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Before we do any mathematics, I want to take a moment to thank the organizers for putting all the pieces of
this workshop together. I think everyone’s learned a lot, and I think they did a great job exemplifying the claim
that algebraic topology is a wonderfully friendly field. We should also take a moment to congratulate all of you:
not only have you survived to the end, which is commendable, but you’ve all given wonderful talks. In particular,
you’ve made my talk a lot easier, since I’m in the extremely privileged position of getting to build off of all of your
hard work at introducing these complex ideas. So, hats off.

1. INTRODUCTION: THE MAY SPECTRAL SEQUENCE

OK, with that out of the way, let’s get to work. I want to start by reminding you about the May spectral
sequence from this morning, though it will take us a while to come back and see why I’m bringing it up. Mark’s
whole sequence of talks have been about computing stable homotopy groups, and the centerpiece of his lectures has
been the Adams spectral sequence:

E s ,t
2 = Exts ,t

A ∗(F2,F2)⇒πt−sS
0⊗Z∧2 .

Mark even made some remark about how wonderful this reduction was because “machines can compute these Ext
groups” — and that’s true, but what he really means is that it’s always possible, not that it’s easy.

But we know what to do when we’re faced with a hard problem: separate it into easy problems and then push
all the hard parts into the differentials of a spectral sequence which reassembles the data. Peter May constructed a
spectral sequence of algebras of the form

E∗,∗,∗1 = F2[hi j | i , j ≥ 1]⇒ Ext∗,∗A∗(F2,F2),

where hi j has degree (1,2 j (2i − 1), i) and corresponds to the element ξ 2 j

i ∈A∗.
That’s cool and really helpful, and I’d like to demonstrate this method in a small example. Anne-Marie and Mark

both talked about the subalgebraA (1)∗ spanned by Sq1 and Sq2, which had something to do with kO, connective
real K -theory. This subalgebra is really tiny, and so the corresponding filtration is really short. There ends up being
a version of May’s theorem which identifies the E1 page as F2[h10, h11, h20], corresponding to the surviving terms
ξ1, ξ 2

1 , and ξ2 in A (1)∗. If you’ll look up at the screen, I’ve had a computer program draw some pictures of the
May spectral sequence for this filtration. The differentials in this spectral sequence encode pieces of the howA (1)∗
is built out of simple pieces. For instance, there is a d1-differential d1(h20) = h10h11, which records the relation
between the symbol Q1 = ξ

∨
2 and the commutator [Sq2, Sq1]. After turning the page, there’s also a d2-differential

d2(h
2
20) = h3

11.1 This is recording the fact that there are three routes to the top of theA (1)∗ picture: the two that pass
through the Sq2 Sq1 and Sq1 Sq2 chains, and then also the middle path Sq2 Sq2 Sq2. After applying this differential,
you see a now familiar friend: the Adams E2-page for π∗kO.

2. MULTIPLICATIVE THOM SPECTRA

Let’s leave the May spectral sequence alone for a while and talk about things we’re supposed to talk about: Thom
complexes. These were introduced by Cary on the very first day, and since used by Brooke, Gabe, and Jean. The
idea, as Cary told it, was to take a vector bundle, put a metric on it, think about the associated disk bundle, and
quotient out its sub-spherical bundle. Brooke and Jean both mentioned in brief that vector bundles don’t really have
to enter this story: given a spherical bundle, you can build a Thom complex, and given a stable spherical bundle, you
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FIGURE 1. The E1 page without differentials, pages E1 and E2 with differentials, and the E3 = E∞ page.

can build a Thom spectrum. They even mentioned that there’s a classifying space for such stable spherical bundles,
and while they called it BF , and I’m going to write BGL1S. These are exactly the same space, but if you attend
algebraic topology talks in the future, this is probably the name by which you’ll encounter this object.

