rigetti

Robert Langlands: Abel Laureate 2018

Eric Peterson

May 2nd, 2018

Context

Fields medal

- Single accomplishment
- Limited to 40 years old

Stereotypes:

- "Experimentalist"
- Prover

Abel prize

- Lifetime of work
- No age limit (avg. 72)

Stereotypes:

- "Theorist"
- Planner

Context

Fields medal

- Single accomplishment
- Limited to 40 years old

Stereotypes:

- "Experimentalist"
- Prover

Abel prize

- Lifetime of work
- No age limit (avg. 72)

Stereotypes:

- "Theorist"
- Planner

Langlands, letter to Weil, January 1967

"In response to your invitation to come and talk I wrote the enclosed letter. After I wrote it I realized there was hardly a statement in it of which I was certain. If you are willing to read it as pure speculation I would appreciate that; if not—I am sure you have a waste basket handy."

About this talk

Philosophy of mathematics

"Mathematics is the art of giving the same name to different things." Henri Poincaré

"...The Langlands Program is a Grand Unified Theory of mathematics." Edward Frenkel

"You should give a talk about this."

Jeff Cordova

About this talk

Philosophy of mathematics

"Mathematics is the art of giving the same name to different things." Henri Poincaré

"...The Langlands Program is a Grand Unified Theory of mathematics." Edward Frenkel

"You should give a talk about this."

Jeff Cordova

This stuff is hard

You could pursue a PhD about the contents of any one of these sections. My PhD is about something else.

About this talk

Philosophy of mathematics

"Mathematics is the art of giving the same name to different things." Henri Poincaré

"...The Langlands Program is a Grand Unified Theory of mathematics." Edward Frenkel

"You should give a talk about this."

Jeff Cordova

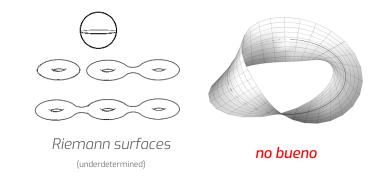
This stuff is hard

You could pursue a PhD about the contents of any one of these sections. My PhD is about something else.

Warning to mathematicians

My target audience is experimental physicists. Theorem statements will elide details, especially as I aim to avoid mentioning the adèles. Forgive me.

A *Riemann surface* is a closed surface which is built by gluing together (pieces of) copies of the complex plane so that "rotation by *i*" agrees on each overlap.



All functions are assumed to have series expansions.

Example

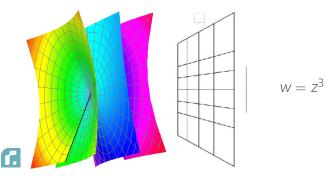
Functions to the sphere = functions with poles. \leftarrow "meromorphic functions"

All functions are assumed to have series expansions.

Example

Functions to the sphere = functions with poles. \leftarrow "meromorphic functions"

Anatomy of a meromorphic function

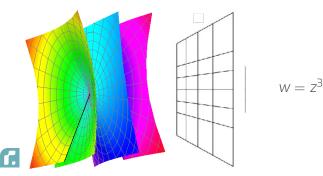


All functions are assumed to have series expansions.

Example

Functions to the sphere = functions with poles. \leftarrow "meromorphic functions"

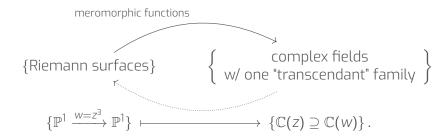
Anatomy of a meromorphic function



- Three sheeted cover
- Bad point: "ramification"
- Wandering preimages: "monodromy"

Theorem

The set of meromorphic functions totally determines the Riemann surface.



Glossary:

- \mathbb{P}^1 : the sphere
- $\mathbb{C}(z)$: fractions of polynomials in z

•
$$W = Z^3$$

Algebraic number theory

More fields

- A *number field K* is the rationals + some extra numbers that serve as distinct roots of some given polynomials.
- Its *small Galois group*, **gal**(*K*), tracks the ways to reassign those extra numbers among each other.

