Additive and multiplicative cocycles and Singer's calculation of the (co)homology of BU's connective covers

M. Ando, A. Hughes, J. Lau, E. Peterson

October 11, 2008

Putting the Pieces Together

Singer's Calculation (1967)

$$H^*(BU\langle 2k\rangle; \mathbb{Z}_p) = \frac{H^*(BU; \mathbb{Z}_p)}{\mathbb{Z}_p[\theta_{2i} \mid \sigma_p(i-1) < k-1]} \otimes \prod_{t=0}^{p-2} F[M_{2k-3-2t}],$$

where θ_{2i} are particular indecomposables and F[M] is an algebra associated to the closure of a particular element of cohomology under the Steenrod operations.

Preliminaries

Singer's Calculation (1967)

$$H^*(BU\langle 2k\rangle; \mathbb{Z}_p) = \frac{H^*(BU; \mathbb{Z}_p)}{\mathbb{Z}_p[\theta_{2i} \mid \sigma_p(i-1) < k-1]} \otimes \prod_{t=0}^{p-2} F[M_{2k-3-2t}],$$

where θ_{2i} are particular indecomposables and F[M] is an algebra associated to the closure of a particular element of cohomology under the Steenrod operations.

Goal: alternative description of this space's homology

■ Virtual bundle $\xi_k = \prod_{i=1}^k (1 - L_i)$ over $(\mathbb{C}P^{\infty})^k$.

- Virtual bundle $\xi_k = \prod_{i=1}^k (1 L_i)$ over $(\mathbb{C}P^{\infty})^k$.
- Classifying map $f: (\mathbb{C}P^{\infty})^k \to BU$

- Virtual bundle $\xi_k = \prod_{i=1}^k (1 L_i)$ over $(\mathbb{C}P^{\infty})^k$.
- Classifying map $f: (\mathbb{C}P^{\infty})^k \to BU$
- Vanishing Chern classes gives lift to $g:(\mathbb{C}P^{\infty})^k \to BU\langle 2k \rangle$

■ Vanishing Chern classes gives lift to $g: (\mathbb{C}P^{\infty})^k \to BU\langle 2k \rangle$

- lacksquare Vanishing Chern classes gives lift to $g:(\mathbb{C}P^\infty)^k o BU\langle 2k
 angle$
- Induced map in homology: $H_*g: H_*(\mathbb{C}P^\infty)^k \to H_*(BU\langle 2k\rangle)$

- lacksquare Vanishing Chern classes gives lift to $g:(\mathbb{C}P^\infty)^k o BU\langle 2k
 angle$
- Induced map in homology: $H_*g: H_*(\mathbb{C}P^\infty)^k \to H_*(BU\langle 2k\rangle)$
- Adjoint element $g' \in H^*((\mathbb{C}P^{\infty})^k; H_*BU\langle 2k \rangle)$

■ Adjoint element $g' \in H^*((\mathbb{C}P^{\infty})^k; H_*BU\langle 2k \rangle)$

- Adjoint element $g' \in H^*((\mathbb{C}P^{\infty})^k; H_*BU\langle 2k \rangle)$
- Künneth formula, classical calculations: $H^*((\mathbb{C}P^{\infty})^k; H_*BU\langle 2k \rangle) = (H_*BU\langle 2k \rangle)[x_1, \dots, x_k].$

- Adjoint element $g' \in H^*((\mathbb{C}P^{\infty})^k; H_*BU\langle 2k \rangle)$
- Künneth formula, classical calculations: $H^*((\mathbb{C}P^{\infty})^k; H_*BU\langle 2k\rangle) = (H_*BU\langle 2k\rangle)[x_1, \dots, x_k].$
- \blacksquare H_*g has an interpretation as a power series!

