rigetti

Robert Langlands: Abel Laureate 2018

Eric Peterson

May 2nd, 2018

Context

Fields medal

- Single accomplishment
- Limited to 40 years old Stereotypes:
- "Experimentalist"
- Prover

Abel prize

- Lifetime of work
- No age limit (avg. 72)

Stereotypes:

- "Theorist"
- Planner

Context

Fields medal

- Single accomplishment
- Limited to 40 years old

Stereotypes:

- "Experimentalist"
- Prover

Abel prize

- Lifetime of work
- No age limit (avg. 72)

Stereotypes:

- "Theorist"
- Planner

Langlands, letter to Weil, January 1967

"In response to your invitation to come and talk I wrote the enclosed letter. After I wrote it I realized there was hardly a statement in it of which I was certain. If you are willing to read it as pure speculation I would appreciate that; if not-I am sure you have a waste basket handy."

About this talk

Philosophy of mathematics

"Mathematics is the art of giving the same name to different things."
Henri Poincaré
"...The Langlands Program is a Grand Unified Theory of mathematics."
Edward Frenkel
"You should give a talk about this."
Jeff Cordova

About this talk

Philosophy of mathematics

"Mathematics is the art of giving the same name to different things."
Henri Poincaré
"...The Langlands Program is a Grand Unified Theory of mathematics."
Edward Frenkel
"You should give a talk about this."
Jeff Cordova

This stuff is hard

You could pursue a PhD about the contents of any one of these sections.
My PhD is about something else.

About this talk

Philosophy of mathematics

"Mathematics is the art of giving the same name to different things."
"...The Langlands Program is a Grand Unified Theory of mathematics."
Edward Frenkel
"You should give a talk about this."

This stuff is hard

You could pursue a PhD about the contents of any one of these sections.
My PhD is about something else.

Warning to mathematicians

My target audience is experimental physicists. Theorem statements will elide details, especially as I aim to avoid mentioning the adèles. Forgive me.

Complex geometry

A Riemann surface is a closed surface which is built by gluing together (pieces of) copies of the complex plane so that "rotation by i" agrees on each overlap.

Riemann surfaces

no bueno

Complex geometry

All functions are assumed to have series expansions.

Example

Functions to the sphere $=$ functions with poles. \leftarrow "meromorphic functions"

Complex geometry

All functions are assumed to have series expansions.

Example

Functions to the sphere $=$ functions with poles. \leftarrow "meromorphic functions"

Anatomy of a meromorphic function

Complex geometry

All functions are assumed to have series expansions.

Example

Functions to the sphere $=$ functions with poles. \leftarrow "meromorphic functions"
Anatomy of a meromorphic function

$$
w=z^{3}
$$

- Three sheeted cover
- Bad point: "ramification"
- Wandering preimages: "monodromy"

Complex geometry

Theorem

The set of meromorphic functions totally determines the Riemann surface.

Glossary:

- \mathbb{P}^{1} : the sphere
- $\mathbb{C}(z)$: fractions of polynomials in z
\llbracket.
- $w=z^{3}$

Algebraic number theory

More fields

- A number field K is the rationals + some extra numbers that serve as distinct roots of some given polynomials.
- Its small Galois group, gal(K), tracks the ways to reassign those extra numbers among each other.

Examples

$$
\begin{array}{c|ccc}
\text { Roots } & \text { one root of } x^{2}-2 & \text { one root of } x^{3}-2 & \text { all roots of } x^{3}-2 \\
\operatorname{gal}(K) & C_{2} & \text { trivial } & \Sigma_{3}
\end{array}
$$

Algebraic number theory

The relative Galois group of a pair of number fields $K \subseteq L$ is the part of the small Galois group of L that fixes K. The big Galois group of a number field K, Gal (K), is the union of all the Galois groups for $K \subseteq L$, L large.

Theorem

If $\operatorname{Gal}(K)$ surjects onto G, there is a number field $L \supseteq K$ with Galois group G.