Examples

Rootsone root of
$$x^2 - 2$$
one root of $x^3 - 2$ all roots of $x^3 - 2$ gal(K) C_2 trivial Σ_3

The *relative Galois group* of a pair of number fields $K \subseteq L$ is the part of the small Galois group of *L* that fixes *K*. The *big Galois group* of a number field *K*, **Gal**(*K*), is the union of all the Galois groups for $K \subseteq L$, *L* large.

Theorem

If Gal(K) surjects onto G, there is a number field $L \supseteq K$ with Galois group G.

Maxim

Complicated $Gal(K) \rightsquigarrow lots of surjections \rightsquigarrow lots of fields \rightsquigarrow complicated K.$

Algebraic geometry

$$Z^3$$
 } is ramified at $\begin{cases} w = 0 \\ 0 \end{cases}$ because of the repeated root.

Algebraic geometry

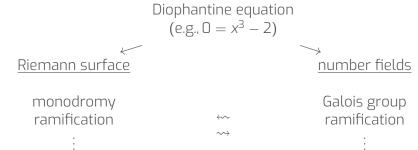
$$\begin{cases} z^3 \\ x^3 - 2 \end{cases}$$
 is ramified at $\left\{ \begin{array}{c} w = 0 \\ 2 = 0 \end{array} \right\}$ because of the repeated root.

Weil's Rosetta stone

Algebraic geometry

$$\begin{cases} z^3 \\ x^3 - 2 \end{cases}$$
 is ramified at $\left\{ \begin{array}{c} w = 0 \\ 2 = 0 \end{array} \right\}$ because of the repeated root.

Weil's Rosetta stone



These are related through their common source.

Prime factorization in analysis

$$\zeta(5) = \sum_{n=1}^{\infty} \frac{1}{n^5} = \frac{1}{1^5} + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} + \frac{1}{5^5} + \frac{1}{6^5} + \cdots$$

 $\zeta(s)$ diverges at s = 1, converges to the right of this point.

Prime factorization in analysis

$$\zeta(5) = \sum_{n=1}^{\infty} \frac{1}{n^5} = \frac{1}{1^5} + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} + \frac{1}{5^5} + \frac{1}{6^5} + \cdots$$
$$= \prod_p \left(1 + \frac{1}{p^5} + \frac{1}{p^{25}} + \cdots \right).$$

 $\zeta(s)$ diverges at s = 1, converges to the right of this point.

Prime factorization in analysis

$$\zeta(5) = \sum_{n=1}^{\infty} \frac{1}{n^5} = \frac{1}{1^5} + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} + \frac{1}{5^5} + \frac{1}{6^5} + \cdots$$
$$= \prod_p \left(1 + \frac{1}{p^5} + \frac{1}{p^{25}} + \cdots \right).$$

 $\zeta(s)$ diverges at s = 1, converges to the right of this point.

Goofy example

There are infinitely many prime numbers:

$$\log \zeta(s) = \log \left(\prod_{p} \frac{1}{1 - p^{-s}} \right) = \sum_{p} \frac{1}{p^{s}} + bdd$$

Prime factorization in analysis

$$\zeta(5) = \sum_{n=1}^{\infty} \frac{1}{n^5} = \frac{1}{1^5} + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} + \frac{1}{5^5} + \frac{1}{6^5} + \cdots$$
$$= \prod_p \left(1 + \frac{1}{p^5} + \frac{1}{p^{25}} + \cdots \right).$$

 $\zeta(s)$ diverges at s = 1, converges to the right of this point.

Goofy example

There are infinitely many prime numbers:

$$\infty \xleftarrow{\mathsf{S} \to \mathsf{I}^+} \log \zeta(\mathsf{S}) = \log \left(\prod_p \frac{1}{1 - p^{-\mathsf{S}}} \right) = \sum_p \frac{1}{p^{\mathsf{S}}} + \mathsf{bdd} \xrightarrow{\mathsf{S} \to \mathsf{I}^+} \sum_p \frac{1}{p} + \mathsf{const.}$$

A character of a group G is a function $\chi: G \to \mathbb{C}$ satisfying $\chi(gg') = \chi(g)\chi(g')$.

Theorem

A nice complex function on a nice **commutative** group can be written as a sum of characters. There are "enough" characters to form a basis of all functions.

