
Tmf II — CONSTRUCTION AND COMPUTATION

ERIC PETERSON

ABSTRACT. These are notes for an e-Talbot talk covering Behrens’s Notes on the Construction of tmf and Bauer’s Compu-
tation of the Homotopy of the Spectrum tmf .

1. INTRODUCTION

This is a service talk. One of the goals of this conference is to discuss Serre duality on derived stacks, and in order
to explore this idea we require some interesting examples of derived stacks. We have been continually interested in
the moduli stack of elliptic curves, and this is the stack we will seek a topological enrichment for. To begin: what is
a topological enrichment?

Definition 1. Let f : N →Mfg be a flat, representable morphism of stacks. A topological enrichment of N is a
sheaf of E∞ ring spectra O onN such that Talk about the

complex-oriented
cohomology of
CP1.

Talk about the
complex-oriented
cohomology of
CP1.

πn ◦O ∼=
¨

f ∗ω⊗k if n = 2k is even,

0 if n is odd.

Remark 2. To gain intuition for the above, ignore the structured ring spectrum part and recall that a Landweber-flat
even-periodic cohomology theory R is determined by a flat map Spec R0 →Mfg from an affine, together with a
preferred lift toMfgl. In this case, we have

π2R= [S2, R] = [CP1, R] = eR0CP1 =
ker R0CP∞→ R0(∗)

(ker R0CP∞→ R0(∗))⊗R0CP∞2 ,

which is the cotangent space of R0CP∞ or the invariant 1–forms on R0CP∞.1 This explains the condition about
homotopy groups.

Remark 3. To gain intuition about what a topological enrichment gains us, consider a flat map Spec R→N . We
recover a complex-orientable homology theory R0(−) in the same way as Landweber’s theorem, and its associated
formal group is classified by the composite toMfg. The data of O is to compatibly choose lifts to E∞ ring spectra
O (R) for the étale maps Spec R→N .

Fix a fixed map f : N →Mfg, this has its own associated moduli problem of topological enrichments of f .

Theorem 4 (Goerss–Hopkins–Miller; Behrens; Lurie). The moduli of topological enrichments ofMell is contractible.

The cohomology theories manufactured from this sheaf are examples of elliptic spectra, which are triples (E ,C ,ϕ)
of an even-periodic cohomology theory E , a elliptic curve C , and an isomorphism ϕ between C∧0 and the formal
group associated to E0CP∞.

We aren’t going to prove this theorem—the details are too thick to completely present in an hour, even assuming
much more topological technology—but I hope to give enough indications of the proof that you get the gist and are
able to slot in the relevant topological inputs as you learn about them. Our approach is to work locally onMell:
divide it up over primes by passing to the p–completion, then divide the p–complete moduli itself into two further
regions by using the following result:

Date: June 16, 2017.
1The identification of these two things is an indirect consequence of the discussion of logarithms from Luca’s talk.
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Lemma 5 (Serre–Tate). The p–divisible group of an elliptic curve is either formal of height 2 or an extension of an étale
p–divisible group of height 1 by a formal group of height 1. �

Elliptic curves over a p–complete ring with connected p–divisible groups (i.e., those of the first form) are called
supersingular, whereas those of the second form are called ordinary. The most important fact about supersingular
elliptic curves is that they are uncommon:

Lemma 6. The supersingular locus of Mell is 0–dimensional. In fact, it is the zero-locus of a polynomial of degree
b(p − 1)/12c+ {0,1,2}. �

Write i : M ord
ell → Mell for the open inclusion of the ordinary locus. We then plan to recover a topological

enrichment by constructing the pieces of the following pullback:2

Otop (Otop)
∧
M ss

ell
O ss

O ord i∗i
∗Otop i∗i

∗
�

(Otop)
∧
M ss

ell

�

.