Properties of g'

■ Symmetric: $g'(\mathbf{x}) = g'(\sigma \mathbf{x})$ for $\sigma \in S_k$,

Properties of g'

- Symmetric: $g'(\mathbf{x}) = g'(\sigma \mathbf{x})$ for $\sigma \in S_k$,
- Rigid: g'(...,0,...) = 1,

Properties of g'

- Symmetric: $g'(\mathbf{x}) = g'(\sigma \mathbf{x})$ for $\sigma \in S_k$,
- Rigid: g'(...,0,...) = 1,
- Multiplicative 2-cocycle:

$$\frac{g(x,y)}{g(z+x,y)}\cdot\frac{g(z,x+y)}{g(z,x)}=1.$$

(Similar equations for k > 2.)

A-H-S Result

- Ring maps $H_*BU\langle 2k \rangle \to A$ send this power series somewhere.
- Symmetric multiplicative 2-cocycles over $A[x_1, ..., x_k]$ are detected by $Rings(C^k, A)$ for a certain ring C^k .

A-H-S Result

- Ring maps $H_*BU\langle 2k \rangle \rightarrow A$ send this power series somewhere.
- Symmetric multiplicative 2-cocycles over $A[x_1, ..., x_k]$ are detected by $Rings(C^k, A)$ for a certain ring C^k .
- (Ando-Hopkins-Strickland) For $k \leq 3$,

$$Rings(C^k, A) \cong Rings(H_*BU\langle 2k \rangle, A),$$

as determined by the map's action on g'!

A-H-S Result

- Ring maps $H_*BU\langle 2k \rangle \rightarrow A$ send this power series somewhere.
- Symmetric multiplicative 2-cocycles over $A[x_1, ..., x_k]$ are detected by $Rings(C^k, A)$ for a certain ring C^k .
- (Ando-Hopkins-Strickland) For $k \leq 3$,

$$Rings(C^k, A) \cong Rings(H_*BU\langle 2k \rangle, A),$$

as determined by the map's action on g'!

■ What about k > 3?

Preliminaries

- Let f be a multiplicative 2-cocycle.
- $f = 1 + g + o(\mathbf{x}^{n+1})$, g a polynomial of homogenous degree n
- g is an additive 2-cocycle:

$$g(x,y) - g(z+x,y) + g(z,x+y) - g(z,x) = 0.$$

(Again, similar equations for k > 2.)

spec $H_*BU\langle 2k\rangle$

- \blacksquare Let f be a multiplicative 2-cocycle.
- $f = 1 + g + o(\mathbf{x}^{n+1})$, g a polynomial of homogenous degree n
- g is an additive 2-cocycle:

$$g(x,y) - g(z+x,y) + g(z,x+y) - g(z,x) = 0.$$

(Again, similar equations for k > 2.)

Studying these gives an idea of what we should expect C^k to look like.

Lazard's Cocycles

•
$$f_n(x, y) = d^{-1}((x + y)^n - x^n - y^n)$$

Important in formal group laws.

A-H-S's Cocycles

■ Integral cocycles (polynomials over ℤ)

■ Modular cocycles (polynomials over \mathbb{Z}_p)

A-H-S's Cocycles

- Integral cocycles (polynomials over ℤ)
 - Gave a straightforward generalization of Lazard's cocycles
 - Produced one cocycle for each number of variables k and homogenous degree n, called ζ_k^n
- Modular cocycles (polynomials over \mathbb{Z}_p)

A-H-S's Cocycles

- Integral cocycles (polynomials over ℤ)
 - Gave a straightforward generalization of Lazard's cocycles
 - Produced one cocycle for each number of variables k and homogenous degree n, called ζ_{k}^{n}
- Modular cocycles (polynomials over \mathbb{Z}_p)
 - Classified cocycles up to three variables
 - Bases given by ζ_k^n and $(\zeta_k^{n/p})^p$

