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ABSTRACT. We outline a construction in derived algebraic geometry which produces elements of the K(n)-local Picard
group. As an example, we produce a new model of a spectrum called the determinantal sphere, and as time permits we
discuss newly indicated patterns in K(n)-local homotopy theory.

1. K -LOCAL INVERTIBLE SPECTRA

Throughout, fix a prime p (often it is useful for p to be odd, or even “large”) and a finite positive integer height
n. We in chromatic homotopy theory are very interested in a certain sequence of extraordinary complex-oriented
homology theories called Morava K -theories. There is one such K -theory for each choice of n and p, and it is valued
in graded vector spaces over the graded field K∗(pt) = Fpn[v±n ]. One of our primary goals is to understand what
these functors are telling us about Spectra. The theory of localization shows us that these Morava K -theories aren’t
really telling us about Spectra per se, but rather about the full subcategory of K -local spectra, written SpectraK .
This subcategory comes with a reflector LK , which has the properties that K∗(X ) = K∗(LK X ) and that K∗ reflects
isomorphisms in SpectraK .

Each of these three categories has a symmetric monoidal product: Spectra has a smash product ∧, VectorSpacesK∗
has a tensor product ⊗, and SpectraK has a localized smash product given by the formula X ∧̂Y = LK (X ∧ Y ).
Because K∗ is a graded field, the homology theory K∗ has Künneth isomorphisms, meaning that it is a monoidal
functor, and by definition of ∧̂, LK is also monoidal. So, in our quest to understand K∗ and SpectraK , it is profitable
to consider what information we can glean from these products.

One invariant of these categories determined by this data is their subcategories of invertible objects; after re-
placing objects with their isomorphism classes, these are called the “Picard groups” of these categories. Using the
monoidalness of our various functors, we record what we have so far in a diagram:

Spectra SpectraK VectorSpacesK∗
.

Pic Picn LinesK∗

LK

K∗

K∗

The Picard subcategory of VectorSpacesK∗
is easy to identify: the tensor product satisfies dim(V ⊗W ) = dimV ·

dimW , and so the invertible vector spaces are those which are 1-dimensional, or which are “lines”. The Picard
group Pic of Spectra is easy enough to describe: it is Z, generated by S1 the 1-sphere.1 The Picard group Picn of
SpectraK is extremely complex (and hence interesting); essentially the only quantitative thing we know about it in
general is that it is an extension of a finite group by a profinite p-group. There are explicit computations for n = 1
and for n = 2 with p ≥ 3, but otherwise it remains very mysterious. However, we do at least have one powerful tool
at our disposal to identify when a spectrum is K -locally invertible: a theorem of Hopkins, Mahowald, and Sadofsky
asserts that the right-hand square above is a pullback. Since the vertical arrows are inclusions, we may translate this
theorem as asserting that a spectrum X is K -locally invertible exactly when K∗(X ) is a line.

If Pic is isomorphic to Z, and Z isn’t a profinite p-group, then obviously there are new elements in Picn . What
do they look like? Here’s one cute and easy new family — start by considering the following horizontal system of
cofiber sequences:

1Making this identification is harder that it sounds; the proof I’ve read requires knowing the degree-wise finite generation of the stable
homotopy groups of spheres.
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· · · S−1 S−1 · · · S−1

· · · S−1 S−1 · · · S−1[p−1]

· · · M 0(p j ) M 0(p j+1) · · · M 0(p∞).

p
p j p j+1

The colimit, pictured on the far right, is also a cofiber sequence. The topmost object is the colimit of a sequence
of identity morphisms, so is simply S−1. The middle object is the colimit along iterates of the map p, so is, by
definition, the spectrum S−1[p−1] with the p-self-map inverted. Lastly, the spectrum on the bottom does not have
a familiar name, so we call it M 0(p∞).