2. THE SUPERSINGULAR LOCUS

Our task in this section is to define O ss onÕM ss
ell, the supersingular part of the topological enrichment. In order to

make this definition, we need to specify its behavior on formal étale affines. Since the moduli is itself 0–dimensional,
these are exactly the formal affine covers of the deformation spaces of the supersingular curves in the larger moduli
Mell. The following arithmetic result gives us a crucial reduction:

Theorem 7 (Serre–Tate). The mapMell→Mpdiv(2) is formally étale.3 �

Lemma 8. The deformation theory of a connected p–divisible group of height d as a p–divisible group is isomorphic to
the deformation theory of the associated formal group of height d as a formal group. �

This reduces us to a case from JD’s talk: the inclusion of a deformation neighborhood of a height 2 point on
the moduli of formal groups, which he showed had an associated homology theory called Morava E–theory. A very
extravagant application of the tools from Ben’s talk yields the following theorem, essentially owing to the very nice
(i.e., formally smooth) deformation space and very nice (i.e., formally smooth) space of operations:

Theorem 9 (Goerss–Hopkins–Miller). Let Γ be a finite height formal group over a perfect field of positive characteristic.
The moduli of topological enrichments of (Mfg)

∧
Γ is homotopy equivalent to B AutΓ , and these operations are distinguished

by their behavior on the cohomology of CP∞. �

In particular, this gives a topological enrichment of ÕM ss
ell: it is the pullback of the Goerss–Hopkins–Miller sheaf

along the Serre–Tate map

ÕM ss
ell =

∐

supersingular C

(Mell)
∧
C

f.é.−→
∐

supersingular C

(Mpdiv(2))
∧
C [p∞]

∼=←−
∐

supersingular C

(Mfg)
∧
ÒC

.

Remark 10. This buys you more than just a bouquet of Morava E–theories, or even the global sections

O ss
�

ÕM ss
ell

�

=
∏

supersingular C

E h AutC
ÒC

.

For instance, the moduliM ss
ell(N ) of supersingular elliptic curves C equipped with specified isomorphisms C [N ]∼=

(Z/N )×2 forms an étale cover ofM ss
ell whenever p -N , and hence this sheaf produces spectra TMF(N )ss = O ss(M ss

ell(N ))
satisfying (TMF(N )ss)hGL2(Z/N ) ' TMF ss.

2This is an incarnation of the chromatic fracture square. The top-right node is the K(2)–local component, the bottom-left is the K(1)–local
component, and the bottom-right is the gluing data: the K(1)–localization of the K(2)–local component.

3In general, the Serre–Tate theorem states thatM d
ab→Mpdiv(2d ) is formally étale.
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3. THE ORDINARY LOCUS

Before addressing the ordinary locus in earnest, where our goal is to manufacture a lot of cohomology theories,
we spend a moment thinking about a particular example: p–adic K–theory, a familiar cohomology theory whose
formal group looks like one associated to an ordinary elliptic curve. (Generally, we will call such things ordinary
E∞ ring spectra.) Using the Goerss–Hopkins–Miller theorem stated above, p–adic K–theory appears as the E∞ ring
spectrum4 of sections assigned to the étale cover

SpfZp → (Mfg)
∧
ÒGm

.

Using AutÒGm =Z×p , the second half of the Goerss–Hopkins–Miller theorem endows this with aZ×p –indexed family
of E∞ ring maps, denoted ψk for k ∈Z×p . Their effect on the cohomology of CP∞ is given by

ψk : K0
pCP∞→K0

pCP∞,

x 7→ 1− (1− x)k ,

where x ∈K0
pCP∞ is the “usual” power series generator.

On the other hand, the E∞ ring structure itself gives another map

P p : K0
p →K0

p BΣp ,

the p th power operation. There is a calculation K0
p BΣp = K0

p{1,θ}, and in these terms the effect of the p th power
operation on the cohomology of CP∞ is

P p : K0
pCP∞→K0

pCP∞⊗K0
p{1,θ},

x 7→ (1− (1− x)p )⊗θ.

This extra operation describes an extension of the Z×p action on Kp to an action of the monoid Zp .5

In general, the p–adic K–theory of an E∞ ring spectrum also carries a Zp–action (and perhaps a little more, if
the homotopy groups are not torsion-free), called a θ–algebra. A different version of the Goerss–Hopkins–Miller
theorem gives a reverse-engineering tool that converts information about θ–algebras into information about the
space of possible ordinary E∞ ring spectra yielding them on evaluation of p–adic K–theory, or the mapping space
between two such. A tool from JD’s talk lets us guess which algebra should be associated to the p–adic K–theory of
the global sections of O ord, pictured in the first pullback square below:

· · · SpfW1 SpfV ∧∞ SpfZp

· · · M ord
ell (p

1) M ord
ell Mfg.

f.é.

