
EFFICIENT OCCUPATION COUNT FOR CERTAIN PROBABILISTIC FERMIONIC MOTION

ERIC PETERSON

ABSTRACT. Performing an occupation count over a spatial region for a system of particles is a very common statistical
task—for instance, think of measuring changing atmospheric density. We outline a computational regime that simultane-
ously offers efficient occupation count as well as efficient system evolution for discretized quantum systems of fermionic
particles.

1. CLASSICAL INTRODUCTION

Consider the following very generic situation: we have a (closed) system of (fermionic) particles moving around
some spatial context, evolving subject to some physical law. A very common, very basic statistical question one
might ask about this system is:

Question 1. How many particles lie within some prescribed region?

Example 2. Consider atmospheric particles, subject to mutual repulsion and to gravity. How dense is the atmosphere
as you gain altitude from sealevel?

For our part, as computer scientists, we would like to simulate such systems on a computer and to measure these
values through computation. There are two competing computational forces in this situation: efficient simulation
requires us to be able to quickly update the state of the system, and efficient counting requires us to be able to quickly
perform occupation counts over regions in the system. Wisdom in this trade means picking the right tool for the right
job: we should explore different data structures in hopes that different ones have different associated access costs for
these operations. For sanity’s sake, we specialize to the situation of particles occupying positions on a line.

1.1. Bitstrings. We begin by doing the most naive thing possible, with no clever algorithmic knowledge incorpo-
rated, by exactly representing the configuration of the particles as bits in a string. Specifically, the nth bit indicates
whether the nth position on the line is occupied by a particle. With this representation, updating the state of the
system amounts to toggling any bit, which is a single access operation, and so has access complexity of O(1). On the
other hand, calculating the number of occupied positions in the first m ≤ n bits takes m accesses, which has average-
and worst-case access complexitiy of O(n).

1.2. Occupancy counts (Jordan–Wigler). We can also do the opposite and precompute all of the occupancy counts
for the initial segments of a list of particle occupation states. In this representation, computing the occupancy count
of any given initial segment is now just a single lookup, so has access complexity of O(1).1 The trade is that modiying
the configuration is now considerably more complicated: toggling the presence of a particle in the mth position
requires updating all of the occupancy counts at and above the mth length, which again has average- and worst-case
access complexity of O(n).

1.3. Fenwick trees. There is an intermediate data structure called a Fenwick tree that mediates between these ex-
tremes by storing partial occupancy counts, so that updates only touch some nodes of the tree and full occupany
counts also require assembling data from only some of the nodes of the tree. Roughly speaking, the graph is divided
into its bottom half, the bottom half of what remains, the bottom half of what remains, . . . , and then the algorithm
recurses. For instance, a graph with vertices v0, . . . , v15 gets arranged into a tree as in Figure 1. At each node, we
store the occupancy count of it together with all of its children. The key property of this layout of tree is that both
its depth and its (slanted) width are logarithmic. These dictate the access complexities of the operations: updating
the occupation of a given position affects the occupation count of all of the node’s parents, and reads of occupany
counts require sums across (slanted) branches. Hence, both have access complexity O(log n).

1Indeed, any connected segment requires just two lookups and a subtraction.
1

15

7 11 13 14

3 5 6 9 10 12

1 2 4 8

0

FIGURE 1. A Fenwick tree formed from {0, . . . , 15}.

1.4. Segmented Fenwick trees. If updates are known to be in some sense local, it may be wise to partition the
graph into subgraphs so that updating the occupancy count in one region does not affect the partial sums in the
other regions at all. At one extreme end, where the graph is completely partitioned into singletons, this recovers
the Jordan–Wigler scheme. At the other extreme, with no partitioning, this is identical to the naive Fenwick tree
scheme.

2. QUBIT ENCODING OF FERMIONS ON A LINE

Remarkably, this kind of computation is intrinsic to simulating quantum systems of fermionic particles. Recall
that a system of particles governed by fermionic statistics are controlled by creation operators a†

k and annihilation
operators ak on a state space V , themselves subject to the following rules:

{a f ,ag }= 0, {a†
f ,a†

g }= 0, {a f ,a†
g }= 〈 f |g 〉,

where {r, s} = r s + s r denotes the anticommutator of two operators r and s . Now suppose that we put ourselves
into an identical physical situation to the classical exercise considered above: we consider configurations of fermionic
particles slotted into n positions on a line. We can record any particular configuration as as a state vector | fn · · · f1〉,
and a particular choice of creation and annihilation operators in this situation is specified by the linear extension of
the rules

a†
j

�

�

� fn · · · f1
¶

=

(

(−1) f+< j

�

�

� fn · · · f j+11 f j−1 · · · f1
¶

when f j = 0,

0 when f j = 1,

a j

�

�

� fn · · · f1
¶

=

(

(−1) f+< j

�

�

� fn · · · f j+10 f j−1 · · · f1
¶

when f j = 1,

0 when f j = 0,

where we have introduced the signs in order to guarantee the anticommutation relations above.2

Our goal is to translate this physical system into something simulable by a quantum computer. The state vector we
can translate directly into a qubit vector: measuring |qn · · · q1〉 gives a classical bitvector recording the configuration
of the fermionic particles as in our naive presentation. The creation and annihilation operators can be encoded in

2As an important theoretical remark, the algebra generated by these operators is invariant of any particular choice of presentation, despite
the evident choices made in our signs, which depend on a choice of ordering of the states.