Working K -locally, however, we can see that the middle spectrum is contractible: the map p on S−1[p−1] is
exactly multiplication by p in K∗-homology, but since the coefficient ring K∗ is of characteristic p, this is the zero
map. On the other hand, p is required to be invertible, which can only mean K∗S−1[p−1] = 0. In turn, this means
that the going-around map M 0(p∞)→ S0 is a K -local equivalence, and so M 0(p∞) is an invertible spectrum, albeit
not a very interesting one.2

A different way of at least detecting that M 0(p∞) is K -locally invertible is to apply K -homology to the bottom
row: each object in the sequence becomes a 2-dimensional K∗-vector space, and each map from one to the next is
− · p = − · 0 on the (−1)-graded piece and the identity on the 0-graded piece — this is exactly what the diagram of
cofiber sequences is recording. Hence, the homology of the colimit is a K∗-line, and the HMS lemma assures us we
have an invertible spectrum.

· · · K∗M
0(p j ) K∗M

0(p j+1) · · · K∗M
0(p∞)

· · · · · ·

This suggests a way we can modify this construction: if we insert other maps which are K∗-homology isomorphisms,
then we will not harm this proof that the colimit is an invertible spectrum. In particular, each spectrum M 0(p j )
is type 1 and admits an Adams v1-self-map v p j−1

1 : M 0(p j )→ M−|v1|p j−1(p j ). With these maps in hand, select your
favorite p-adic integer a∞ =

∑∞
j=0 c j p j with 0≤ c j < p, and construct the system:

M 0(p)→ ·· · →M−|v1|a j−1(p j )→M−|v1|a j−1(p j+1)
v

p j c j
1−−→M−|v1|a j (p j+1)→M−|v1|a j (p j+2)→ ·· · → S−|v1|a∞ .

Hopkins, Mahowald, and Sadofsky go on to check that this assignment Z∧p → Pic1 is an injective, continuous

homomorphism, and for p > 2 its cosets are represented by S1, . . . ,S|v1|.
Unfortunately, this is essentially the only sample family of exotic invertible spectra we know.3 To produce other

examples, we at least now know what to look for: line bundles. Now, my favorite sort of vector bundles (for the
purposes of this talk) are tangent bundles, and in particular when looking at a smooth point on a 1-dimensional
variety, the stalk of the tangent bundle there is a 1-dimensional free module. There are certain spectra which
chromatic homotopy theory tells us to think of in analogy to 1-dimensional formal affine lines, like Σ∞+CP∞, and
so one thing we could hope for is a dashed arrow completing the following commuting square:

{appropriate spectra} Picn

�

formal affine varieties
of dimension 1

�

VectorSpacesK∗

Tη

K∗
T0

K∗

This is our goal for the rest of the talk.

2This is a homotopical version of the statement that the p-primary part of the circle group S1 is exactly the p-Prüfer group Z/p∞ =
colim j Z/p j .

3This construction can be re-done using generalized Moore spectra to give a similar inclusion Z∧p → Picn for n > 1.
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2. COALGEBRAS

So, what we want is some spectrum-level operation which mimics the construction of the algebro-geometric
tangent space. The primary obstacle to realizing this dream is a variance issue: classical algebraic geometry is done
with rings, but we are concerned with covariant K -homology. So, while most typically investigate the formal
scheme XK = SpfK∗X , we should work out how to use K∗X instead.

As a stepping stone, let’s start by thinking about spaces X such that K∗X is finite as a K∗-module, i.e., XK is a
finite scheme.4 In this case, K∗X is simple to describe: it is the K∗-linear vector space dual of K∗X . Accordingly,
where K∗X had the structure of a K∗-algebra, K∗X has the structure of a K∗-coalgebra. You can quickly check
that the three categories of finite K∗-algebras, finite K∗-coalgebras, and finite schemes are all (co/contravariantly)
equivalent. Diagrammatically, here are the functors available to us:

FiniteCoalgebras FiniteAlgebras FiniteSchemes
(−)∨ Spec

O(−)∨

Sch

For a test ring T , the functor of interest Sch is given by the formula

(SchC )(T ) =
�

u ∈C ⊗T
�

�

�

�

∆u = u ⊗ u ∈ (C ⊗T )⊗T (C ⊗T )
εu = 1 ∈ T

�

.

Now, let’s approach the infinite case. It is no longer the case that we can get away with naively applying linear
algebraic duality to turn algebras into coalgebras, because...