Interpreting Data

 Basic method: make massive calculations, pray we see something

Interpreting Data

- Basic method: make massive calculations, pray we see something
- lacktriangle We shorthand symmetric polynomials using integer partitions, associating a partition λ to the polynomial

$$\tau\lambda = d^{-1} \sum_{\sigma \in S_k} \mathbf{x}^{\sigma\lambda}.$$

Interpreting Data

- Basic method: make massive calculations, pray we see something
- We shorthand symmetric polynomials using integer partitions, associating a partition λ to the polynomial

$$\tau\lambda=d^{-1}\sum_{\sigma\in\mathcal{S}_k}\mathbf{x}^{\sigma\lambda}.$$

e.g.,

$$au(1,1,1) = xyz,$$

$$\tau(3,1,1) = x^3yz + xy^3z + xyz^3.$$

\mathbb{Z}_2	dim 2	3	4	5
dim 5	$\tau(4,1)$	$\tau(2, 2, 1)$	$\tau(2,1,1,1)$	$\tau(1,1,1,1,1)$
6	$\tau(4,2)$	$\tau(2,2,2),$	$\tau(2,2,1,1)$	$\tau(2,1,1,1,1)$
	, ,	au(4,1,1)		
7	τ (6, 1)+	$\tau(4,2,1)$	$\tau(2,2,2,1),$	$\tau(2,2,1,1,1)$
	$\tau(5,2)+$		au(4,1,1,1)	
	$\tau(4,3)$			
8	$\tau(4,4)$	$\tau(4,2,2)$	$\tau(2,2,2,2),$	$\tau(2,2,2,1,1),$
			$\tau(4,2,1,1)$	au(4, 1, 1, 1, 1)
9	$\tau(8,1)$	au(4, 4, 1)	$\tau(4,2,2,1)$	$\tau(2,2,2,2,1),$
				τ (4, 2, 1, 1, 1)
10	$\tau(8,2)$	$\tau(4,4,2),$	$\tau(4,2,2,2),$	$\tau(2,2,2,2,2),$
		au(8, 1, 1)	au(4, 4, 1, 1)	$\tau(4,2,2,1,1)$
11	$\tau(10, 1)+$	$\tau(8,2,1)$	$\tau(4,4,2,1),$	$\tau(4,2,2,2,1),$
	$\tau(9,2)+$		au(8, 1, 1, 1)	au(4, 4, 1, 1, 1)
	$\tau(8,3)$			

Characteristic 2 Data

\mathbb{Z}_2	dim 2	3	4	5
dim 5	au(4,1)	$\tau(2,2,1)$	$\tau(2,1,1,1)$	$\tau(1,1,1,1,1)$
6	$\tau(4,2)$	$\tau(2,2,2),$	τ (2, 2, 1, 1)	τ (2, 1, 1, 1, 1)
		au(4,1,1)		
7	τ (6, 1)+	τ (4, 2, 1)	$\tau(2,2,2,1),$	$\tau(2,2,1,1,1)$
	$\tau(5,2)+$		au(4, 1, 1, 1)	
	$\tau(4,3)$			
8	$\tau(4,4)$	$\tau(4,2,2)$	$\tau(2,2,2,2),$	$\tau(2,2,2,1,1),$
			$\tau(4, 2, 1, 1)$	au(4,1,1,1,1)
9	τ (8, 1)	τ (4, 4, 1)	$\tau(4, 2, 2, 1)$	$\tau(2,2,2,2,1),$
		,		$\tau(4,2,1,1,1)$
10	$\tau(8,2)$	τ (4, 4, 2),	τ (4, 2, 2, 2),	$\tau(2,2,2,2,2),$
		au(8, 1, 1)	τ (4, 4, 1, 1)	$\tau(4,2,2,1,1)$
11	$\tau(10, 1)+$	$\tau(8,2,1)$	$\tau(4,4,2,1),$	$\tau(4,2,2,2,1),$
	$\tau(9,2)+$		$\tau(8,1,1,1)$	$\tau(4,4,1,1,1)$
	$\tau(8,3)$			