The function space has an inner product:

$$f = \sum_{\chi} \langle \chi | f \rangle \cdot \chi; \quad \langle \chi | f \rangle = \int_G \chi(g^{-1}) f(g) \, \mathrm{d}\mu.$$

A character of a group G is a function $\chi: G \to \mathbb{C}$ satisfying $\chi(gg') = \chi(g)\chi(g')$.

Theorem

A nice complex function on a nice **commutative** group can be written as a sum of characters. There are "enough" characters to form a basis of all functions.

The function space has an inner product:

$$f = \sum_{\chi} \langle \chi | f \rangle \cdot \chi; \quad \langle \chi | f \rangle = \int_{G} \chi(g^{-1}) f(g) \, \mathrm{d}\mu.$$

Examples

- Functions on \mathbb{R} : $\chi_a(x) = e^{2\pi i \cdot a \cdot x}$, $a \in \mathbb{R}$. Fourier transform: $\mathcal{F}\{f\}(a) = \langle \chi_a | f \rangle$.
- Functions on $\mathbb{R}^{\times}_{>0}$: $\chi_a(x) = x^a$, $a \in \mathbb{R}$. Mellin transform: $\mathcal{M}{f}(a) = \langle \chi_a | f \rangle$.

Direct calculation

 $\mathcal{M}\{e^{-\pi n^2 z}\} = \pi^{-s} \Gamma(s) n^{-2s} \text{ for some fixed function } \Gamma(s).$

$$\mathcal{M}\left\{\sum_{n=1}^{\infty} e^{-\pi n^2 z}\right\}(5/2) = \pi^{-5/2} \Gamma(5/2) \zeta(5) =: Z(5).$$

• Multiplicative Fourier transform of $e^{2\pi i n^2 z}$, an additive character.

Direct calculation

 $\mathcal{M}\{e^{-\pi n^2 z}\} = \pi^{-s} \Gamma(s) n^{-2s} \text{ for some fixed function } \Gamma(s).$

$$\mathcal{M}\left\{\sum_{n=1}^{\infty} e^{-\pi n^2 z}\right\}(5/2) = \pi^{-5/2} \Gamma(5/2) \zeta(5) =: Z(5).$$

- Multiplicative Fourier transform of $e^{2\pi i n^2 z}$, an additive character.
- Fourier self-duality:

$$\left[\sum_{n\in\mathbb{Z}}\psi(n)=\sum_{n\in\mathbb{Z}}\mathcal{F}\{\psi\}(n)\right]+\left[\mathcal{F}\{e^{\pi i\cdot n\cdot z}\}(s)=e^{\pi i\cdot n\cdot s}\right]\quad\rightsquigarrow\quad Z(s)=Z(1-s).$$

- Riemann hypothesis: \mathcal{F} {Dirac comb at zeroes of Z} \approx Dirac comb at log p
- Tate's thesis: $Z = Z_{\infty} \cdot \prod_{p} Z_{p}$; $Z_{p}(s) = (1 p^{s})^{-1}$; $Z_{\infty}(s) = \pi^{-s/2} \Gamma(s/2)$, all coming from analogues of Mellin transforms of characters.

Other ζ -functions

• A Dirichlet character χ is a character with domain (\mathbb{N}, \times) (Not a group!) with values in roots of unity.

$$\zeta_{\chi}(5) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^5} = \prod_{p} \frac{1}{1 - \chi(p)p^{-5}}$$

Theorem: Nontrivial character $\Rightarrow \zeta_{\chi}(1)$ converges. **Application:** ∞ -ly many sol'ns to p = nd + r for fixed coprime *d*, *r*.

Other ζ -functions

• A Dirichlet character χ is a character with domain (\mathbb{N}, \times) with values in roots of unity.

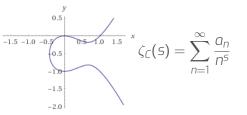
$$\zeta_{\chi}(5) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^5} = \prod_{p} \frac{1}{1 - \chi(p)p^{-5}}$$

Theorem: Nontrivial character $\Rightarrow \zeta_{\chi}(1)$ converges. **Application:** ∞ -ly many sol'ns to p = nd + r for fixed coprime d, r.