So, given a (homotopy class of a) map ϕ : X → BGL1S, I can build a Thom spectrum Tϕ. This construction is
actually extremely well-behaved. For starters, it’s functorial: is I have a pair of spherical fibrations which are related
by a homotopy-commuting triangle

X ′ X

BGL1S,

f

ϕ′

ϕ

then I get an induced map T f : T (ϕ′)→ Tϕ. These is also a method for sticking two spherical bundles together:
given a pair of spherical bundles ν : X → BGL1S and τ : Y → BGL1S, I can build a pair of spherical bundles over
X ×Y by pulling back along the projections. Then, given by two bundles over this common base, I can smash them
together fiberwise — and since the smash of two spheres is another sphere, this gives me yet another stable spherical
fibration. This all compiles into a group operation BGL1S× BGL1S → BGL1S. What’s remarkable is that this
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operation interacts well with Thomification; there is an identity2

T (ν ×τ) = T ν ∧T τ.

Mahowald’s first big idea is to request that X and ϕ are themselves compatible with this structure: let X now be
a group-like H -space, and let ϕ be a homomorphism ϕ : X → BGL1S. The fact that it’s a homomorphism can be
encoded in the commuting diagram

X ×X X

BGL1S×BGL1S BGL1S.

µ

ϕ×ϕ
ϕ×ϕ

ϕ

µ

Thomifying the maps ϕ and ϕ×ϕ, we get a map Tϕ ∧Tϕ→ Tϕ by functoriality — and you can check that this is
the multiplication data for a ring spectrum.

That much is pretty standard, but here’s something a bit nuttier. One thing you might have seen is the notion of
a G-torsor, which is a set X equipped with a free and transitive G-action. This means that X is of the same size and
shape as G, but that it’s missing a choice of basepoint — you can still move around inside of X using G, but you can
only move relative to where you are.3 A different way to phrase this condition is that the “shearing map”

σ : G×X
(x,y)7→(x,x−1y)
−−−−−−−→X ×X

is a bijection — injectivity is faithfulness, and having a section is transitivity.
A prime example of a G-torsor is G itself, acted on by multiplication. Let’s go back to our X and ϕ, and let’s

extend this diagram by the shearing map:

X ×X X ×X X

BGL1S×BGL1S BGL1S.

σ

0×ϕ

0× id

µ

ϕ×ϕ ϕ

µ

We can identify its long composite to BGL1S too: µ◦σ is the same as 0× id, and hence the long composite is 0×ϕ.
This clearly lifts to the square of BGL1S, and so we can identify the Thom spectrum: it’s Σ∞+X ×Tϕ. What’s more
is that because σ is an isomorphism, it begets an equivalence

Σ∞+X ∧Tϕ
T σ
−→ Tϕ ∧Tϕ.

Now, that’s really cool! Let’s interpret this: in the case that ϕ is the trivial spherical bundle, the associated Thom
spectrum is given byΣ∞+X . On the other hand, a nontrivial spherical bundle will beget some weird Thom spectrum
Tϕ, about which little can be said. A ring spectrum E is said to be oriented for ϕ when smashing through with E
gives an (E -module) equivalence

E ∧Σ∞+X ' E ∧Tϕ.

This equivalence is supposed to be a spectrum level incarnation of the Thom isomorphism — taking homotopy of
both sides, as Mark told us on Wednesday, gives the E -homology of B and of Tϕ, and this equivalence is the Thom
isomorphism between the homology of the base space and the homology of the (oriented) Thom spectrum. So,
Mahowald’s theorem says that certain Thom spectra are automatically oriented for themselves. Some quick thinking
extends this further: not only is Tϕ oriented for Tϕ, but it’s also oriented for the Thom spectrum of any bundle
that factors through ϕ. Also, if Tϕ → E is map of ring spectra, then any bundle for which Tϕ is oriented, E is
oriented as well. So, this example is sort of “doubly universal.”

2Equivalently, T can be said to be a monoidal functor.
3The canonical physical example of a torsor is temperature, on which R acts, but there’s no natural “basepoint” temperature.
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3. A COUPLE EXAMPLES

Before we go any further, I should produce some examples for you. Where do we get such H -spaces and homo-
morphisms? For one, as you may have already guessed, the maps BO → BGL1S and BU → BGL1S fit the bill —
they’re in fact “infinite loop maps,” which is even better. The second trick up Mahowald’s sleeve is that he knows
how to use these to produce a bunch of examples. Brooke told us the homotopy groups of BO:

n 1 2 3 4 5 6 7 8
πnBO Z/2 Z/2 0 Z 0 0 0 Z.