₹ 2990

\mathbb{Z}_2	dim 2	3	4	5
dim 5	$\tau(4,1)$	$\tau(2, 2, 1)$	$\tau(2,1,1,1)$	$\tau(1,1,1,1,1)$
6	$\tau(4,2)$	$\tau(2,2,2),$	$\tau(2,2,1,1)$	au(2,1,1,1,1)
		au(4, 1, 1)		
7	τ (6, 1)+	$\tau(4,2,1)$	$\tau(2,2,2,1),$	$\tau(2,2,1,1,1)$
	$\tau(5,2)+$		$\tau(4,1,1,1)$	
	$\tau(4,3)$			
8	$\tau(4,4)$	$\tau(4,2,2)$	$\tau(2,2,2,2),$	$\tau(2,2,2,1,1),$
			$\tau(4,2,1,1)$	au(4,1,1,1,1)
9	$\tau(8,1)$	$\tau(4,4,1)$	$\tau(4,2,2,1)$	$\tau(2,2,2,2,1),$
				$\tau(4,2,1,1,1)$
10	$\tau(8,2)$	$\tau(4,4,2),$	$\tau(4,2,2,2),$	$\tau(2,2,2,2,2),$
		au(8, 1, 1)	au(4, 4, 1, 1)	$\tau(4,2,2,1,1)$
11	$\tau(10, 1)+$	$\tau(8,2,1)$	$\tau(4,4,2,1),$	$\tau(4,2,2,2,1),$
	$\tau(9,2)+$		au(8, 1, 1, 1)	au(4, 4, 1, 1, 1)
	$\tau(8,3)$			ㅁ▷ ◀쥐▷ ◀불▷ ◀불▷

\mathbb{Z}_2	dim 2	3	4	5
dim 5	$\tau(4,1)$	$\tau(2, 2, 1)$	$\tau(2,1,1,1)$	$\tau(1,1,1,1,1)$
6	τ (4, 2)	$\tau(2,2,2),$	$\tau(2,2,1,1)$	au(2,1,1,1,1)
		au(4,1,1)		
7	τ (6, 1)+	$\tau(4, 2, 1)$	$\tau(2,2,2,1),$	$\tau(2,2,1,1,1)$
	τ (5, 2)+		$\tau(4,1,1,1)$	
	$\tau(4,3)$			
8	$\tau(4,4)$	$\tau(4,2,2)$	$\tau(2,2,2,2),$	$\tau(2,2,2,1,1),$
			$\tau(4,2,1,1)$	au(4, 1, 1, 1, 1)
9	τ (8, 1)	$\tau(4, 4, 1)$	$\tau(4,2,2,1)$	$\tau(2,2,2,2,1),$
				$\tau(4,2,1,1,1)$
10	$\tau(8,2)$	$\tau(4,4,2),$	$\tau(4,2,2,2),$	$\tau(2,2,2,2,2),$
		au(8,1,1)	au(4, 4, 1, 1)	$\tau(4,2,2,1,1)$
11	au(10, 1) +	$\tau(8,2,1)$	$\tau(4,4,2,1),$	τ (4, 2, 2, 2, 1),
	$\tau(9,2)+$		au(8, 1, 1, 1)	τ (4, 4, 1, 1, 1)
	$\tau(8,3)$			

₽ 99€

\mathbb{Z}_2	dim 2	3	4	5
dim 5	$\tau(4,1)$	$\tau(2,2,1)$	$\tau(2,1,1,1)$	$\tau(1,1,1,1,1)$
6	$\tau(4,2)$	$\tau(2,2,2),$	$\tau(2,2,1,1)$	au(2,1,1,1,1)
		au(4, 1, 1)		
7	τ (6, 1)+	$\tau(4, 2, 1)$	$\tau(2,2,2,1),$	$\tau(2,2,1,1,1)$
	τ (5, 2)+		$\tau(4,1,1,1)$	
	$\tau(4,3)$			
8	$\tau(4,4)$	$\tau(4,2,2)$	$\tau(2,2,2,2),$	$\tau(2,2,2,1,1),$
			$\tau(4,2,1,1)$	au(4, 1, 1, 1, 1)
9	τ (8, 1)	$\tau(4,4,1)$	$\tau(4,2,2,1)$	$\tau(2,2,2,2,1),$
				$\tau(4,2,1,1,1)$
10	$\tau(8,2)$	$\tau(4,4,2),$	$\tau(4,2,2,2),$	$\tau(2,2,2,2,2),$
		au(8, 1, 1)	au(4,4,1,1)	$\tau(4,2,2,1,1)$
11	au(10, 1) +	$\tau(8,2,1)$	$\tau(4,4,2,1),$	$\tau(4,2,2,2,1),$
	$\tau(9,2)+$		au(8, 1, 1, 1)	au(4, 4, 1, 1, 1)
	$\tau(8,3)$			

