Gateset design for contemporary systems

Eric Peterson

Alibaba Seminar, 2022 January 13

Cartan decomp^{ns}

• For K a nice subgroup of G a nice group, and A a maximal torus perpendicular to K \Rightarrow G decomposes as $G = K \cdot A \cdot K$.

(For most $g = k_1 \cdot a \cdot k_R$ in G, the three factors can be made unique.)

- Linear algebra ("the spectral theorem"): If U is symmetric unitary, then $U = O^{-1} \cdot D \cdot O$ for O orthogonal, D diagonal
- **Cartan:** If U is just **unitary**, then $U = O_L \cdot D \cdot O_R$

→ "imbalanced diagonalization"

Cartan decomp^{ns} and quantum infoⁿ

• Euler decomposition (1Q operators) $U = O' \cdot D \cdot O = Y_{\psi} \cdot Z_{\theta} \cdot Y_{\lambda}$ $= Z_{w'} \cdot X_{\theta'} \cdot Z_{\lambda'}$

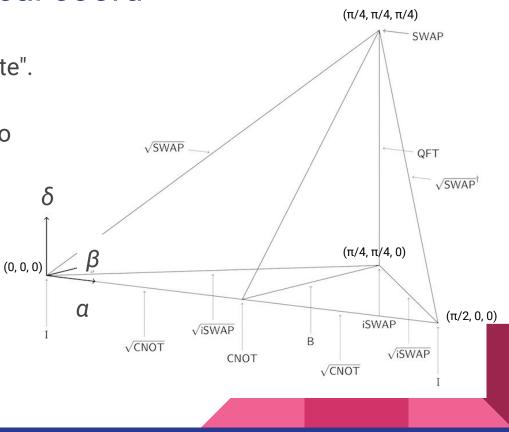
math^{ician} basis

quantum infoⁿ basis

• Canonical decomposition (2Q operators)

 $U = O' \cdot D \cdot O \qquad \text{math}^{\text{ician} \text{ basis}}$ $= (L_1 \otimes L_2) \cdot \text{CAN}(\alpha, \beta, \delta) \cdot (R_1 \otimes R_2) \qquad \text{quantum info}^{\text{n} \text{ basis}}$

- Generally unique
- *L*, *R* are local gates
- CAN(α, β, δ) = exp(-i($\alpha XX + \beta YY + \delta ZZ$)) the "nonlocal signature"


Cartan decomp^{ns}: Canonical coord^s

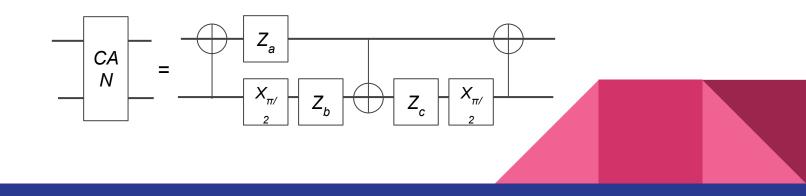
- (α, β, δ) is the "canonical coordinate".
- By convention, these are subject to

$$a \ge \beta \ge \delta \ge 0,$$

$$\pi/2 \ge a + \beta.$$

• Gates on the bottom plane, $\delta = 0$, have two avatars:

$$(\alpha, \beta, 0) \sim (\pi/2 - \alpha, \beta, 0).$$



Cartan decomp^{ns} and quantum circuits

• Euler decomposition

$$J = Z_{\psi'} \cdot X_{\theta'} \cdot Z_{\lambda'}$$
$$= Z_{\psi'+\pi} \cdot X_{\pi/2} \cdot Z_{\pi+\theta'} \cdot X_{\pi/2} \cdot Z_{\lambda'}$$

• Canonical decomposition

Research program

Goal: Optimize device performance by modifying the gate set.

- Inputs / constraints:
 - Device Hamiltonian
 - Error model
 - Budget for calibration effort
 - (Target application)
 - (...)

- Outputs:
 - Set of gates to calibrate
 - Tailored decomposition routines

- Assume: Z_{θ} can be done perfectly, X_{θ} costs ($m \theta + b$) infid^{ty} + engineer time.
- **Euler Part 1:** Given $X_{\pi/2}$, every 1Q operator U costs ($m \pi + 2 b$).
- Euler Part 2: In $U = Z_{\lambda'} \cdot X_{\omega} \cdot Z_{\lambda}$, the "signature" is ψ .
- **Exact:** If X_{ψ} were native, then $U = Z_{\lambda'} \cdot X_{\psi} \cdot Z_{\lambda}$ would cost $(m \psi + b)$.
- **Q:** Which X_{θ} can be built out of $X_{\psi 1}$, ..., $X_{\psi n}$? How? What's the cheapest combo?
- **Q:** Fixing *n*, what $\psi_1, ..., \psi_n$ give the best average-case performance?