2

terms of qubit gates as follows:

Q†
j = |1〉 j 〈0| j =

1
2
(X j − iY j), a†

j =Q†
j Z< j ,

Q j = |0〉 j 〈1| j =
1
2
(X j + iY j), a j =Q j Z< j ,

where G j denotes the gate G applied to the j th qubit and G< j denotes a sequence of G gates applied to each qubit

of index less than j . The operators Q†
j and Q j perform the qubit-toggling3, and the gates Z< j introduce the correct

number of negative signs, according to how many qubits are toggled on in positions below j . In particular, parity
counting is an intrinsic part of these operators, and so we are intrinsically interested in performing these parity
counts efficiently.4

The encoding scheme above recounted above is not very access-efficient: the creation and annihilation operators
both access O(n) qubits in the average and worst cases, and more accesses means more stress on a quantum computer’s
stability and reliability. Bravyi and Kitaev observed that our earlier Fenwick tree encoding scheme translates directly
into this situation, immediately reducing the access complexity to O(log n). For a prettier encoding, we switch to
the Majorana basis of unitary operators:

c j = a j + a†
j , d j = i(a†

j − a j).

(In particular, this removes the obnoxious linear combination in the definitions of Q j and Q†
j .) These two operators

then translate into qubits by a Fenwick encoding as follows:
• The operator d j is encoded by applying a Y –gate to the j th qubit, an X –gate to each parent of the j th qubit

in the Fenwick tree, and applying a Z–gate to each immediate child of each parent of the j th qubit, provided
that child is labeled less than j . Respectively, the Y –gate comes from our change of basis, the X –gates toggle
the occupancy counts, and the Z–gates introduce the relevant negative signs.
• The operator c j is encoded by applying an X –gate to the j th qubit, applying an X –gate to each parent of the

j th qubit in the Fenwick tree, and applying a Z–gate to each immediate child of each parent of the j th qubit
including immediate children of j itself, provided that child is labeled less than j . Their roles are identical to
those described above.

Again, because of the observations about Fenwick tree width and depth, there are only ≈ 2 log2 n gates involved in
either operator.

Remark 3. This 1–dimensional case actually does have interesting applications: Seely, Richard, and Love used this
encoding to give an efficient implementation of the second-order approximation to the Hamiltonian governing elec-
tron excitation in a(n ionized) hydrogen atom.

Remark 4. This also has the scent of something common in mathematics: the Koszul sign rule in homological algebra
appears when applying an operator to different tensor factors in a large tensor product. The prototypical example
is the Leibniz law on a derivation:

d (a1⊗ · · ·⊗ ak) =
k
∑

j=1

(−1) j−1a1⊗ · · ·⊗ d (a j)⊗ · · ·⊗ ak .

In this sense, linear fermionic models are some kind of Z/2–graded-commutative extension of qubits subject to the
Koszul sign rule.

3. QUBIT ENCODING OF GEOMETRICALLY LOCALIZED FERMIONIC INTERACTION

Based on the previous discussion, and especially the last remark, you might (rightly) expect that general fermionic
simulation is computationally costly. In fact, motivated by the same sign-rule remark, you might also notice that
you can re-encode classical qubit behavior in terms of linear fermionic sites by dedicating pairs of sites to represent
any given qubit: by expanding each |0〉 and |1〉 into |00〉 and |11〉, one avoids collecting any alternating signs. In

3Note that these operators are not unitary.
4Exactly what region is tracked isn’t important if we’re just trying to enforce these relations. You can totally count parity upward if you

want, which I hear is popular among quantum chemists.
3

fact, this indicates that linear fermionic models can serve as constant time simulators of qubits, so that they are, in a
precise sense, more computationally expressive objects.