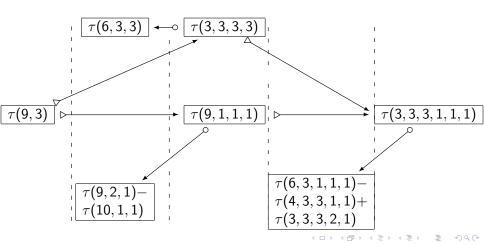
\mathbb{Z}_3	dim 2	3	4	5
deg 12	$\tau(9,3)$	τ (6, 3, 3),	$\tau(3,3,3,3),$	τ (6, 3, 1, 1, 1)-
		$\tau(9, 2, 1)$	$\tau(9,1,1,1)$	τ (4, 3, 3, 1, 1)+
		au(10,1,1)		$\tau(3,3,3,2,1)$
13	$\tau(12,1)+$	$\tau(9, 3, 1)$	$\tau(4,3,3,3)-$	$\tau(3,3,3,3,1),$
	$\tau(10,3)+$		τ (6, 3, 3, 1),	au(9,1,1,1,1)
	τ (9,4)		τ (9, 2, 1, 1)-	
			$\tau(10,1,1,1)$	
14	$\tau(12,2)-$	$\tau(9,3,2)-$	τ (9, 3, 1, 1)	τ (6, 3, 3, 1, 1) $-$
	$\tau(13,1)+$	au(12,1,1)-		τ (4, 3, 3, 3, 1)+
	$\tau(11,3)-$	$\tau(10, 3, 1)$		$\tau(3,3,3,3,2),$
	$\tau(10, 4)+$	au(9,4,1)		τ (9, 2, 1, 1, 1) $-$
	$\tau(9,5)$			au(10,1,1,1,1)

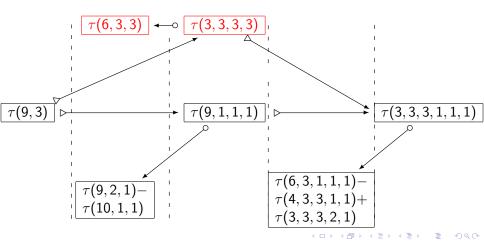
\mathbb{Z}_3	dim 2	3	4	5
deg 12	$\tau(9,3)$	τ (6, 3, 3),	$\tau(3,3,3,3),$	τ (6, 3, 1, 1, 1)-
		$\tau(9, 2, 1)$	$\tau(9,1,1,1)$	τ (4, 3, 3, 1, 1)+
		au(10,1,1)		$\tau(3,3,3,2,1)$
13	$\tau(12,1)+$	$\tau(9, 3, 1)$	τ (4, 3, 3, 3)-	$\tau(3,3,3,3,1),$
	$\tau(10,3)+$		τ (6, 3, 3, 1),	au(9,1,1,1,1)
	$\tau(9,4)$		τ (9, 2, 1, 1) $-$	
			$\tau(10,1,1,1)$	
14	$\tau(12,2)-$	τ (9, 3, 2) $-$	$\tau(9,3,1,1)$	τ (6, 3, 3, 1, 1) $-$
	$\tau(13,1)+$	au(12,1,1)-		τ (4, 3, 3, 3, 1)+
	$\tau(11,3)-$	$\tau(10, 3, 1)$		$\tau(3,3,3,3,2),$
	$\tau(10, 4)+$	au(9,4,1)		τ (9, 2, 1, 1, 1) $-$
	au(9,5)			au(10, 1, 1, 1, 1)