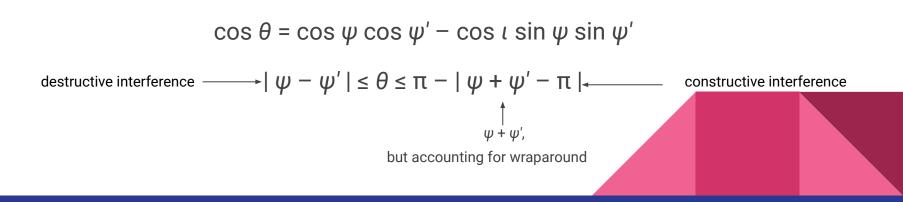
Q: Which X_{θ} are simulable using X_{ψ} and $X_{\psi'}$?

$$Z_{\iota'} \cdot X_{\psi} \cdot Z_{\iota} \cdot X_{\psi'} \cdot Z_{\iota''} = X_{\theta}$$

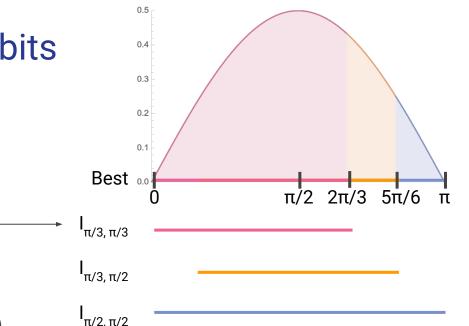
Q: Which X_{θ} are simulable using X_{ψ} and $X_{\psi'}$?

$$X_{\psi} \cdot Z_{\iota} \cdot X_{\psi'} = Z_{\iota'} \cdot X_{\theta} \cdot Z_{\iota''}$$

Q: Which X_{θ} are simulable using X_{ψ} and $X_{\psi'}$?

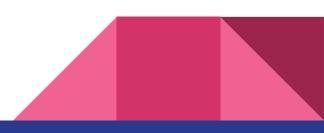

Easier to understand in math^{ns} basis:


commingling
$$\longrightarrow Z_{\psi} \cdot Y_{\iota} \cdot Z_{\psi'} = Y_{\iota'} \cdot Z_{\theta} \cdot Y_{\iota''}$$


Q: Which X_{θ} are simulable using X_{ψ} and $X_{\psi'}$?

Easier to understand in math^{ns} basis:

commingling $\longrightarrow Z_{\psi} \cdot Y_{\iota} \cdot Z_{\psi'} = Y_{\iota'} \cdot Z_{\theta} \cdot Y_{\iota''}$ write out the characteristic polynomial...



• Haar-random θ : $p(\theta) = 1/2 \sin(\theta/2)$

e.g., $\{X_{\pi/3}, X_{\pi/2}\}$

• A: Best single gate to use is $X_{\pi/2}$. A: Best gate to use in tandem with $X_{\pi/2}$ is $X_{\pi/4}$. (If $m / b \approx 5$, average cost drops to $\approx 79\%$.)

Gate set design: multiple qubits

Same deal, but more param^s / e^{vals}.

 $CAN(a', b', c') \cdot (L \otimes R) \cdot CAN(a'', b'', c'') = (L' \otimes R') \cdot CAN(a, b, c) \cdot (L'' \otimes R'')$ four-way e^{val} interference $\longrightarrow D' \cdot O \cdot D'' = O' \cdot D \cdot O''$

Gate set design: multiple qubits

Same deal, but more param^s / e^{vals}.

 $CAN(a', b', c') \cdot (L \otimes R) \cdot CAN(a'', b'', c'') = (L' \otimes R') \cdot CAN(a, b, c) \cdot (L'' \otimes R'')$ four-way e^{val} interference $\longrightarrow D' \cdot O \cdot D'' = O' \cdot D \cdot O''$

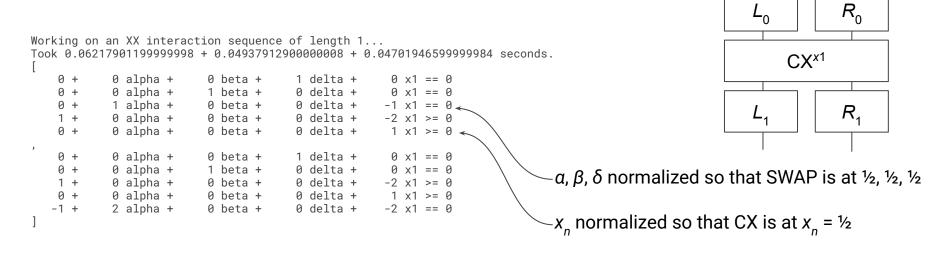
Theorem (P.–Crooks–Smith): If *CAN*' and *CAN*" range over polyhedra *P*', *P*", then *CAN* ranges over a polyhedron *P* which is determined explicitly by *P*', *P*".