Moreover, V ∧∞ has a natural structure as a θ–algebra: the interesting map ψp acts by

ψp : (C ,η : ÒGm

∼=−→ ÒC ) 7→













ÒGm[p] ÒGm
ÒGm

C [p] C C (p)

p

η η(p)

p













.

Unfortunately, this θ–algebra is not nice enough to apply the Goerss–Hopkins–Miller theorem. At this point, it
becomes convenient to work at p ≥ 5 for simplicity, where introducing a formal (Z/p)–level structure fixes this:

Lemma 11 (Igusa). For p ≥ 5, the moduliM ord
ell (p) is affine. �

4K–theory can be given the structure of an E∞ ring spectrum directly from the geometry of vector bundles, and it is a further theorem that
these two structures agree.

5An alternative description of the effect of the power operation is that it encodes quotienting by an order p subgroup of the formal group
associated to EΓ , and it so happens that ÒGm[p] is the unique such subgroup for ÒGm .
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Corollary 12. The associated θ–algebra W1 has vanishing Goerss–Hopkins–Miller obstruction groups, hence realizes
uniquely to an ordinary E∞ ring spectrum TMF(p)ord, and the action of (Z/p)× on the level structure enhances to a
coherent (Z/p)×–action on TMF(p)ord. �

We define TMFord, our candidate for Γ (O ord), to be the (Z/p)×–fixed points of TMF(p)ord, and indeed its p–adic
K–theory is V ∧∞. More than this, it turns out that the θ–algebra associated to any formal étale affine overM ord

ell
has a unique realization as an algebra under TMF(p)ord, and maps between such also lift uniquely—and this gives us
the desired sheaf O ord. This is a common strategy: find a topological enrichment of an affine cover of your stack of
interest, descend it to the stack itself, and use it to govern the rest of the affines.

4. GLUING DATA

The last thing we have to do to construct the pullback square is to manufacture a map of sheaves

i∗i
∗Otop→ i∗i

∗
�

(Otop)
∧
M ss

ell

�

.

This is rather similar to the construction of O ord itself: we construct a candidate map TMFord→ (TMF ss)ord of global
sections, and then we use this to control the map of sheaves using relative Goerss–Hopkins obstruction theory.

The main result that marries algebra to topology are the following two results about (TMF ss)ord. The first is that
(TMF ss)ord counts as an elliptic spectrum:

Lemma 13. There is an elliptic curve C alg over an affine Spf((V ∧∞)
ss) such that (TMF ss)ord is an elliptic spectrum for this

curve. �

This gives two candidates for a θ–algebra structure on the p–adic K–theory of TMF ss: there is the θ–algebra structure
coming from the geometric map Spf((V ∧∞)

ss)→ SpfV ∧∞, and there is the θ–algebra structure coming from the fact
that TMF ss is an E∞ ring spectrum, and hence (TMF ss)ord is an (ordinary) E∞ ring spectrum.

Theorem 14. The natural θ–algebra structure on Spf((V ∧∞)
ss) induced by the map Spf((V ∧∞)

ss)→ SpfV ∧∞ agrees with
the Goerss–Hopkins–Miller θ–algebra structure on π∗(TMF ss)ord. �

This is to be read as a recognition theorem for theθ–algebra structure on the topological object (TMF ss)ord: it matches
the algebraic model. Once this is established, the Goerss–Hopkins–Miller obstructions can be shown to vanish, and
it follows that the above map lifts to a map of the E∞ rings of global sections, and then one proceeds to produce the
map of sheaves by further applications of obstruction theory.

Arithmetic fracture is dealt with similarly, but it is far simpler. Because Q⊗ TMF has a smooth Q–algebra as
its homotopy, the obstructions governing the version of Goerss–Hopkins–Miller for commutative HQ–algebras
vanish, letting us lift algebraic results into homotopy theory wholesale.

5. VARIATIONS ON THESE RESULTS

Remark 15. At the prime 3, the proof of Igusa’s theorem needs amplification, but the statement remains the same
and the rest of the story goes through smoothly.

Remark 16. At the prime 2, two further things go wrong: one must pass to the Igusa coverM ord
ell (4) before it becomes

affine, but then the Galois group of this cover is C2, which has infinite cohomological dimension at 2. Appealing
to the equivalence KO = KU hC2 , one works with 2–adic real K–theory instead, which somehow pre-computes the
Galois action.