Troubled by this, Bravyi and Kitaev also noticed that most physically occuring fermionic systems have rather
extreme locality properties: their Hamiltonians are governed by terms encoding adjacent site-to-site hopping. Ac-
cordingly, if we were going to try simulating physical systems of fermions, we need only provide a computational
model that deals with these kinds of adjacent annihilation and creation oeprators, and furthermore only those oper-
ators that occur in pairs.5 Working this out in the naive encoding above is encouraging: all but a few of the Z–gates
cancel! Their prototypical system consists of a configuration of fermions occupying vertices on a(n undirected)
graph, with the possibility to transition from one vertex to another along a single edge connecting them. The oper-
ators governing such a system are generated by the following two collections:

Bk = 1− 2a†
k ak , A(j ,k) =−i(a j + a†

j)(ak + a†
k),

indexed on vertices and edges respectively.6 By placing a qubit on each edge in the graph, these operators admit the
following encoding:

Bk =
∏

edges (j , k)

Z(j ,k), A(j ,k) = ε(j ,k)X(j ,k)
∏

(l ,k)<k (j ,k)

Z(l ,k)

∏

(j ,i)< j (j ,k)

Z(j ,i),

where ε(j ,k) ∈ {±1} is any choice of orientation of the edges of the graph satisfying ε(j ,k) = −ε(k , j) and < is any
choice of ordering on the edges on each vertex j . Additionally, a configuration is considered to be physical when it
is loop-stabilized in the following sense: for any closed path j1 · · · jp we define a stabilizing operator

CJ = i p A(j1, j2)
· · ·A(jp , j1)

,

and a physical state is a simultaneous eigenvector for all the CJ operators.

Example 5. A prototypical example making use of this set-up is the Hubbard model: a family of spin-up and spin-
down particles propagate through a graph according to the Hamiltonian

H =H↑+H↓+U
∑

j∈V

(a†
j↑a j↑)(a

†
j↓a j↓),

consisting of two decoupled spin-up and spin-down propagation terms and a density-density interaction term, each
specified by

H↑ =−t
∑

(j ,k)

(a†
j↑ak↑+ a†

k↑a j↑)+ ε
∑

j

a†
j↑a j↑, H↓ =−t

∑

(j ,k)

(a†
j↓ak↓+ a†

k↓a j↓)+ ε
∑

j

a†
j↓a j↓,

where t , U , and ε are all physical parameters of the system governing ease of motion, typically occuring theoretically
as path integrals.

Example 6. A specialization of this example was worked out by Halíček, Troyer, and Whitfield in the case of an evenly
subdivided rectangle. This amounts to picking signs and working through the appearance of the X – and Z–gates in
the encoding above. In particular, they observe that either one of the spin-up or spin-down partial Hamiltonians
involves terms with only 7–gated qubit operators occuring, and the density-density interaction term involves terms
with 8–gated qubit operators. It is not an accident that these values are constant: any upper bound on the incidence
degree of a graph translates directly into an upper bound on the gate degree of the families of operators A and B .

Remark 7. For computational purposes, it is also useful to introduce a correctional penalty term that pushes the
system back into the eigenspace of physical configurations. This is accomplished by selecting some large value∆�
t ,ε, U and adding −∆

∑

loops J CJ to the Hamiltonian above.

5Accordingly, what follows is neither a special case nor an extension of the discussion above. In some sense, this second topic exists to spite
the first.

6This is an analogue of the Majorana basis mentioned earlier.
4

4. EXTENSIONS

Neither the Bravyi–Kitaev paper nor the Halíček–Troyer–Whitfield paper deal with more than adjacent site-to-
site hopping terms. However, the major application of the earlier discussion of fermionic simulation, appearing
in Seely–Richard–Love, involved hopping terms across greater differences, and it made serious use of the Fenwick
segmentation scheme to gain control of access complexity. One potential avenue for exploration is a mixing of these
two schemes: using Fenwick-like segmentation to gain some further operator locality for Hubbard-like Hamiltoni-
ans with higher-order terms.7

The transcoding of occupancy state into graph-edge state is not discussed in either of the two sources above. This
is probably not an efficient operation, but it is necessary for this encoding scheme to be useful. One hint from Bravyi–
Kitaev in this direction is that the fermionic ground state corresponds to the unique qubit state |ξ 〉 satisfying the
equations

Bk |ξ 〉= |ξ 〉.
I wrote a little pyQuil document that encodes a bunch of the basic operations in this set-up into Quil circuits. I

do not understand how to encode the Hamiltonians, which is crucial for demonstrating the simulation capabilities
of these schemes, essentially because I don’t understand how to sum non-unitary operations in a reasonable (i.e.,
local) way. I imagine this is just ignorance, and that someone with more experience with quantum computing or
with pyQuil would be able to implement this quickly.

The “superfast” in superfast geometrically-localized fermionic simulation refers to the constant gate size, so that
the access complexity of applying a Hamiltonian amounts to O(` ·w). It is conceivable that this can be optimized
slightly further, within the same Landau class, by again aiming to minimize duplicated parity update. A more fine-
grained analysis of this kind has not been treated.

7There are sub-questions here, like: what are the important properties of covering regimes in order to govern occupancy counting efficiently?
Our preference for initial segments on a line was completely arbitrary, and it is much less convincing that a similar stab in the dark will work on
even, say a rectangular 2–dimensional grid. Things will almost certainly become more complicated—in an interesting way—if the graph has an
interesting topology. A 2–torus is probably a good example.

5