(1) ... the double-dual of an infinite-dimensional vector space is not isomorphic to the original.
(2) ... the inequality (A⊗A)∨ 6∼= A∨⊗A∨ prevents us from dualizing the multiplication on a ring to a comulti-

plication on its dual.
Instead, there is a structure theorem for coalgebras which indicates what is happening: every finite dimensional
vector subspace of a coalgebra can be finitely enlarged to a finite dimensional subcoalgebra — and, as a corollary,
every coalgebra is ind-finite.

In actuality, this ind-finiteness is
In actuality, this ind-finiteness has been in the picture of algebraic-geometry-in-algebraic-topology all along: the

formula XK = SpfK∗X means that we should consider the directed system of compact subspaces Xα of X , then set
XK = colimα SpecK∗Xα. This is what we mean when we say we’re studying formal schemes: formal schemes are
ind-finite schemes, meaning that they arise from pro-finite systems of rings or from ind-finite systems of coalgebras.
And, in fact, XK can be modeled as XK = SchK∗X for arbitrary X . This extends our diagram like so:

FiniteCoalgebras FiniteAlgebras FiniteSchemes

Coalgebras ProfiniteAlgebras FormalSchemes

(−)∨ Spec

O(−)∨

Sch

Spf

Sch
So, this new setting is very nearly just the old setting with one extra duality thrown in to the formula, and

hence we can translate over any construction we want by dualizing appropriately. For a point x : K∗X → K∗ in
the affine scheme XK , we would build the cotangent space by taking the corresponding ideal I = ker(K∗X → K)
and considering the quotient Tx XK = coker(I ⊗K∗X I → I ). In the new setting, a point corresponds to a map
x : K∗ → K∗X , from which we build the (K∗X )-comodule M = coker(K∗ → K∗X ), and then the tangent space

4This is a pretty interesting case already, since it encompasses all manifolds, for instance.
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Tx XK = ker(M → M�K∗X
M ). Here � is the cotensor product, defined by dualizing the diagram for a tensor

product below:

I ⊗A J I ⊗k J M�C N M ⊗k N

I ⊗k J I ⊗k A⊗k J , M ⊗k N M ⊗k C ⊗k N .
1⊗αJ

αI ⊗ 1
ψM ⊗ 1

1⊗ψN

This is all supposed to indicate what to do on the level of spectra: for an appropriate pointed coalgebra spectrum
η : S→X , we build the intermediate spectrum M = cofib(S→X ) and set TηX = fib(M →M�X M ). The remaining
challenge is to decide what the cotensor square M�X M should mean. A quick calculation in K -homology will show
that the pullback square above is not sufficient, essentially because the fiber of spectra will also detect the cokernel
of the map K∗M → K∗(M�X M ) in odd degrees. Instead we should consider the derived cotensor product, defined
by the totalization of the two-sided cobar construction M�X M = TotB∗(M ;X ; M ).5 This comes with a coskeletal
filtration spectral sequence

E2
∗,∗ =CotorK∗X

∗,∗ (K∗M ,K∗M )⇒K∗(M�X M ),

which has bad convergence properties in general, but in the case that XK
∼= Â1 the following can be shown:

(1) CotorK∗X
∗,∗ (K∗M ,K∗M ) vanishes for nonzero Cotor-degree.

(2) The spectral sequence collapses at the E2-page.
(3) It converges strongly, with no extension problems, to K∗(M�X M ).

In all, this means that applying K∗-homology to all these spectra results in the coalgebraic version of the construction
of the tangent space given above — and hence TηX = fib(M →M�X M ) is a K -locally invertible spectrum.

3. APPLICATIONS

Having assembled this technology, it’s time to try out some examples. As mentioned in the introduction, one
such spectrum X is X = Σ∞+CP∞, pointed by the inclusion of the disjoint basepoint. Appealing to HZ-homology
rather than K -homology, we see that HZ∗T+Σ∞+CP∞ is a single Z concentrated in degree 2, and so it must be the
case that T+Σ

∞
+CP∞ ' S2.