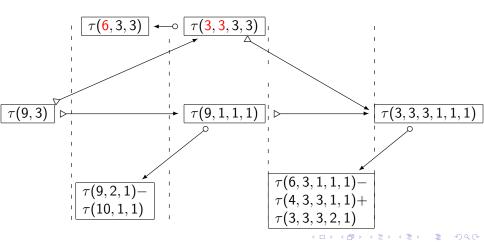
\mathbb{Z}_3	dim 2	3	4	5
deg 12	$\tau(9,3)$	τ (6, 3, 3),	$\tau(3,3,3,3),$	τ (6, 3, 1, 1, 1)-
		$\tau(9, 2, 1)$	$\tau(9,1,1,1)$	τ (4, 3, 3, 1, 1)+
		au(10,1,1)		$\tau(3,3,3,2,1)$
13	$\tau(12,1)+$	$\tau(9, 3, 1)$	$\tau(4,3,3,3)-$	$\tau(3,3,3,3,1),$
	$\tau(10,3)+$		τ (6, 3, 3, 1),	au(9,1,1,1,1)
	au(9,4)		τ (9, 2, 1, 1)-	
			$\tau(10,1,1,1)$	
14	$\tau(12,2)-$	$\tau(9,3,2)-$	$\tau(9,3,1,1)$	τ (6, 3, 3, 1, 1)-
	$\tau(13,1)+$	$\tau(12, 1, 1)$		τ (4, 3, 3, 3, 1)+
	$\tau(11,3)-$	$\tau(10, 3, 1)$		$\tau(3,3,3,3,2),$
	$\tau(10, 4)+$	au(9,4,1)		τ (9, 2, 1, 1, 1) $-$
	τ (9,5)			au(10,1,1,1,1)

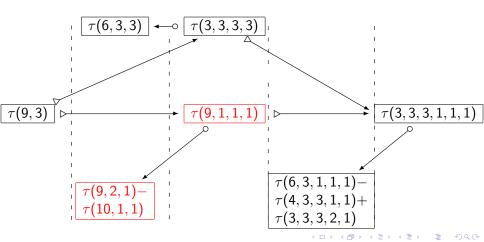
\mathbb{Z}_3	dim 2	3	4	5
deg 12	$\tau(9,3)$	τ (6, 3, 3),	$\tau(3,3,3,3),$	τ (6, 3, 1, 1, 1)-
		$\tau(9, 2, 1)$	au(9, 1, 1, 1)	τ (4, 3, 3, 1, 1)+
		au(10,1,1)		$\tau(3,3,3,2,1)$
13	$\tau(12,1)+$	$\tau(9, 3, 1)$	$\tau(4,3,3,3)-$	$\tau(3,3,3,3,1),$
	$\tau(10,3)+$		τ (6, 3, 3, 1),	au(9,1,1,1,1)
	$\tau(9,4)$		τ (9, 2, 1, 1)-	
			au(10,1,1,1)	
14	$\tau(12,2)-$	$\tau(9,3,2)-$	$\tau(9,3,1,1)$	τ (6, 3, 3, 1, 1) $-$
	$\tau(13,1)+$	au(12,1,1)-		τ (4, 3, 3, 3, 1)+
	$\tau(11,3)-$	$\tau(10, 3, 1)$		$\tau(3,3,3,3,2),$
	$\tau(10, 4)+$	au(9,4,1)		τ (9, 2, 1, 1, 1) $-$
	au(9,5)			au(10, 1, 1, 1, 1)

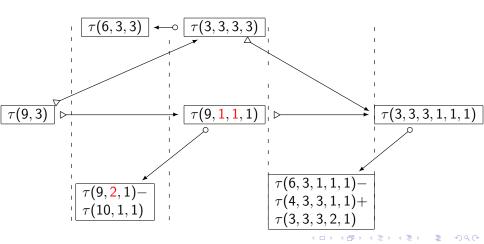
\mathbb{Z}_3	dim 2	3	4	5
deg 12	$\tau(9,3)$	τ (6, 3, 3),	$\tau(3,3,3,3),$	τ (6, 3, 1, 1, 1)-
		$\tau(9, 2, 1)$	$\tau(9,1,1,1)$	τ (4, 3, 3, 1, 1)+
		au(10,1,1)		$\tau(3,3,3,2,1)$
13	$\tau(12,1)+$	$\tau(9,3,1)$	$\tau(4,3,3,3)-$	$\tau(3,3,3,3,1),$
	$\tau(10,3)+$		τ (6, 3, 3, 1),	au(9,1,1,1,1)
	$\tau(9,4)$		$\tau(9,2,1,1)-$	
			au(10,1,1,1)	
14	$\tau(12,2)-$	$\tau(9,3,2)-$	$\tau(9,3,1,1)$	τ (6, 3, 3, 1, 1) $-$
	$\tau(13,1)+$	$\tau(12,1,1)-$		τ (4, 3, 3, 3, 1)+
	$\tau(11, 3)-$	$\tau(10, 3, 1)$		$\tau(3,3,3,3,2),$
	$\tau(10,4)+$	au(9, 4, 1)		τ (9, 2, 1, 1, 1) $-$
	au(9,5)			au(10, 1, 1, 1, 1)