These groups aren’t just abstract things — there’s a map η : S1 → BO, for instance, which selects the nontrivial
element of Z/2.

Unfortunately, there’s no reason to expect such maps to be multiplicative, but the trick is that we can trade them
in for multiplicative ones. Aaron told us how to construct classifying spaces with his B functor, and one thing we
know about B(BO) is that its homotopy groups are the same as those of BO, but shifted up by one dimension. So,
there is also a map η : S2→ B(BO) encoding the same element of homotopy. The turn to the trick, then, is that we
can apply the loopspace functor to move back down, producing a map σ(η) :ΩS2→ BO which, by construction, is
multiplicative, and which captures η in the sense that the natural composite S1→ ΩS2→ BO is η. Mahowald calls
the resulting Thom spectrum X2, and the same trick played on η2, ν , and λ produces spectra he calls X3, X5, and X9
respectively.

He loves these spectra. He goes on to prove a whole bunch of things using them as auxiliary tools: they appear in
a paper on b o-resolutions, a paper on his η-family in unstable homotopy, and in a paper where he gives a partially
completed program for resolving a famous open problem called the telescope conjecture. They have all kinds of
interesting properties: X3 is abelian, for instance, and there are relations like X3∧M 0(2)'X2. For us, though, we’re
only going to love one of them: you can play this same game but with double loopspaces instead, yielding a map
σ2(η) :Ω2S3→ BO, and the resulting Thom spectrum can be identified as T (σ2η)'HZ/2.

This is really nuts — at least to me. It’s hard for me to properly convey how nuts this is. This is computed to be
true, rather than shown by any conceptual method, making it super mysterious. That won’t stop us from using it,
though.

4. THOM SPECTRA AND THE ADAMS SPECTRAL SEQUENCE

We’d like to apply these facts somewhere, so the question is: where? Where have we seen smash powers HZ/2∧q

before, so that we can use our shearing isomorphism? Of course! — we saw them earlier today, when Mark
constructed the Adams spectral sequence. You’ll have to forgive me for going through some of it again. The
idea is to start by considering the triangle associated to the unit map S→HZ/2:

S I

HZ/2

[−1]

Then, by smashing this triangle through with I , I∧2, and so on, we can translate it around and join up the resulting
triangles:

S I I∧2 I∧3 · · ·

HZ/2 HZ/2∧ I HZ/2∧ I∧2 · · · .

[−1] [−1] [−1] [−1]

d0 d1 d2

These bottom maps come from filling in the commuting triangle, and Aaron told us that they’re exactly the differ-
entials on the E1-page of the Adams spectral sequence. We’re close to being able to apply Mahowald’s theorems, but
we have to translate from I to HZ/2. We can perform the same translation trick: take this trapezoidal shape and
iteratively smash it through with HZ/2 to build the following infinite triangle:
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S I I∧2 I∧3 · · ·

HZ/2 HZ/2∧ I HZ/2∧ I∧2 · · ·

HZ/2∧2 HZ/2∧2 ∧ I · · ·

HZ/2∧3 · · ·

· · · .

[−1] [−1] [−1] [−1]

d0 d1 d2

δ0

δ1

δ2

Now, I’ve been flippant about labeling things, but if you’re careful (like Mahowald was), you can identify not just
the objects here using his theorem but also the maps between them:

HZ/2 HZ/2∧HZ/2 HZ/2∧HZ/2∧2 · · ·

HZ/2 HZ/2∧Ω2S3
+ HZ/2∧ (Ω2S3

+)
∧2 · · · ,

δ0 δ1 δ2

∂0 ∂1

'

∂2

'

∂n =

 

n
∑

i=1

1∧ · · · ∧T (∆)∧ · · · ∧ 1

!

+(−1)n+11∧n ∧η.

5. BACK TO THE MAY SPECTRAL SEQUENCE

Mahowald comes across his final observation when he goes to put this program into place by studying H∗(Ω
2S3;Z/2).