Proof: Nonabelian Yang-Mills, Riemann surfaces, symplectic reduction, moduli of g-valued connections, monodromy, moment map, moduli of algebraic curves, parabolic bundle, semistability, Grassmannian, Schubert classes, quantum cohomology ring, intersection form, Gromov-Witten invariants,

Important warning: No control over O, O', O".

monodromy: A polytope CAS

• Data structures:


House non/convex polytopes. Precompute static data from the P.–Crooks–Smith theorem.

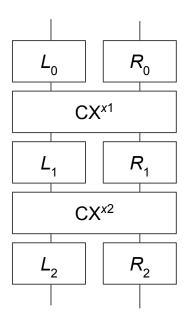
• Manipulation:

Whatever it takes to isolate CAN from CAN' and CAN". Namely: intersection, union, containment, equality, projection,

• Simplification:

Small polytope descriptions for fast computations.

Working on an XX interaction sequence of length 1... Took 0.06217901199999998 + 0.04937912900000008 + 0.04701946599999984 seconds. 0 alpha + 0 beta + 1 delta + 0 + 0 x1 == 0 0 + 0 alpha + 1 beta + 0 delta + 0 x1 == 0 0 + 1 alpha + 0 beta + 0 delta + -1 x1 == 0 1 + 0 alpha + 0 beta + 0 delta + -2 x1 >= 0 0 + 0 alpha + 0 beta + 0 delta + 1 x1 >= 0 , 0 + 0 alpha + 0 beta + 1 delta + 0 x1 == 0 0 + 0 alpha + 1 beta + 0 delta + 0 x1 == 0 0 delta + 1 + 0 alpha + 0 beta + -2 x1 >= 0 0 + 0 alpha + 0 beta + 0 delta + 1 x1 >= 0 2 alpha + 0 delta + -1 + 0 beta + $-2 \times 1 == 0$

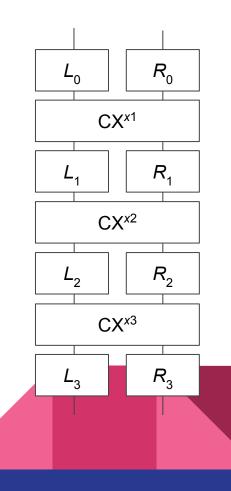


δ

(0, 0, 0)

Working on an XX interaction sequence of length 2... Took 0.2472996639999998 + 0.11630750199999995 + 0.257707522 seconds.

	1 +	0 a	lpha ·	+	0	beta	+	0	delta	+	-2	x1	+	0 x2 >= 0
	0 +	0 a	ilpha ·	+	0	beta	+	1	delta	+	0	x1	+	0 x2 >= 0
	1 +	0 a	ilpha ·	+	0	beta	+	0	delta	+	0	x1	+	-2 x2 >= 0
	0 +	0 a	ilpha ·	+	1	beta	+	0	delta	+	0	x1	+	0 x2 >= 0
	0 +		lpha		0	beta	+	-1	delta	+	0	x1	+	0 x2 >= 0
	0 +		lpha		-1	beta	+	0	delta	+	-1	x1	+	1 x2 >= 0
	0 +		lpha ·			beta		0	delta	+	1	x1	+	$-1 \times 2 >= 0$
	0 +		lpha			beta		0	delta	+	1	x1	+	1 x2 >= 0
,														
,	1 +	0 a	lpha ·	+	0	beta	+	0	delta	+	-2	x1	+	0 x2 >= 0
	0 +		lpha			beta			delta		0	x1	+	0 x2 >= 0
	1 +		lpha ·			beta			delta			x1		$-2 \times 2 >= 0$
	0 +		lpha ·			beta			delta		0	x1	+	0 x2 >= 0
	0 +		lpha ·			beta			delta		-	x1		0 x2 >= 0
	1 +		lpha ·			beta			delta		-1	x1	+	$1 \times 2 >= 0$
	1 +		lpha ·			beta			delta			x1		$-1 \times 2 >= 0$
	-1 +		ilpha ·			beta			delta			x1		$1 \times 2 >= 0$
		1 0				~~~~~		0						