Maxim

Complicated Gal $(K) \rightsquigarrow$ lots of surjections \rightsquigarrow lots of fields \rightsquigarrow complicated K.

Algebraic geometry

$\left.z^{3}\right\}$ is ramified at $\{w=0\}$ because of the repeated root.

Algebraic geometry

$\left.\begin{array}{c}z^{3} \\ x^{3}-2\end{array}\right\}$ is ramified at $\left\{\begin{array}{c}w=0 \\ z=0\end{array}\right\}$ because of the repeated root.
Weil's Rosetta stone

Algebraic geometry

$$
\left.\begin{array}{c}
z^{3} \\
x^{3}-2
\end{array}\right\} \text { is ramified at }\left\{\begin{array}{c}
w=0 \\
z=0
\end{array}\right\} \text { because of the repeated root. }
$$

Weil's Rosetta stone

Diophantine equation
(e.g., $0=x^{3}-2$)

R. These are related through their common source.

Analytic number theory

Prime factorization in analysis

$$
\zeta(5)=\sum_{n=1}^{\infty} \frac{1}{n^{5}}=\frac{1}{1^{5}}+\frac{1}{2^{5}}+\frac{1}{3^{5}}+\frac{1}{4^{5}}+\frac{1}{5^{5}}+\frac{1}{6^{5}}+\cdots
$$

$\zeta(5)$ diverges at $s=1$, converges to the right of this point.

Analytic number theory

Prime factorization in analysis

$$
\begin{aligned}
\zeta(5) & =\sum_{n=1}^{\infty} \frac{1}{n^{5}}=\frac{1}{1^{5}}+\frac{1}{2^{5}}+\frac{1}{3^{5}}+\frac{1}{4^{5}}+\frac{1}{5^{5}}+\frac{1}{6^{5}}+\cdots \\
& =\prod_{p}\left(1+\frac{1}{p^{5}}+\frac{1}{p^{25}}+\cdots\right) .
\end{aligned}
$$

$\zeta(5)$ diverges at $s=1$, converges to the right of this point.

Analytic number theory

Prime factorization in analysis

$$
\begin{aligned}
\zeta(5) & =\sum_{n=1}^{\infty} \frac{1}{n^{5}}=\frac{1}{1^{5}}+\frac{1}{2^{5}}+\frac{1}{3^{5}}+\frac{1}{4^{5}}+\frac{1}{5^{5}}+\frac{1}{6^{5}}+\cdots \\
& =\prod_{p}\left(1+\frac{1}{p^{5}}+\frac{1}{p^{25}}+\cdots\right) .
\end{aligned}
$$

$\zeta(5)$ diverges at $5=1$, converges to the right of this point.
Goofy example
There are infinitely many prime numbers:

$$
\log \zeta(5)=\log \left(\prod_{p} \frac{1}{1-p^{-5}}\right)=\sum_{p} \frac{1}{p^{5}}+\text { bdd }
$$

Analytic number theory

Prime factorization in analysis

$$
\begin{aligned}
\zeta(5) & =\sum_{n=1}^{\infty} \frac{1}{n^{5}}=\frac{1}{1^{5}}+\frac{1}{2^{5}}+\frac{1}{3^{5}}+\frac{1}{4^{5}}+\frac{1}{5^{5}}+\frac{1}{6^{5}}+\cdots \\
& =\prod_{p}\left(1+\frac{1}{p^{5}}+\frac{1}{p^{25}}+\cdots\right) .
\end{aligned}
$$

$\zeta(5)$ diverges at $5=1$, converges to the right of this point.
Goofy example
There are infinitely many prime numbers:

$$
\infty \stackrel{s \rightarrow 1^{+}}{\leftarrow} \log \zeta(s)=\log \left(\prod_{p} \frac{1}{1-p^{-s}}\right)=\sum_{p} \frac{1}{p^{5}}+\text { bdd } \xrightarrow{s \rightarrow 1^{+}} \sum_{p} \frac{1}{p}+\text { const. }
$$

Harmonic analysis

A character of a group G is a function $\chi: G \rightarrow \mathbb{C}$ satisfying $\chi\left(g g^{\prime}\right)=\chi(g) \chi\left(g^{\prime}\right)$.

