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Devices and their gate sets

Which programs can be encoded efficiently onto a given target?
e Topological constraints e Execution characteristics,
e Expression of the input program e.g. fidelity
e Target instruction set
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A portrait of 2Q gates Kraus-Cirac 01 (/ Coxeter-Weyl ~1930)

Cartan decomposition:
— Any 2Q gate U can be written as U = K, AK, .
— K, and K, are local, A “feels diagonal”. commute, determined by eigenvalues, ... .
- U, Vsatisfy U =KV K’ exactly when U, V have the same A component.
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Cartan decomposition:
— Any 2Q gate U can be written as U = K, AK, .
— K, and K, are local, A “feels diagonal”. commute, determined by eigenvalues, ... .
- U, Vsatisfy U =KV K’ exactly when U, V have the same A component.

Kraus-Cirac: “Draw (the logarithms of) the eigenvalues of A", as in
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Cartan / Kraus-Cirac and circuits

Question: If U, V's positions are known in the Kraus-Cirac picture,
where can the circuit VU lie?
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Equivalent question: How does one rewrite AKA as KAK?



Manual examples: 1Q

1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in
RZ(a) RY(b) RZ(c) = RY(d) RZ(e) RY(f) ?
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1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in
RZ(a) RY(b) RZ(c) = RY(d) RZ(e) RY(f) ?

cos(e) = cos(a) cos(c) — cos(b) sin(a) sin(c) .

Observations: e is nonlinear as a function of b.

The main trick is that 1Q operators have few eigenvalues.
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Observations: e is nonlinear as a function of b.

The main trick is that 1Q operators have few eigenvalues.



Manual examples: CX (and CZ) Shende-Bullock-Markov 03

Theorem: The set of 2Q programs of the form K, CX K, CX K, is the triangle
connecting I, CZ, and ISWAP.
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Observations: The set is again a “convex body”.
The main trick is that CX has a simple formula.

(The relationship between K, and A actually is linear—a happy accident.)



AKA — KAK in general (Agnihotri-Meinrenken-Woodward 99, Falbel-Wentworth 05, P-Crooks-Smith 19)

Theorem, abbrev.: Fix A , A, and consider the set of A, satisfying
A KA, =KA,K.
In the Kraus-Cirac picture, it becomes the union of two convex polytopes.

Proof: Nonabelian Yang-Mills, Riemann surface, symplectic reduction, principal G-bundle with g-valued
connection, monodromy, moment map, moduli of curves, parabolic bundle, semistability, Grassmannian,
Schubert classes, quantum cohomology ring, intersection form, Gromov-Witten invariants, ... .



AKA — KAK in general (Agnihotri-Meinrenken-Woodward 99, Falbel-Wentworth 05, P-Crooks-Smith 19)

Theorem, abbrev.: Fix A , A, and consider the set of A, satisfying
A KA, =KA,K.
In the Kraus-Cirac picture, it becomes the union of two convex polytopes.

Proof: Nonabelian Yang-Mills, Riemann surface, symplectic reduction, principal G-bundle with g-valued
connection, monodromy, moment map, moduli of curves, parabolic bundle, semistability, Grassmannian,
Schubert classes, quantum cohomology ring, intersection form, Gromov-Witten invariants, ... .

Observations: Proof is hard, but the result can be wielded by a computer.
A, and A, can range over polytopes themselves, still OK.
lterable: describe the space of circuits of depth 3,4, 5, ... .
Does not produce circuit decompositions.



Theorem examples: ISWAP (P-Crooks-Smith 19)

Theorem: The set of 2Q programs using 2 ISWAPs is the same as with CX.
The set of 2Q programs using 3 ISWAPs is the same as with CX.
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Observations: No substantial difference for efficient compilation.

ISWAP is simple enough that one can extract circuits.



Theorem examples: CPHASE (P-Crooks-Smith 19)

Theorem: The set of 2Q programs using 2 CPHASEs is the same as with CX.
The set of 2Q programs using 3 CPHASEs is the same as with CX.
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Observations: No substantial difference for efficient compilation!!
Don't bother extracting CPHASE circuits—just use CZ.



Theorem examples: VCZ (P-Crooks-Smith 19)

Theorem: The set of 2Q programs using 3, 4, 5 vCZs is as in the picture:

SWAP SWAP

cz

ISWAP

Observations: This feels “worse” than CZ, which needs < 3 applications.



Theorem examples: VCZ (P-Crooks-Smith 19)

Theorem: The set of 2Q programs using 3, 4, 5 vCZs is as in the picture:

SWAP SWAP

cz

ISWAP

Observations: This feels “worse” than CZ, which needs < 3 applications.
Motivates expected depth:{vCZ depth)= 3.60416,
versus{CZ depth)={ISWAP depth)=(CPHASE depth)= 3.



Theorem examples: XY (P-Crooks-Smith 19)

Theorem: The set of 2Q programs using 2 XYs is as in the picture:
‘ CWAP SWAP& |

cz

Observations:{XY depth)= 2.16. Substantial improvemeﬁzt over CZ.



Theorem examples: XY (311/4) (P-Crooks-Smith 19)

Theorem: The set of 2Q programs using 2 XY(3m/4)s is as in the picture:
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Observations: Looks like the XY ﬁgurec, but with some corners trimmed.
(XY depth)<{XY(31/4) depth)= 2.25 <{CZ depth).



Open questions / further directions (You! The near future!)

Approximations: A factor determines the average-case-best approximation.
For CZ, the best approximation is simple to compute.
General closed formula?

Decompositions: We know only when there is a decomposition.
For CZ, one can easily build circuits. For ISWAP, less easily.
In general, even numerical methods look interesting.

Errors: Depth 2 polytope is not flat = local errors become nonlocal.

Many-body: This analysis can't be obviously extended to =3Q.
Recursive decompositions of =3Q into 2Q specifically use CNOT.
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