Vitaly told us yesterday about models for detecting when something is a loopspace, and though he didn’t quite tell
us this fact, his work begets a filtration on Ω2Σ2X based on the number of little squares in his little squares operad.
Victor Snaith showed that this filtration trivializes upon passing to suspension spectra:

Σ∞+Ω
2S3 =Σ∞+Ω

2Σ2S1 '
∞
∨

j=0

Bb j/2c,

where Bn is something called the nth Brown–Gitler spectrum. It has the property

H ∗(Bn ;Z/2)∼=A /A{χ Sqi | i > n}
and that there are cofiber sequences Bn−1→ Bn→ Bbn/2c, though these don’t quite characterize it.4

Let me draw a few of these for you:

• 1 • ξ1

• ξ2

• ξ 2
1

• ξ1ξ2

• ξ 3
1

• ξ3

• ξ 2
2

• ξ 2
1 ξ2

• ξ 4
1

B0 ΣB0 Σ2B1 Σ3B1 Σ4B2

Now, we know that these collectively form the homology groups H∗(Ω
2S3;F2), which we also know to be the dual

Steenrod algebra π∗HZ/2∧HZ/2, so I’ve taken the liberty of naming some of these elements.
Here’s where things start to get trippy: Mahowald puts all these observations together to produce some black

magic that computes d1 differentials in the May spectral sequence. Let me explain by example: for instance, look

4Another useful (if obvious) fact is that HZ/2' colimn Bn .
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at the second quotient Σ2B1. The top cell here is ξ2, called h20 in the May spectral sequence, which is attached by a
Sq1, called h10, to the bottom cell ξ 2

1 , called h11. Mahowald asserts that it’s no accident that d1(h20) = h10h11. The
column after that is even fancier; the longest attaching map in it reads off the differential

d1(h30) = h10h21+ h20h13.

You can also see a smaller differential if you start at the second-topmost cell: d1(h21) = h11h12.5

That’s really cool. And it gets trippier still: you can use these same methods to produce higher order differentials
as well. The next term in our Adams resolution looks like

HZ/2∧ (Ω2S3
+)
∧2 '

∞
∨

j ,k=0

HZ/2∧Σ j+k Bb j/2c ∧Bbk/2c.

Let’s try the case j = k = 2, so we’re studying Σ4B1 ∧B1, which is the smash-square of the mod-2 Moore spectrum
M (2). Its cell structure looks like this:

• ξ2⊗ ξ2

• • ξ2⊗ ξ 2
1 + ξ

2
1 ⊗ ξ2

ξ 2
1 ⊗ ξ

2
1 •

Here, I’ve labeled the relevant cells using tensors of elements from the old picture. You can read off some kind of
formula from this picture: b20 is attached to h10(“ξ

2
1 ⊗ξ2+ξ2⊗ξ 2

1 ”)+ h11(h11h11), . This observation doesn’t record
the d2-differential on its own, since some things are still labeled by ξ ’s, but we have a differential from Σ4B2 on
the previous page which helps us out: d1(ξ

2
1 ξ2) = ξ

2
1 ⊗ ξ2+ ξ2⊗ ξ 2

1 + h10h12. Since this sum is sent to zero by the
quotient, it begets the relation ξ 2

1 ⊗ ξ2+ ξ2⊗ ξ 2
1 = h10h12 on the E2-page, and so this gives:6

d2(b20) = h10(h10h12)+ h11(h11h11).

(Apologies that I’m not able to outline the full method for computing these higher differentials. Not only is
the talk a mere 45 minutes, but there are some wrinkles which I myself don’t understand, so I’m not comfortable
writing something that pretends to be complete.)

5You could have gotten this using Nakamura’s squaring operations, since this is d1(Sq0 h20) = (Sq0 h10)(Sq0 h11).
6This, too, is accessible by Nakamura’s theorem: d2(Sq1 h20) = Sq1 d1 h20 = Sq1(h10 h11) = Sq1 h10 Sq0 h11+ Sq0 h10 Sq1 h11 = h2

10 h12+ h11 h2
11.
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