Theorem

A nice complex function on a nice commutative group can be written as a sum of characters. There are "enough" characters to form a basis of all functions.

The function space has an inner product:

$$
f=\sum_{\chi}\langle\chi \mid f\rangle \cdot \chi ; \quad\langle\chi \mid f\rangle=\int_{G} \chi\left(g^{-1}\right) f(g) \mathrm{d} \mu .
$$

Harmonic analysis

A character of a group G is a function $\chi: G \rightarrow \mathbb{C}$ satisfying $\chi\left(g g^{\prime}\right)=\chi(g) \chi\left(g^{\prime}\right)$.

Theorem

A nice complex function on a nice commutative group can be written as a sum of characters. There are "enough" characters to form a basis of all functions.

The function space has an inner product:

$$
f=\sum_{\chi}\langle\chi \mid f\rangle \cdot \chi ; \quad\langle\chi \mid f\rangle=\int_{G} \chi\left(g^{-1}\right) f(g) \mathrm{d} \mu .
$$

Examples

- Functions on $\mathbb{R}: \chi_{a}(x)=e^{2 \pi i \cdot a \cdot x}, a \in \mathbb{R}$. Fourier transform: $\mathcal{F}\{f\}(a)=\left\langle\chi_{a} \mid f\right\rangle$.
- Functions on $\mathbb{R}_{>0}^{\times}: \chi_{a}(x)=x^{a}, a \in \mathbb{R}$. Mellin transform: $\mathcal{M}\{f\}(a)=\left\langle\chi_{a} \mid \dagger\right\rangle$.

Harmonic number theory

Direct calculation

$\mathcal{M}\left\{e^{-\pi n^{2} z}\right\}=\pi^{-5} \Gamma(s) n^{-25}$ for some fixed function $\Gamma(s)$.

$$
\mathcal{M}\left\{\sum_{n=1}^{\infty} e^{-\pi n^{2} z}\right\}(s / 2)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=: Z(s) .
$$

- Multiplicative Fourier transform of $e^{2 \pi i n^{2} z}$, an additive character.

Harmonic number theory

Direct calculation

$\mathcal{M}\left\{e^{-\pi n^{2} z}\right\}=\pi^{-5} \Gamma(s) n^{-25}$ for some fixed function $\Gamma(s)$.

$$
\mathcal{M}\left\{\sum_{n=1}^{\infty} e^{-\pi n^{2} z}\right\}(s / 2)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=: Z(s) .
$$

- Multiplicative Fourier transform of $e^{2 \pi n^{2} z}$, an additive character.
- Fourier self-duality:

$$
\left[\sum_{n \in \mathbb{Z}} \psi(n)=\sum_{n \in \mathbb{Z}} \mathcal{F}\{\psi\}(n)\right]+\left[\mathcal{F}\left\{e^{\pi \cdot \cdot n \cdot:}\right\}(5)=e^{\pi \cdot n \cdot \cdot} \cdot 5 \quad \rightsquigarrow \quad Z(5)=Z(1-s) .\right.
$$

- Riemann hypothesis: $\mathcal{F}\{$ Dirac comb at zeroes of $Z\} \approx$ Dirac comb at $\log p$
- Tate's thesis: $Z=Z_{\infty} \cdot \Pi_{p} Z_{p} ; Z_{p}(s)=\left(1-p^{s}\right)^{-1} ; Z_{\infty}(s)=\pi^{-5 / 2} \Gamma(s / 2)$, all coming from analogues of Mellin transforms of characters.

