already have a name for this element: e · x. Moreover, d2 is
a derivation, so

d2(e · x) = d2(e) · x +(−1)e · d2(x) = x2+ 0= x2.

For degree reasons, e · x must also be killed on the E2-page, and hence x2 must exist
in E4,0

2 . This pattern continues, as d2(e · xn) = xn+1+(−1)e · nxn−1 · 0= xn+1.
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To build the E3 page, we take cohomology with the d2 differentials, and we find
nothing left but 1 in the spectral sequence. Hence, E3

∼= E∞, and the spectral sequence
collapses at E3.

Recall that E p,0
2 = H p (CP∞; H 0(S1;Z)) = H p (CP∞;Z). So, we can now read off

the cohomology of CP∞, together with its ring structure:

H ∗(CP∞;Z)∼=Z[x],

where |x|= 2.
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2.7 H ∗RP∞ and Gysin sequences
K(n)∗BZ/n too? Then, deducing differentials in the AHSS for K(n)∗BZ/n?
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2.8 Unitary groups

Now we will compute the cohomology H ∗BSU by inductively analyzing related
spaces. We begin by computing the cohomology rings H ∗U (n), where our primary
tool is the fibration

U (n− 1)→U (n)→C2n \ {0} ' S2n−1.

We identify U (1) ' S1, which has cohomology H ∗U (1) = Λ[e1] for |e1| = 1. In
general, we claim that H ∗U (n) =

⊗

i≥1Λ[e2i−1]. Let’s consider the case n = 3, for
example, whose spectral sequence is illustrated at left.

This spectral sequence collapses at this page, using an analysis in two parts. Firstly,
consider the indecomposable elements in the fiber column: they are all of odd de-
gree, of dimension bounded by 2n − 3. To support a differential, they must cross a
large gap to reach the groups in the right-hand column, a distance of 2n − 1 across.
This means that differentials can occur only on the E2n−1-page, of signature d2n−1 :
E0,q

2n−1→ E2n−1,q−2n
2n−1 . The shift in vertical grading forces the differential to land below

the p-axis, and so it cannot exist!
Secondly, for any decomposable element

∏

i∈I ei , we can apply the Leibniz rule
to get

d

 

∏

i∈I

eI

!

=
∑

i∈I

±d (ei )
∏

j∈I
j 6=i

e j .

We just showed that d (ei ) = 0 for any i , and so the sum collapses, determining all
those differentials to be zero as well.
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Next, we compute the cohomologies H ∗BU (n) using the fibration U (n)→ EU (n)→
BU (n), where EU (n) ' pt. This is very similar to the computation for CP∞, since
the fiber sequence S1→C∞ \ {0} →CP∞ is equivalent to U (1)→ EU (1)→ BU (1).
Since the total space is contractible, the goal in this game is to clear the board by
introducing classes in H ∗BU (n) to delete the classes already present coming from
H ∗U (n).

At left, we consider the bottom of this spectral sequence for n ≥ 4. We have
one chance to delete the class e1, by introducing a class x1 ∈ H ∗BU (n) on page E2,
with differential d (e1) = x1. Application of the Leibniz rule yields a whole host of
resulting differentials.
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blah.
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H ∗U (n), H ∗BU (n), H ∗SU (n), H ∗BSU (n), H ∗BU , H ∗BSU

2.9 Loopspaces of spheres

H ∗ΩS2n , H ∗ΩS2n+1, H ∗Ω2S2n+1. Edge homomorphisms.

2.10 The Steenrod algebra
Serre’s H ∗(K(Z/2, q);F2) and H ∗(K(Z, q);F2)

2.11 H ∗(BU 〈6〉;F2)
Need Kudo transgression.

2.12 Unstable homotopy groups of S3

π3, π4, π5L(2)S
3
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Eilenberg-Moore

Filtration of a bicomplex. Take a homotopy pullback square F → E → B and F →
X → B . On cohomology, we don’t get a pushout; instead, on the level of the derived
category of chain complexes, we are taking the derived pushout, giving a spectral
sequence from the tensor product of chain complexes to the chain complex of F .
[[NOTE: How does this need to be graded for multiplicativity?]]

3.1 Computing Tor with Tate resolutions

In the previous section, it was mentioned that the Eilenberg-Moore spectral sequence
is compatible with the multiplicative structure on Tor. If this is the input to the spec-
tral sequence, then our next question should be: how do we compute this product
structure? Or, even more basically, how do we compute Tor at all? In the specific case
of R a Noetherian ring and the groups TorR

∗,∗(R/M , R/N ), Tate has outlined an ex-
tremely useful and simple process for performing this computation, by constructing
a DGA whose underlying chain complex is a free resolution of R/M .