Remark 17. There is another way to construct TMFord at low primes, given by a complex consisting of two E∞ cells
attached to S. The way this is done, essentially, is by constructing a complex whose p–adic K–theory matches the
expected value: first it must have the right dimension, and then the action of θ must be corrected.

Remark 18. There is an analogous (and much easier) picture for the moduli of forms of the multiplicative group: any
ordered pair of puncture points inA1 can be used to give P1 the unique structure of a group with identity at∞, and
the associated formal group is classified by a mapMGm

→Mfg; there is an equivalenceMGm
' BC2; and KU forms
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the global sections of a topological enhancement of SpecZ→Mfg which descends using the complex-conjugation
action to BC2→Mfg.

Remark 19. With some effort6, the construction of Otop outlined here extends to the compactified moduli Mell

where Weierstrass curves with nodal singularities are allowed, i.e., where∆ is not inverted (as in y2+ xy = x3). The
resulting global sections yields a spectrum Tmf , which is not a periodic ring spectrum. The connective truncation
of that spectrum is denoted tmf , and it is expected to arise as the global sections of a topological enrichment of a
stack of generalized cubics, i.e., where cuspidal singularities are also allowed (as in y2 = x3). The existence proof for
a topological enrichment ofMcub remains elusive.

6. DESCENT ON HOMOTOPY

One of the main upsides of finding one of these topological enrichments is that it comes a equipped with a spectral
sequence computing the homotopy of its global sections, coming from recovering O (N ) as the homotopy limit of
finer and finer covers ofN :

Lemma 20. For O a topological enrichment of an appropriate mapN →Mfg, there is a spectral sequence

E s ,t
2 =H s (N ;πt ◦O )⇒πt−sΓ (N ;O ). �

Lemma 21. This spectral sequence is isomorphic to the M U –Adams spectral sequence for O (N ).

Main observation. Consider the Čech complex associated to the affine cover MWeier → Mell. We claim that the
complex making up the E1–term of the descent spectral sequence is isomorphic to the complex making up the E1–
term of the M U –Adams spectral sequence. To illustrate, we compute the first two terms of each and compare them.

(1) Consider the pullback diagram of stacks

SpecA Mfgl

Mell Mfg.

In the same stroke, this is also the pullback diagram computing Spec M U∗TMF .
(2) Now consider the two iterated pullback cubes pictured in Figure 1. That they compute equivalent pullbacks

begets an isomorphismMquad.trans.
∼= (Mfg×M

gpd
ps )×Mfgl

MWeier.
(n) The general case is similar, but requires stomaching iterated pullbacks in n–cubes. �

We now appeal to Katharine’s and Dominic’s talks in order to compute π∗T M F [1/6]. Since 2 and 3 are both in-
verted, we can use scaling and translation to complete both the cube and the square to replace an arbitrary Weierstrass
curve with unique one of the form y2 = x3+ c4x + c6, with∆=−24(4c3

4 + 27c2
3 ) and in fact the map

SpecZ[c4, c6,∆−1][1/6]→Mell× SpecZ[1/6]

is an equivalence of stacks. Since the quasicoherent sheaf cohomology of affines is always amplitude 0, this spectral
sequence is concentrated on the 0–line, and we recover

π∗TMF[1/6]∼=Z[c4, c6,∆−1][1/6], |∆|= 24.

Remark 22. This is all a rather elaborate way of recovering the homotopy of the complex-orientable ring spectrum
TMF[1/6]. The joy is that the machinery works at low primes too, where the homotopy is much harder to compute.
The moduli of elliptic curves has infinite cohomological dimension at the primes 2 and 3, and the descent spectral
sequence is riddled with differentials—enough to give a horizontal vanishing line.

6Actually, a significant chunk of the trouble is already present in the details of this construction, since dealing with the gluing data requires
working with an algebraized curve, which is only classified by a map to the compactified moduli.
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(Mfgl×M
gpd
ps )×Mfgl

MWeier MWeier

Mfgl×M
gpd
ps Mfgl

Mell

Mfgl Mfg,

Mquad.trans. MWeier

Mfgl

MWeier Mell

Mfgl Mfg.

FIGURE 1. Two equivalent homotopy pullback cubes.
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