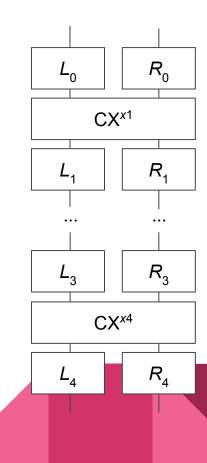


Working on an XX interaction sequence of length 3... Took 0.4972898670000001 + 0.40358383799999986 + 0.39905767999999986 seconds.

,

. . .

1	+	0	alpha	+	0	beta	+	0	delta	+	-2	x1	+	0	x2	+	0	xЗ	>=	0
1	+	0	alpha	+	0	beta	+	0	delta	+	0	х1	+	-2	x2	+	0	xЗ	>=	0
1	+	-1	alpha	+	-1	beta	+	0	delta	+	0	x1	+	0	x2	+	0	xЗ	>=	0
0	+	0	alpha	+	0	beta	+	1	delta	+	0	x1	+	0	x2	+	0	x3	>=	0
0	+	0	alpha	+	1	beta	+	-1	delta	+	0	x1	+	0	x2	+	0	x3	>=	0
0	+	1	alpha	+	-1	beta	+	0	delta	+	0	x1	+	0	x2	+	0	x3	>=	0
1	+	0	alpha	+	0	beta	+	0	delta	+	0	x1	+	0	x2	+	-2	x3	>=	0
0	+	1	alpha	+	-1	beta	+	-1	delta	+	1	x1	+	1	x2	+	-1	x3	>=	0
0	+	1	alpha	+	-1	beta	+	-1	delta	+	-1	x1	+	1	x2	+	1	x3	>=	0
0	+	1	alpha	+	-1	beta	+	-1	delta	+	1	x1	+	-1	x2	+	1	x3	>=	0
0	+	-1	alpha	+	-1	beta	+	-1	delta	+	1	x1	+	1	x2	+	1	x3	>=	0
0	+	0	alpha	+	0	beta	+	-1	delta	+	0	x1	+	1	x2	+	0	x3	>=	0
0	+	0	alpha	+	0	beta	+	-1	delta	+	1	x1	+	0	x2	+	0	x3	>=	0
0	+	0	alpha	+	0	beta	+	-1	delta	+	0	x1	+	0	x2	+	1	x3	>=	0



Working on an XX interaction sequence of length 4... Took 9.483033161999998 + 3.4342919700000003 + 1.014309728999999 seconds.

,

. . .

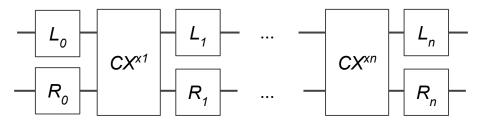
1	+	0	alpha	+	0	beta	+	0	delta	+	-2	х1	+	0	x2	+	0	xЗ	+	0
1	+	0	alpha	+	0	beta	+	0	delta	+	0	x1	+	-2	x2	+	0	xЗ	+	0
1	+	0	alpha	+	0	beta	+	0	delta	+	0	х1	+	0	x2	+	-2	xЗ	+	0
1	+	-1	alpha	+	-1	beta	+	0	delta	+	0	х1	+	0	x2	+	0	xЗ	+	0
0	+	0	alpha	+	0	beta	+	1	delta	+	0	х1	+	0	x2	+	0	xЗ	+	0
0	+	0	alpha	+	1	beta	+		delta		0	х1	+	0	x2	+		xЗ		0
0	+	1	alpha	+	-1	beta	+	0	delta	+	0	х1	+	0	x2	+	0	xЗ	+	0
1	+	0	alpha	+	0	beta	+	0	delta	+	0	х1	+	0	x2	+	0	xЗ	+	-2
0	+	0	alpha	+	0	beta	+		delta			х1			x2			xЗ		0
0	+	0	alpha	+	0	beta	+	0	delta	+	1	х1	+	0	x2	+	0	xЗ	+	0
0	+	0	alpha	+	0	beta	+	0	delta	+	0	х1	+	0	x2	+	1	xЗ	+	0
0	+	1	alpha	+	-1	beta	+		delta			х1			x2			xЗ		1
	+		alpha		-1	beta	+		delta			х1			x2			xЗ		1
0	+	1	alpha	+	-1	beta	+		delta			х1			x2			xЗ		1
0	+	-1	alpha	+	-1	beta	+		delta			х1			x2			xЗ		1
0	+	1	alpha	+		beta			delta			х1			x2			xЗ		-1
0	+	0	alpha	+	0	beta	+		delta			х1			x2			xЗ		0
0	+	0	alpha	+	0	beta	+		delta			х1			x2			xЗ		0
0	+	0	alpha	+	0	beta	+		delta			х1			x2			xЗ		0
	+		alpha		0	beta	+		delta			х1			x2			x3		1
	+		alpha			beta			delta			х1			x2			x3		1
	+		alpha			beta			delta			х1			x2			x3		1
0	+	0	alpha	+	0	beta	+	0	delta	+	0	х1	+	0	x2	+	0	xЗ	+	1