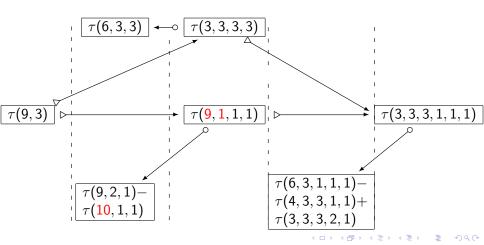


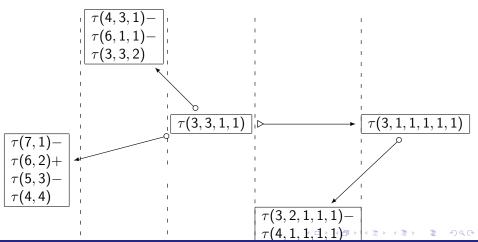


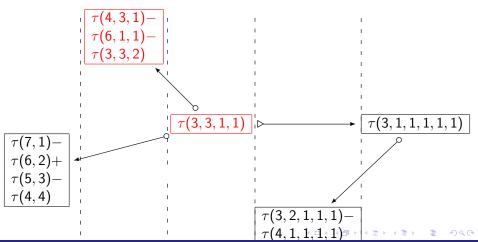


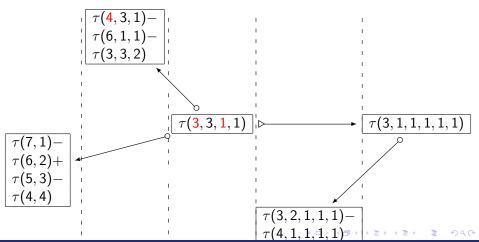


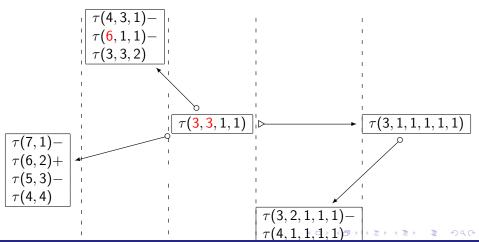


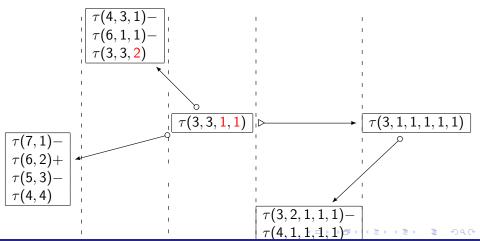


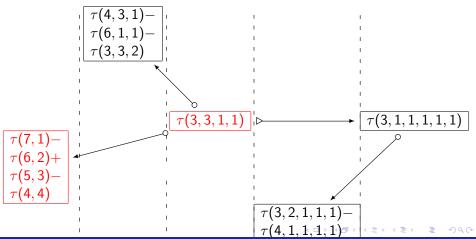


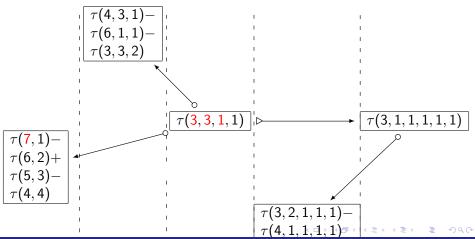


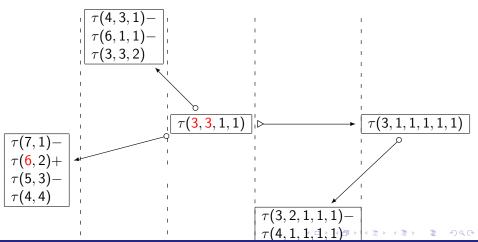


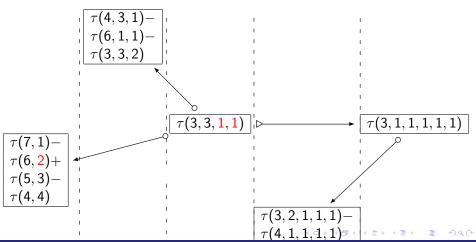


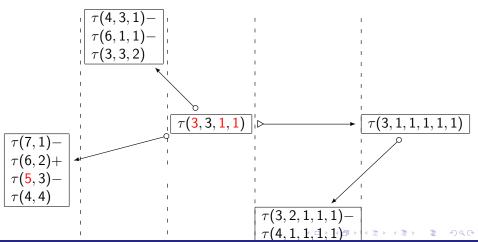


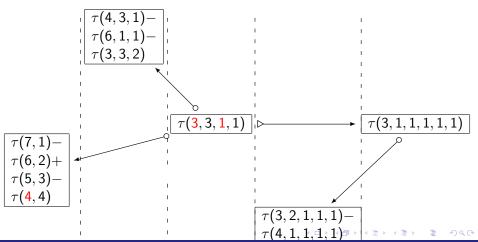


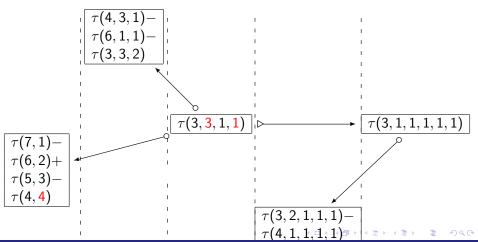












• Coefficients come from ζ_k^n .

■ To state this formally, we introduce gathering operators:

$$G_{i,j}\lambda = (\lambda \setminus (\lambda_i, \lambda_j)) \cup (\lambda_i + \lambda_j).$$

The Big Theorem

$\mathsf{Theorem}$

Select a power-of-p partition λ of n with length k. Let $T^m\lambda$ denote the set of all possible partitions of the form $G_{i_1,j_i}\cdots G_{i_m,j_m}\lambda$. Then, if either $m \leq p-2$ or if λ is the shortest power-of-p partition of n, the polynomial

$$\sum_{\mu\in T^m\lambda} c_\mu\cdot (\tau\mu)$$