Let’s compute two examples to see Tate’s method in action. First, let’s select
R= Z[x], M =N = 〈x〉, so that we’re investigating TorZ[x](Z,Z). Tate’s resolution,
like any resolution, begins with the left-hand argument Z, depicted at left as a dot.

At the next stage in the resolution, we introduce a single copy of R, which surjects
onto R/M by the quotient map R � R/M . We haven’t deviated from the usual
process for building a free resolution yet, but Tate’s big idea is that we should be
giving these things names as algebra generators as we go. Since this copy of R lives in
degree 0 of the resolution, and we expect an R-algebra in the end, we attach the name
“1” to it, so that its various elements are of the form r · 1 for r ∈ R.

To perform the next step, we investigate the kernel of the previous step, depicted
beneath the resolution. The kernel here is the submodule of multiples of x, and so
we introduce a shifted copy of R in resolution degree 1, mapping isomorphically into
the kernel. Again, Tate suggests that we give this a name, so we make one up and call
it “a”. The differential connecting degree 1 to degree 0 is then described by da = x.
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At this point, the resolution terminates, since the kernel at filtration degree 1
is empty. To compute TorZ[x](Z,Z), we drop the original Z from the resolution,
tensor with Z, and compute the cohomology of the resulting complex. Since all the
differentials hit multiples of x, they vanish, and the differential structure evaporates.
The algebra structure, however, does not disappear, and we compute TorZ[x](Z,Z) =
Z[a]/〈a2〉, referred to as an exterior algebra and denoted ΛZ[x].

This example was too short to get interesting, so let’s work through another:
TorΛ[x](Z,Z).

3.2 H ∗(ΩS2n+1;Fp)

ΩS2n+1 using the square ΩS2n+1→ pt→ S2n+1 and ΩS2n+1→ pt→ S2n+1.

3.3 Complex projective spaces

Structure of the spectral sequence for pt→CP∞ pulled back to S2n+1→CPn .

3.4 The James construction
The James construction and its filtration, comparison with the particular pullback
square ΩΣX → pt→ΣX .

3.5 H ∗BU 〈6〉 redux
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Co/simplicial objects

4.1 Mayer-Vietoris

4.2 The bar spectral sequence and K(Fp ;∗)

Computations of H∗(K(Fp ,∗);Fp ) and K(n)∗K(Fp ,∗).
Comparison to the Rothenberg-Steenrod spectral sequence (i.e., the Eilenberg-

Moore spectral sequence for the square G→ EG→ BG, G→ pt→ BG).

4.3 The descent spectral sequence

33
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Chapter 5

The Adams spectral sequence

Connection to simplicial objects.
Hill has homework assignments posted at http://people.virginia.edu/~mah7cd/

Math885/Homework5.pdf and http://people.virginia.edu/~mah7cd/Math885/
Homework6.pdf, which can probably be used for more examples.

5.1 The dual of the Steenrod algebra

5.2 Resolution by Hopf algebra quotients

5.3 π∗ko∧2

π∗ko∧2 from ExtA (1)(k , k). This uses H ∗(ko) = A//A(1), then a change-of-rings the-
orem to swap ExtA (A //A (1), k) for ExtA (1)(k , k). See the tail of http://www.
math.ku.dk/~jg/students/masulli.msproject.2011.pdf, and also Hill’s notes
at http://people.virginia.edu/~mah7cd/Math885.html and specifically http:

//people.virginia.edu/~mah7cd/Math885/Lecture14.pdf. The only possible
place for a differential is on the guy in (1,1), called h1, which has the potential to
hit a guy in the tower to his left. This has a cute argument for nonexistence: calling
the guy at the bottom of the tower h0, we have d (h1) = k hn

0 for some k and n, so
d (h0h1) = 0 ∗ h1+ h0 ∗ k hn

0 , but h0h1 = 0 so d (h0h1) = 0 so k = 0. Cuuuute!

5.4 π∗k u∧2
This is somehow the same story as π∗ko, but with an extra layer superimposed? I
very barely remember this...
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5.5 ko∗M (2)
The ASS overA (1) for the mod 2 Moore spectrum is computed at http://people.
virginia.edu/~mah7cd/Math885/ExtComps.pdf; this gives ko∗M (2)

5.6 Massey products and secondary operations

5.7 Change of rings

5.8 π∗t m f

5.9 π∗≤16S

Hill has lecture notes covering the structure and differentials in the mod 2 Adams
spectral sequence through dimension 16 (see Lecture 17). This is presumably accom-
plishable by considering just bits of the Steenrod algebra... but I haven’t looked.

http://people.virginia.edu/~mah7cd/Math885/ExtComps.pdf
http://people.virginia.edu/~mah7cd/Math885/ExtComps.pdf
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Homotopy fixed points

Introduction: H p (G;πq X ) ⇒ πp−q X hG . It comes from filtering EG+ in X hG =
Hom(EG+,X ) using the cellular filtration; the E1-page of the filtration quotients
then looks like the cobar complex computing group cohomology for πq X consid-
ered as a G-module (so, remembering the G-action on the underlying spectrum!).
Alternatively, X hG can be written as a homotopy limit diagram over some category
built from G, which should give an identical construction after piecing through a
construction of ’homotopy limit’ using a bar-type construction. Needs the Adams
grading for the multiplicative structure.