- Artin ζ -functions: Replace a character's target \mathbb{C} with $n \times n$ matrices, called a representation. For G = Gal(K), can produce a ζ -function.
 - Lots of examples. (Main ones: cohomology groups.)
 - Seems to contain interesting information.
 - Mysterious: only behaves well for representations "coming from geometry".
 - Almost impossible to prove theorems. ($\zeta_
 ho$ (1)?)

ζ –function for an elliptic curve

Example elliptic curve: $C = \{y^2 + y = x^3 - x^2\}$

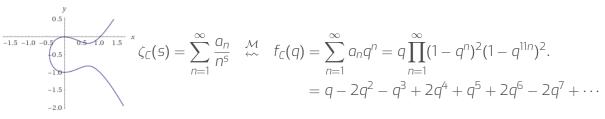


Properties of ζ_C :

• The number of points in *C* over $\overline{\mathbb{F}}_p$ is $p - a_p$.

ζ –function for an elliptic curve

Example elliptic curve: $C = \{y^2 + y = x^3 - x^2\}$

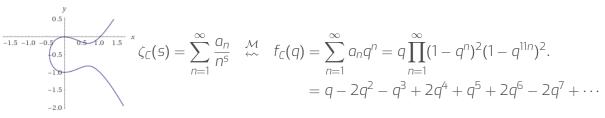


Properties of ζ_C :

- The number of points in *C* over $\overline{\mathbb{F}}_p$ is $p a_p$.
- For certain C, there is a related f_C with $\mathcal{M}{f_C(e^{2\pi i z})} = \zeta_C(s)$.
- The series f_C converges on the unit disk.
- f_C is modular: scales predictably under Möbius transformations $(SL_2(\mathbb{Z}))$.

ζ –function for an elliptic curve

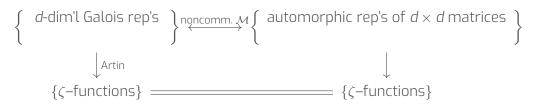
Example elliptic curve: $C = \{y^2 + y = x^3 - x^2\}$



Properties of ζ_C :

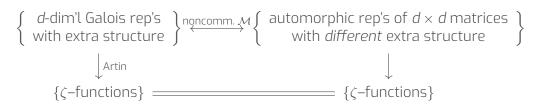
- The number of points in *C* over $\overline{\mathbb{F}}_p$ is $p a_p$.
- For certain C, there is a related f_C with $\mathcal{M}\{f_C(e^{2\pi i z})\} = \zeta_C(s)$.
- The series f_C converges on the unit disk.
- f_C is modular: scales predictably under Möbius transformations $(SL_2(\mathbb{Z}))$.
- (Shimura–Taniyama conjecture / modularity theorem / Abel Prize 2016:)
 For every C, there is an f_C. If C, C' have the same f, they're equivalent.

The Langlands Program



Main point: The correspondence from the previous slide is "general behavior". **Wrinkles:** Special behavior of f_c got stuck into another representation.

The Langlands Program

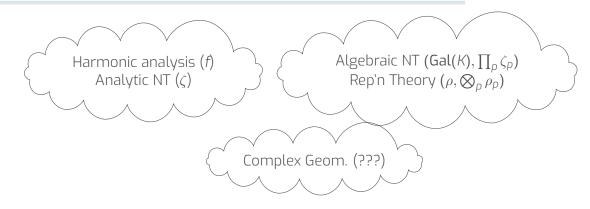


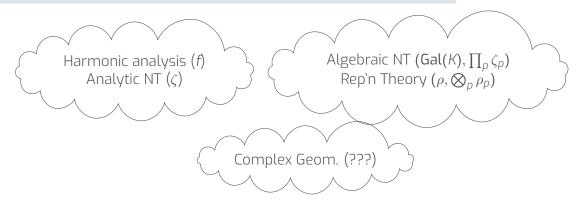
Main point: The correspondence from the previous slide is "general behavior". **Wrinkles:** Special behavior of f_c got stuck into another representation. Different extra structures.