x4 >= 0 x4 >= 0 x4 >= 0

x4 >= 0 x4 >= 0 x4 >= 0 x4 >= 0

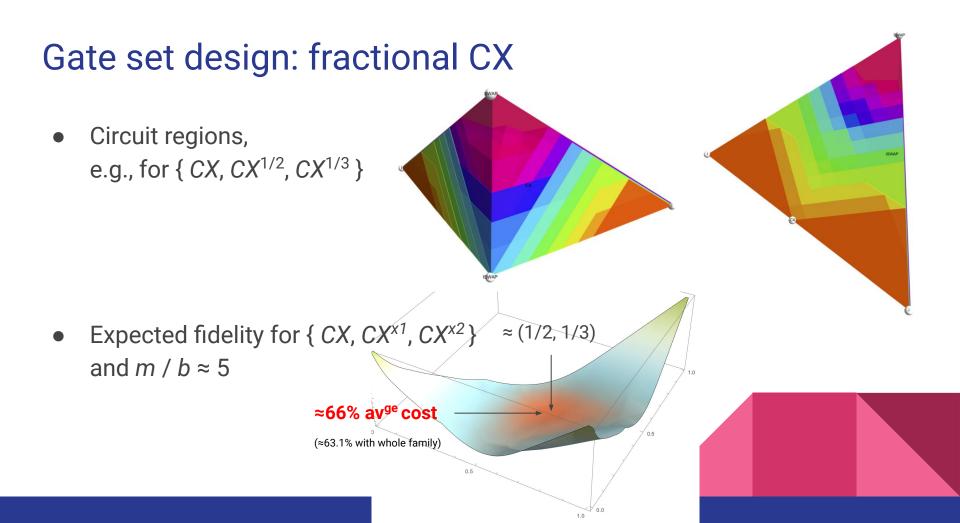
x4 >= 0 x4 >= 0 x4 >= 0 x4 >= 0

x4 >= 0 x4 >= 0 x4 >= 0 x4 >= 0


x4 >= 0 x4 >= 0 x4 >= 0 x4 >= 0

x4 >= 0 x4 >= 0 x4 >= 0 x4 >= 0

L																						
1 +	() alpha	+	0 beta	a +	0	delta	+	-2	х1	+	0	x2	+	0	x3	+ 1	0	x4	>=	0	
1 +	(alpha 🖯	+	0 beta	a +	0	delta	+	0	x1	+	-2	x2	+	0	x3	; +	0	x4	>=	0	
1 +) alpha	+	0 beta	a +	0	delta	+	0	x1	+	0	x2	+	-2	x3	; +	0	x4	>=	0	
1 +) alpha		0 beta	a +	0	delta	+	0	х1	+	0	x2	+	0	x3	; +	-2	x4	>=	0	· · · · · · · · · · · · · · · · · · ·
0 +) alpha		0 beta			delta			x1				+			+			>=		interaction ineq ^s
0 +) alpha		0 beta			delta			x1				+			+			>=		-
0 +) alpha		0 beta			delta			x1				+			+ 1			>=		
0 +		alpha		0 beta			delta			x1				+			+			>=		
1 +	- 1	I alpha	+ -	-1 beta	a +	0	delta	+	0	x1	+	0	x2	+	0	x3	+	0	x4	>=	0	
0 +	6	alpha 🖯	+	0 beta	a +	1	delta	+	0	x1	+	0	x2	+	0	x3	+	0	x4	>=	0	CAN in or [§]
0 +) alpha	+	1 beta	a +	-1	delta	+	0	x1	+	0	x2	+	0	x3	+	0	x4	>=	0	CAN ineq ^s
0 +	-	l alpha	+ -	1 beta	a +	0	delta	+	0	x1	+	0	x2	+	0	x3	+	0	x4	>=	0	
0 +		l alpha		-1 beta		1	delta	т	1	x1	т	1	v0	+	1	v2	; +	1	× 4	>=	Q	"total strength inequality"
υŦ		атрпа		- Deta	1 -	- 1	uerta	т	1	XI	т	I	XZ	. т	1	X3) т	I	Χ4	/-	0	total strength mequality
0 +	-	l alpha	+ -	1 beta	a +	-1	delta	+	-1	x1	+	1	x2	+	1	x3	+ 1	1	x4	>=	0	
0 +		l alpha		-1 beta	a +		delta		1	x1	+	-1	x2	+	1	x3	; +	1	x4	>=	0	"electic equality"
0 +		l alpha		1 beta			delta			x1				+			; +			>=		"slant inequality"
0 +		l alpha		1 beta			delta			x1				+			+			>=		
0 +) alpha		0 beta	a +		delta			х1				+			+ +			>=		
0 +	(🖯 alpha	+	0 beta	a +	-1	delta	+	1	х1	+	0	x2	+	1	x3	+ 1	0	x4	>=	0	