6.1 Computing H ∗g p(Cn, M )

Computing the cohomology of cyclic groups with twisted coefficients is discussed in
Weibel 6.2.1-6.2.2; there’s a small, periodic resolution that is much better than the
cobar construction.

6.2 π∗KU hC2

Needs H ∗(C2; pi∗KU ), which means knowing H ∗(RP∞;Z) = (Z, 0,Z/2,0,Z/2,0, . . .)
in the untwisted case and H ∗(C2;Z) = (0,Z/2,0,Z/2,0, . . .) in the twisted case. Has
a ’multiplication-by-η’ structure that’s important for propagating differentials. The
one generating differential is that the guy in degree (4,0) hits the guy in degree (3,3)
(i.e., hits η3), leaving behind the subgroup of 2-divisible elements. (How on earth
is the existence of this differential proven?) See Lennart Meier’s talk notes, or the
photograph I took of Justin’s blackboard.
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6.3 π∗k u hC2

Essentially the same computation, but there’s an extra diagonal vanishing line. This
means some elements in negative degrees −4n get missed, and so we don’t get ko,
which has no homotopy in negative degrees.

6.4 π∗LK(1)S
0
(3), π∗LK(2)S

0
(5)

Hopkins-Miller says E hSn
n = LK(n)S

0. This computation is accessible for n = 1 for
sure, but may not involve much of a spectral sequence argument... It does involve the
spectral sequence for composing fixed point functors, but it relies on degeneration.

The K(2)-local sphere is ridiculous (Shimomura-Wang, Behrens, ...), but maybe
something can useful can be said about it without too much hassle. It may have to get
downgraded to a picture.
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Some pictures of spectral
sequences

Some spectral sequences are too hard to compute with, but now that readers know
enough about spectral sequences to interpret diagrams, some completely unproven
but important pictures might be appropriate to include in the tail of the book.

7.1 E2 for the mod 2 Adams spectral sequence

7.2 E2 for the M U -Adams-Novikov spectral sequence

7.3 Slice spectral sequence and the Kervaire invariant

7.4 The chromatic spectral sequence, stabilizer spec-
tral sequences

The chromatic spectral sequence, using Wilson’s BP sampler. Existence of the Morava
stabilizer spectral sequence, maybe pictures of the stabilizer spectral sequence for the
K(1)- and K(2)-local spheres (at p ≥ 5?).

7.5 The EHP spectral sequence

Michael Donovan already has a start of a flipbook at http://math.mit.edu/~mdono/
_EHPSS.pdf, which maybe can be cannibalized for this project. I pray that he hasn’t
automated this process and beat me to writing this book!

In fact, much of Haynes Miller’s notes on the vector fields on spheres problem
deals with and can be restated in terms of the EHP spectral sequence. Maybe this
should be upgraded to its own section, so we can see some unstable phenomena?
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7.6 Devinatz-Hopkins-Smith and the X (n)-Adams spec-
tral sequence

Is this do-able? All they show are vanishing lines, but it seems like you should be able
to draw a little bit...

7.7 A (2)
Borrow Henriques-Hill?
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— unsorted — The May / Bockstein spectral sequences. This seems hard to
produce a good example of, since it mostly organizes computation rather than eas-
ing it in any particular way, but maybe it’s worth it anyhow. The organization
is pretty cool. The tangent spectral sequence: formal groups and tangent spaces,
H ∗(F ;T G)⇒H ∗(F ;G)Homotopy spectral sequences of spaces (details with π0 and
π1, see Homotopy limits, completions, and localizations by Bousfield and Kan) Un-
based spectral sequences (choose basepoints iteratively, kind of. See Bousfield’s Ho-
motopy spectral sequences and obstructions, which does this for unbased cosimpli-
cial spaces.) Dan Dugger has a paper titled Multiplicative structures on homotopy
spectral sequences. Could be worth looking at. http://neil-strickland.staff.
shef.ac.uk/courses/bestiary/ss.pdf Pictures of A (1)-resolutions at http://
math.wayne.edu/art/

http://neil-strickland.staff.shef.ac.uk/courses/bestiary/ss.pdf
http://neil-strickland.staff.shef.ac.uk/courses/bestiary/ss.pdf
http://math.wayne.edu/art/
http://math.wayne.edu/art/
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