Examples of Langlands duals

left structure, $G = SL_n = SO(2n+1)$ Spin(2n) $SO(2n) = SU(n) = E_8 \cdots$ right structure, $G^{\vee} = PGL_n = Sp(2n) = SO(2n)/Z = SO(2n) = SU(n)/Z = E_8 \cdots$

General formula: replace \mathfrak{g} + root system by \mathfrak{g}^{\vee} + coroots.



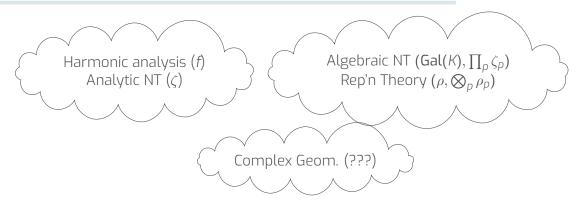


Langlands duality in complex geometry

rank *d* vector bundles with connection ∇

$$\cdot \xrightarrow{\mathcal{M}} \left\{ \right.$$

 \mathcal{D} -modules on moduli of *d*-dimensional v.b.s



Langlands duality in complex geometry

rank *d* vector bundles with connection ∇ and extra structure

$$\stackrel{\mathcal{M}}{\longleftrightarrow}$$

D-modules on moduli of *d*-dimensional v.b.s and *different* extra structure

Electromagnetic duality $\{(E, B) \text{ satisfying Maxwell's} \longleftrightarrow \{(B, -E) \text{ satisfying Maxwell's}\}$

electric monopole, charge $e \longleftrightarrow$ magnetic monopole, charge 1/e

Electromagnetic duality

 $\{(E, B) \text{ satisfying Maxwell's} \longleftrightarrow \{(B, -E) \text{ satisfying Maxwell's} \}$

electric monopole, charge $e \longleftrightarrow$ magnetic monopole, charge 1/e

Nonabelian E-M duality (Montonen-Olive / Kapustin-Witten)

 $\left\{\begin{array}{c} \mathcal{N} = 4 \text{ SUSY Yang-Mills} \\ \text{gauge group } G \\ \text{coupling } \tau = \theta/2\pi + 4\pi i/g^2 \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \mathcal{N} = 4 \text{ SUSY Yang-Mills} \\ \text{gauge group } G^{\vee} \\ \text{coupling } -1/n_G \tau \end{array}\right\}$

In general: "S-duality"

Electromagnetic duality

 $\{(E, B) \text{ satisfying Maxwell's} \longleftrightarrow \{(B, -E) \text{ satisfying Maxwell's} \}$

electric monopole, charge $e \longleftrightarrow$ magnetic monopole, charge 1/e

Nonabelian E-M duality (Montonen-Olive / Kapustin-Witten)

 $\left\{\begin{array}{l} \mathcal{N} = 4 \text{ SUSY Yang-Mills} \\ \text{gauge group } G \\ \text{coupling } \tau = \theta/2\pi + 4\pi i/g^2 \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \mathcal{N} = 4 \text{ SUSY Yang-Mills} \\ \text{gauge group } G^{\vee} \\ \underline{!!!} \rightarrow \underline{\text{coupling } -1/n_G \tau \leftarrow \underline{!!!}} \end{array}\right\}$

In general: "S-duality"

Electromagnetic duality

 $\{(E, B) \text{ satisfying Maxwell's} \longleftrightarrow \{(B, -E) \text{ satisfying Maxwell's} \}$

electric monopole, charge $e \longleftrightarrow$ magnetic monopole, charge 1/e

Nonabelian E-M duality (Montonen-Olive / Kapustin-Witten)

 $\left\{\begin{array}{c} \mathcal{N} = 4 \text{ SUSY Yang-Mills} \\ \text{gauge group } G \\ \text{coupling } \tau = \theta/2\pi + 4\pi i/g^2 \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \mathcal{N} = 4 \text{ SUSY Yang-Mills} \\ \text{gauge group } G^{\vee} \\ \text{coupling } -1/n_G\tau \end{array}\right\}$

In general: "S-duality"

Physical number theory?

Irreducible Galois rep's are the "fundamental particles" of number theory.

Thank you!