0 +	6	ð alpha	+	0 beta	a +	-1	delta	+	1	х1	+	0	x2	+	0	x3	+ 1	1	x4	>=	0	"height inequality"
0 +	() alpha	+	0 beta	a +	-1	delta	+	0	х1	+	1	x2	+	1	x3	+ 1	0	x4	>=	0	
0 +	6) alpha	+	0 beta	a +	-1	delta	+	0	х1	+	1	x2	+	0	x3	+ 1	1	x4	>=	0	
0 +	6) alpha	+	0 beta	a +	-1	delta	+	0	x1	+	0	x2	+	1	x3	+	1	x4	>=	0	
1																						


Gate set design: fractional CX

Theorem (P.–Bishop–Javadi): CAN(α , β , δ) can be written as

 $\begin{array}{ll} \text{iff} & a+\beta+\delta \leq \sum_j x_j\,,\\ & -a+\beta+\delta \leq \sum_j x_j - \max_k \left\{ \, 2x_k \right\}\,,\\ & \delta \leq \sum_j x_j - \max_{k\,\neq\,m} \left\{ \, x_k + x_m \right\} \\ \text{are met (or are met after a certain reflection).} \end{array}$

P^f: Only 6 free variables. Use the CAS to check inductive step.

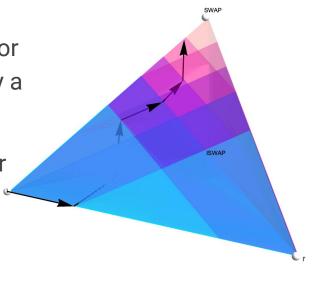
Compiling to fractional CX

Theorem (P.–Bishop–Javadi): If p_n meets the condition for $x_1, ..., x_n$, then there is a p_{n-1} for $x_1, ..., x_{n-1}$ related to p_n by a local circuit w/ known parameters, as in:

p_n

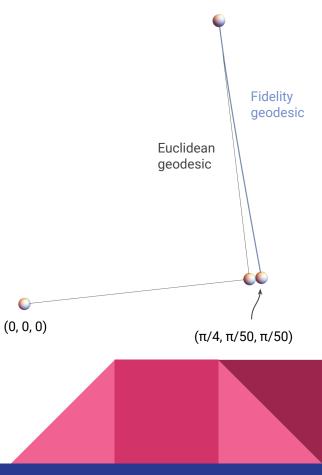
 p_{n-1}

P^f: Say p_{n-1} belongs to little region P_{n-1} , p_n to big region P_n . Fixing p_{n-1} and letting ψ and θ range gives the star. Set $P'_n = \{ p_n \text{ in } P_n \mid p_n \text{ reachable by the star from some } p_{n-1} \}$ CAS concludes $P_n' = P_n$. (Then isolate p_{n-1} and solve!)


Compiling to fractional CX

Theorem (P.–Bishop–Javadi): If p_n meets the condition for $x_1, ..., x_n$, then there is a p_{n-1} for $x_1, ..., x_{n-1}$ related to p_n by a local circuit w/ known parameters.

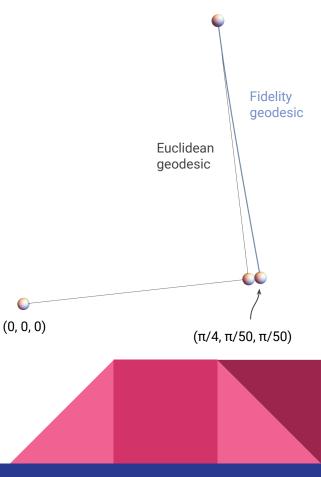
Corollary: Apply repeatedly to get optimal compilation for fractional *CX*.