That’s kind of cool, but not very exciting — after all, the whole idea was to get new elements of Picn , and we
already knew about S2. Toward that end, here’s a more exotic example of a suitable spectrum X : Ravenel and
Wilson show that K∗HZ/p∞q is the qth exterior power of K∗HZ/p∞1 as a Hopf algebra. This means that each

HZ/p∞q begets a formal group of dimension
�n−1

q−1

�

, hence for q = n we find a formal variety of dimension 1:

SchK∗HZ/p∞n
∼= Â1.

Our tangent space machine then immediately gives us some element of Picn , and it would be helpful to know more
about it — in particular, it would be nice to know if it is also a standard sphere or something new.

One thing you may have noticed is that LinesK∗
is not a very interesting category: it has one isomorphism class,

for instance. It turns out that there is a refinement of the map Picn → VectorSpacesK∗
through the category of line

bundles over a certain formal variety LTn , equivariant against the action of a certain p-adic analytic group Sn :

Picn
K−→ LineBundlesSn

(LTn)
i∗−→ VectorSpacesK∗

.

Though it’s a low bar to clear, this middle category records much more information than LinesK∗
. Hopf ring

techniques allow us to identify the image of T+Σ
∞
+ HZ/p∞n in this middle group: it is the determinantal bundle

Ωn−1
LTn/Z

∧
p

! This in particular means that it is not a standard sphere, and so we have uncovered a genuinely new

invertible spectrum. Other authors have called similar spectra with this property “the determinantal sphere.”
Now that we’ve accomplished our original goal of producing an interesting invertible spectrum, I want to tell

you about some other things that come out of these methods. The first, most basic point is that this construction
can be iterated, yielding the following diagram of fiber sequences:

5Accordingly, X will have to be in some sense a coA∞-coalgebra spectrum. Whatever this is, suspension spectra definitely have this property.
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C =M�C 0 M =M�C 1 M�C 2 M�C 3 M�C 4 · · ·

A0 = S A1 = TηX A2 A3 A4 · · · .
β

In the case of X =Σ∞+CP∞, this recovers the cellular decomposition of CP∞. In the case of X =Σ∞+ HZ/p∞n , this
recovers something that feels identical to the cellular decomposition of CP∞, but where “cell” is extended to allow
attaching maps along arbitrary elements of Picn . In particular, one can show that the spectrum D j is the j th smash
power of D1, as is the case for CP∞.

Given this striking similarity between CP∞ and HZ/p∞n , one can ask what other things are lying around
that are also similar. For instance, the map CP1 → CP∞ is an element of homotopy called the Bott element β,
and we have an analogous map β : T+Σ

∞
+ HZ/p∞n → Σ

∞HZ/p∞n . Moreover, Snaith showed that the spectrum
Σ∞+CP∞[β−1] is weakly equivalent to the K -theory spectrum KU , and we can formally construct a Snaith-type
determinantal K -theory spectrum R = Σ∞+ HZ/p∞n[β

−1]. Westerland has shown a couple of remarkable features
of this spectrum:

(1) R is weakly equivalent to the fixed point spectrum E hSSn , where SSn is the subgroup of “special” elements
of the stabilizer group, i.e., those in the kernel of the determinant.

(2) The space Ω∞R〈1〉 supports an analogous map to BGL1S, yielding a determinantal theory of Thom spec-
tra. In particular, there is a Thom spectrum analogous to M U , which classifies those spectra which are
appropriately oriented against HZ/p∞n .

(3) ...There is even an analogue of the image of J ...
Westerland answers a lot of questions and opens a lot of doors, and there are a lot of things left to investigate.

Though there are many others, here are two yet-unanswered questions I’d like to leave you with:
(1) Analogues of the spaces ΩSU (m) can be constructed, but analogues of the spaces BU (m) are unknown.

What should the analogue of a rank m bundle be, where HZ/p∞n classifies “rank 1 bundles”?
(2) The tangent space analysis also applies 2-adically to RP∞, where it’s found that T+Σ

∞
+RP∞ ' S1. In both

the real and complex cases, it is the case that the tangent space agrees with ΣO(1) and ΣU (1) respectively —
that’s because these spaces can be realized as bar constructions. Does Σ−1T+Σ

∞
+ HZ/p∞n have an interpre-

tation as a base case of a Lie group? Does it have an unstable realization, as O(1) and U (1) do? How does
the annular tower compare to the bar filtration?
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