Harmonic number theory

Other ζ-functions

- A Dirichlet character χ is a character with domain (\mathbb{N}, \times) (Not a group!) with values in roots of unity.

$$
\zeta_{\chi}(s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{5}}=\prod_{p} \frac{1}{1-\chi(p) p^{-5}}
$$

Theorem: Nontrivial character $\Rightarrow \zeta_{\chi}(1)$ converges. Application: ∞-ly many sol'ns to $p=n d+r$ for fixed coprime d, r.

Harmonic number theory

Other ζ-functions

- A Dirichlet character χ is a character with domain (\mathbb{N}, \times) with values in roots of unity.

$$
\zeta_{\chi}(s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{5}}=\prod_{p} \frac{1}{1-\chi(p) p^{-s}}
$$

Theorem: Nontrivial character $\Rightarrow \zeta_{\chi}(1)$ converges.
Application: ∞-ly many sol'ns to $p=n d+r$ for fixed coprime d, r.

- Artin ζ-functions: Replace a character's target \mathbb{C} with $n \times n$ matrices, called a representation. For $G=\operatorname{Gal}(K)$, can produce a ζ-function.
- Lots of examples. (Main ones: cohomology groups.)
- Seems to contain interesting information.
- Mysterious: only behaves well for representations "coming from geometry".
- Almost impossible to prove theorems. ($\zeta_{\rho}(1)$?)

ζ-function for an elliptic curve

Example elliptic curve: $C=\left\{y^{2}+y=x^{3}-x^{2}\right\}$

Properties of ζ_{c} :

- The number of points in C over $\overline{\mathbb{F}}_{p}$ is $p-a_{p}$.

ζ-function for an elliptic curve

Example elliptic curve: $C=\left\{y^{2}+y=x^{3}-x^{2}\right\}$

$$
\begin{aligned}
& \text { (-1.5-1.0-0.5 } \int_{0.5}^{0.5} \\
& =q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+2 q^{6}-2 q^{7}+\cdots
\end{aligned}
$$

Properties of ζ_{C} :

- The number of points in C over $\overline{\mathbb{F}}_{p}$ is $p-a_{p}$.
- For certain C, there is a related f_{C} with $\mathcal{M}\left\{f_{C}\left(e^{2 \pi i z}\right)\right\}=\zeta_{C}(s)$.
- The series f_{C} converges on the unit disk.
- f_{C} is modular: scales predictably under Möbius transformations $\left(S L_{2}(\mathbb{Z})\right)$.

ζ-function for an elliptic curve

Example elliptic curve: $C=\left\{y^{2}+y=x^{3}-x^{2}\right\}$

$$
\begin{aligned}
& \text { (-1.5-1.0-0.5 } \int_{0.5}^{0.5} \\
& =q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+2 q^{6}-2 q^{7}+\cdots
\end{aligned}
$$

Properties of ζ_{C} :

- The number of points in C over $\overline{\mathbb{F}}_{p}$ is $p-a_{p}$.
- For certain C, there is a related f_{C} with $\mathcal{M}\left\{f_{C}\left(e^{2 \pi i z}\right)\right\}=\zeta_{C}(5)$.
- The series f_{C} converges on the unit disk.
- f_{C} is modular: scales predictably under Möbius transformations $\left(S L_{2}(\mathbb{Z})\right)$.
- (Shimura-Taniyama conjecture / modularity theorem / Abel Prize 2016:) For every C, there is an f_{C}. If C, C^{\prime} have the same f, they're equivalent.

The Langlands Program

Main point: The correspondence from the previous slide is "general behavior".
Wrinkles: Special behavior of f_{C} got stuck into another representation.

The Langlands Program

Main point: The correspondence from the previous slide is "general behavior".
Wrinkles: Special behavior of f_{c} got stuck into another representation. Different extra structures.

Examples of Langlands duals

	${ }_{5 L}$	$50(2 n+1)$	$\operatorname{Spin}(2 n)$	50(2n)	SU(n)		
rig	PGL L_{n}	Sp(2n)	$50(2 n) / Z$	SO(2n)	$5 U(n) / Z$		

f. General formula: replace $\mathfrak{g}+$ root system by $\mathfrak{g}^{\vee}+$ coroots.