Observ^{ns}:

Fast! \approx 2× slower than standard *CX*. No precomputation, tables, Can outperform brute search in *quality*.

Fractional CX and approximation

Fact: If local pre-/post-corrections are allowed, can calculate best approximation in av^g gate fidelity using canonical components.



Fractional CX and approximation

Fact: If local pre-/post-corrections are allowed, can calculate best approximation in av^g gate fidelity using canonical components.

Theorem (P.–Bishop–Javadi): When *P* is a fractional CX polytope, Euclidean-nearest agrees with fidelity-nearest.

This means it's *fast* to calculate best approximations. Super mysterious why this is true!

Thank you!

https://chromotopy.org

http://github.com/ecpeterson

Paper on arXiv, code on GH

Appendix: Fractional ISWAP

. . .

```
Working on an XY interaction sequence of length 2...
Took 0.8788942500000303 + 0.1939395639999475 + 0.3812988629999836 seconds.
                                                                 0 x2 >= 0
   0 +
           1 alpha +
                         -1 beta +
                                       -1 delta +
                                                      0 x1 +
    0 +
            0 alpha +
                                       -1 delta +
                                                      0 x1 +
                                                                 0 x2 >= 0
                         1 beta +
   1 +
           -1 alpha +
                         -1 beta +
                                       0 delta +
                                                      0 x1 +
                                                                 0 \times 2 >= 0
   0 +
            0 alpha +
                                       1 delta +
                                                      0 x1 +
                                                                 0 \times 2 >= 0
                          0 beta +
                                                                -2 x2 >= 0
   1 +
            0 alpha +
                          0 beta +
                                       0 delta +
                                                      0 x1 +
   1 +
                                                               0 x2 >= 0
            0 alpha +
                          0 beta +
                                       0 delta +
                                                     -2 x1 +
                                                                -1 x2 >= 0
   0 +
            0 alpha +
                          1 beta +
                                       0 delta +
                                                     1 x1 +
   0 +
            0 alpha +
                          1 beta +
                                       0 delta +
                                                     -1 x1 +
                                                               1 x2 >= 0
   2 +
                                                               0 x2 >= 0
           -1 alpha +
                         -1 beta +
                                       -1 delta +
                                                     -2 x1 +
   2 +
                                                                -2 x2 >= 0
           -1 alpha +
                         -1 beta +
                                       -1 delta +
                                                      0 x1 +
   0 +
           -1 alpha +
                          1 beta +
                                       -1 delta +
                                                      0 x1 +
                                                                 2 x2 >= 0
   0 +
           -1 alpha +
                          1 beta +
                                       -1 delta +
                                                      2 x1 +
                                                                 0 x2 >= 0
            0 alpha +
                                                     -1 x1 +
                                                                -1 \times 2 >= 0
   1 +
                          0 beta +
                                       -1 delta +
   0 +
           -1 alpha +
                          0 beta +
                                       0 delta +
                                                     1 x1 +
                                                               1 x2 >= 0
,
```

alcove inequalities

interaction inequalities

$$\beta \ge |x_1 - x_2|$$

 $2 - a_{+} \ge \max\{x_{1}, x_{2}\}$

 $2\min\{x_1, x_2\} \ge \alpha - \beta + \delta$

 $1 - \delta \ge x_1 + x_2 \ge \alpha$

Appendix: Fractional ISWAP

Working on an XY interaction sequence of length 3... Took 115.42721978700001 + 99.31264188099999 + 6.086576625000134 seconds.

(suppressed alcove and interaction inequalities)