will be a cocycle, where c_{μ} is the coefficient of $\tau \mu$ in $\pi_{p}\zeta_{k-m}^{n}$. In addition, cocycles formed in this manner give a basis for the space of modular cocycles.

A Useful Corollary

■ All our cocycles effectively come from power-of-*p* partitions

00

A Useful Corollary

- All our cocycles effectively come from power-of-*p* partitions
- Power-of-p partitions of length k and weight n:

$$\prod_{i=0}^{\infty} \left(1 - tx^{p^i}\right)^{-1} = \sum_{n,k} D_{n,k} x^n t^k.$$

•0

A Useful Corollary

- All our cocycles effectively come from power-of-p partitions
- Power-of-p partitions of length k and weight n:

$$\prod_{i=0}^{\infty} \left(1 - tx^{p^i}\right)^{-1} = \sum_{n,k} D_{n,k} x^n t^k.$$

Useful bound on number of distinct multiplicative cocycles

What Now?

■ Which of these extend to multiplicative cocycles?

What Now?

- Which of these extend to multiplicative cocycles?
- These are called cocycles because they (in other contexts) form a chain complex. What about m-cocycles for m > 2?

What Now?

- Which of these extend to multiplicative cocycles?
- These are called cocycles because they (in other contexts) form a chain complex. What about *m*-cocycles for m > 2?
- Our initial motivation what does spec $H_*BU(2k)$ really look like?