Geometric Langlands

Geometric Langlands

Geometric Langlands

Langlands duality in complex geometry
$\left\{\begin{array}{c}\text { rank } d \text { vector bundles } \\ \text { with connection } \nabla\end{array}\right\} \stackrel{\mathcal{M}}{\longleftrightarrow}\left\{\begin{array}{c}\text { on moduli of } d \text {-dimensional v.b. } s\end{array}\right\}$

Geometric Langlands

Langlands duality in complex geometry
$\left\{\begin{array}{c}\text { rank } d \text { vector bundles } \\ \text { with connection } \nabla \\ \text { and extra structure }\end{array}\right\} \stackrel{\mathcal{M}}{\longleftrightarrow}\left\{\begin{array}{c}\text { Don moduli of } d \text {-dimensional v.b.s } \\ \text { and different extra structure }\end{array}\right\}$

Quantum field theory

Electromagnetic duality

$\{(E, B)$ satisfying Maxwell's $\} \longleftrightarrow\{(B,-E)$ satisfying Maxwell's $\}$
electric monopole, charge $e \longleftrightarrow$ magnetic monopole, charge 1/e

Quantum field theory

Electromagnetic duality
$\{(E, B)$ satisfying Maxwell's $\} \longleftrightarrow\{(B,-E)$ satisfying Maxwell's $\}$
electric monopole, charge $e \longleftrightarrow$ magnetic monopole, charge 1/e
Nonabelian E-M duality (Montonen-Olive / Kapustin-Witten)

$$
\left\{\begin{array}{c}
\mathcal{N}=4 \text { SUSY Yang-Mills } \\
\text { gauge group } G \\
\text { coupling } \tau=\theta / 2 \pi+4 \pi i / g^{2}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\mathcal{N}=4 \text { SUSY Yang-Mills } \\
\text { gauge group } G^{V} \\
\text { coupling }-1 / n_{G} \tau
\end{array}\right\}
$$

In general: "S-duality"

Quantum field theory

Electromagnetic duality
$\{(E, B)$ satisfying Maxwell's $\} \longleftrightarrow\{(B,-E)$ satisfying Maxwell's $\}$
electric monopole, charge $e \longleftrightarrow$ magnetic monopole, charge 1/e
Nonabelian E-M duality (Montonen-Olive / Kapustin-Witten)

$$
\left\{\begin{array}{c}
\mathcal{N}=4 \text { SUSY Yang-Mills } \\
\text { gauge group } G \\
\text { coupling } \tau=\theta / 2 \pi+4 \pi i / g^{2}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\mathcal{N}=4 \text { SUSY Yang-Mills } \\
\text { gauge group } G \vee \\
!!!\text { coupling }-1 / n_{G} \tau \leftarrow!!!
\end{array}\right\}
$$

In general: "S-duality"

Quantum field theory

Electromagnetic duality
$\{(E, B)$ satisfying Maxwell's $\} \longleftrightarrow\{(B,-E)$ satisfying Maxwell's $\}$
electric monopole, charge $e \longleftrightarrow$ magnetic monopole, charge 1/e
Nonabelian E-M duality (Montonen-Olive / Kapustin-Witten)

$$
\left\{\begin{array}{c}
\mathcal{N}=4 \text { SUSY Yang-Mills } \\
\text { gauge group } G \\
\text { coupling } \tau=\theta / 2 \pi+4 \pi i / g^{2}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\mathcal{N}=4 \text { SUSY Yang-Mills } \\
\text { gauge group } G^{V} \\
\text { coupling }-1 / n_{G} \tau
\end{array}\right\}
$$

In general: "5-duality"
Physical number theory?
Irreducible Galois rep's are the "fundamental particles" of number theory.

Thank you!

©