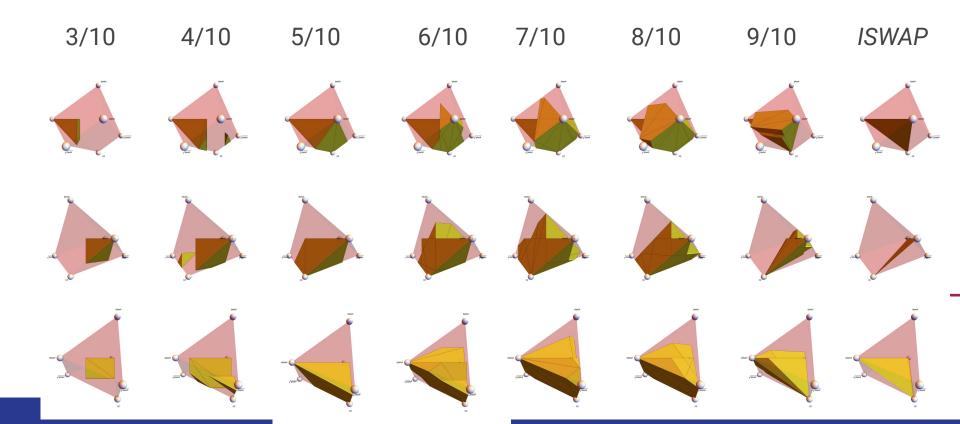
0	+ + +	0	alpha alpha alpha	+	0	beta beta beta	+	-1	delta delta delta	+	1	x1 x1 x1	+	0	x2 x2 x2	+	1	x3	>= >= >=	0
1	+ + +	0	alpha alpha alpha	+	0	beta beta beta	+	-1	delta delta delta	+	-1	x1 x1 x1	+	1	x2 x2 x2	+	-1	x3	>= >= >=	0
0	+ + +	0	alpha alpha alpha	+	1	beta beta beta	+	0	delta delta delta	+	1	x1 x1 x1	+	-1	x2 x2 x2	+	1	x3	>= >= >=	0
	+		alpha			beta			delta			x1			x2				>=	
	+		alpha			beta			delta			x1			x2				>=	
0	+		alpha		1	beta	+		delta			x1			x2				>=	
0	+	1	alpha	+	1	beta	+	-1	delta	+	2	x1	+	2	x2	+	-2	х3	>=	0
0	+	-1	alpha	+	1	beta	+	-1	delta	+	0	x1	+	2	x2	+	2	x3	>=	0
0	+		alpha		1	beta	+	-1	delta	+	2	x1	+	0	x2	+	2	x3	>=	0
	+		alpha			beta			delta			x1			x2				>=	

... more ...

Appendix: Fractional ISWAP

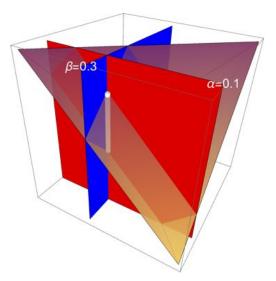
Working on an XY interaction sequence of length 3... Took 115.42721978700001 + 99.31264188099999 + 6.086576625000134 seconds.

... more ...


,

2 + 2 + 2 + 2 + 2 + 2 +	-1 alpha + -1 alpha + -1 alpha + -1 alpha + -1 alpha +	-1 beta + -1 beta + -1 beta + -1 beta + -1 beta +	-1 delta + -1 delta + -1 delta + -1 delta + -1 delta +	-2 x1 + -2 x1 + 2 x1 + 0 x1 + 2 x1 + 2 x1 +	2 x2 + 0 x2 + -2 x2 + -2 x2 + 0 x2 + 0 x2 +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2 +	-1 alpha +	-1 beta +	-1 delta +	0 x1 +	2 x2 +	-2 x3 >= 0	
0 +	1 alpha +	-1 beta +	-1 delta +	2 x1 +	0 x2 +	0 x3 >= 0	
0 +	1 alpha +	-1 beta +	-1 delta +	0 x1 +	2 x2 +	0 x3 >= 0	
0 +	1 alpha +	-1 beta +	-1 delta +	0 x1 +	0 x2 +	2 x3 >= 0	
0 +	-1 alpha +	-1 beta +	-1 delta +	2 x1 +	2 x2 +	2 x3 >= 0	——— Asymmetric!
1 +	-1 alpha +	0 beta +	-1 delta +	1 x1 +	1 x2 +	-1 x3 >= 0 ◀	

... 3 other convex summands ...



Appendix: Symmetric fractional ISWAP

Appendix: The monodromy polytope

 Yang-Mills for SU(4) on Σ = P¹ \ {0, 1, ∞} "Energy functional": Φ[↓]: M[↓](Σ; SU(4)) → t^{×3}.
 (Atiyah et al.:) The image of any energy functional is^{*} a convex polytope.
 (Falbel-Wentworth:) Restrict mixers SO(n) ≤ SU(n).

 Bundles on Σ (w/ monodromy) ↔ Moduli of curves on Gr(n, k) (w/ markings).
 "Schubert cells": geometric regions tracking ways e^{vals} can interact.
 Log^{mic} e^{vals} can't wrap around "too much", where "too much" is given by intersecting the conditions that e^{vals} interact at all.