Two Qubit Circuits and the Monodromy Polytope

Int'l Workshop on Quantum Compilation
November 7th, 2019 in Westminster, CO
Which programs can be encoded efficiently onto a given target?

- Topological constraints
- Expression of the input program
- Target instruction set

- Execution characteristics, e.g. fidelity
- ...
Which programs can be encoded efficiently onto a given target?

- Topological constraints
- Expression of the input program
- **Target instruction set**
- Execution characteristics, e.g. fidelity
- ...

Gate Matrices

- **CZ**
 \[
 \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & -1 \\
 \end{pmatrix}
 \]

- **CX**
 \[
 \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0 \\
 \end{pmatrix}
 \]

- **CPHASE**
 \[
 \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & e^{i\varphi} \\
 \end{pmatrix}
 \]

- **ISWAP**
 \[
 \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 0 & i & 0 \\
 0 & -i & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 \end{pmatrix}
 \]

- **XY**
 \[
 \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos \varphi & -i \sin \varphi & 0 \\
 0 & -i \sin \varphi & \cos \varphi & 0 \\
 0 & 0 & 0 & 1 \\
 \end{pmatrix}
 \]

- **fSim**
 \[
 \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos \varphi & -i \sin \varphi & 0 \\
 0 & -i \sin \varphi & \cos \varphi & 0 \\
 0 & 0 & 0 & e^{i\theta} \\
 \end{pmatrix}
 \]

- **B**
 \[
 \begin{pmatrix}
 1 & 0 & 0 & -i \\
 0 & -1 & -i & 0 \\
 0 & -i & -1 & 0 \\
 -i & 0 & 0 & 1 \\
 \end{pmatrix}
 \]

- **MS**
 \[
 \begin{pmatrix}
 1 & 0 & 0 & i \\
 0 & 1 & -i & 0 \\
 0 & -i & 1 & 0 \\
 i & 0 & 0 & 1 \\
 \end{pmatrix}
 \]
Cartan decomposition:

- Any 2Q gate U can be written as $U = K_1 A K_2$.
- K_1 and K_2 are local, A "feels diagonal": commute, determined by eigenvalues,
- U, V satisfy $U = K V K'$ exactly when U, V have the same A component.
Cartan decomposition:
- Any 2Q gate U can be written as $U = K_1 A K_2$.
- K_1 and K_2 are local, A "feels diagonal": commute, determined by eigenvalues, ...
- U, V satisfy $U = K V K'$ exactly when U, V have the same A component.

Kraus-Cirac: “Draw (the logarithms of) the eigenvalues of A”, as in
Question: If U, V's positions are known in the Kraus-Cirac picture, where can the circuit VU lie?
Question: If U, V’s positions are known in the Kraus-Cirac picture, where can the circuit VU lie?

Equivalent question: How does one rewrite AKA as KAK?
1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in

\[RZ(a) \ RY(b) \ RZ(c) = RY(d) \ RZ(e) \ RY(f) \]
1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in

$$RZ(a) \ RY(b) \ RZ(c) = RY(d) \ RZ(e) \ RY(f) ?$$

$$\cos(e) = \cos(a) \cos(c) - \cos(b) \sin(a) \sin(c).$$

Observations: e is nonlinear as a function of b.

The main trick is that 1Q operators have few eigenvalues.
1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in

$$RZ(a) \ RY(b) \ RZ(c) = RY(d) \ RZ(e) \ RY(f) ?$$

$$\cos(e) = \cos(a) \cos(c) - \cos(b) \sin(a) \sin(c),$$

or,

$$|a - c| \leq e \leq \pi - |a + c - \pi|.$$

Observations: e is nonlinear as a function of b.

The “allowable e’s form a line segment.

The main trick is that 1Q operators have few eigenvalues.
Theorem: The set of 2Q programs of the form $K_1 \text{CX} K_2 \text{CX} K_3$ is the triangle connecting I, CZ, and ISWAP.

Observations: The set is again a “convex body”. The main trick is that CX has a simple formula.

(The relationship between K_2 and A actually is linear—a happy accident.)
Theorem, abbrev.: Fix A_1, A_2, and consider the set of A_3 satisfying
$$A_1 K A_2 = K A_3 K .$$
In the Kraus-Cirac picture, it becomes the union of two convex polytopes.

Proof: Nonabelian Yang-Mills, Riemann surface, symplectic reduction, principal G-bundle with g-valued
connection, monodromy, moment map, moduli of curves, parabolic bundle, semistability, Grassmannian,
Schubert classes, quantum cohomology ring, intersection form, Gromov-Witten invariants, ...
Theorem, abbrev.: Fix A_1, A_2, and consider the set of A_3 satisfying

$$A_1 K A_2 = K A_3 K.$$

In the Kraus-Cirac picture, it becomes the union of two convex polytopes.

Proof: Nonabelian Yang-Mills, Riemann surface, symplectic reduction, principal G-bundle with g-valued connection, monodromy, moment map, moduli of curves, parabolic bundle, semistability, Grassmannian, Schubert classes, quantum cohomology ring, intersection form, Gromov-Witten invariants,

Observations: Proof is hard, but the result can be wielded by a computer. A_1 and A_2 can range over polytopes themselves, still OK. Iterable: describe the space of circuits of depth 3, 4, 5, Does not produce circuit decompositions.
Theorem: The set of 2Q programs using 2 ISWAPs is the same as with CX. The set of 2Q programs using 3 ISWAPs is the same as with CX.

Observations: No substantial difference for efficient compilation.

ISWAP is simple enough that one can extract circuits.
Theorem: The set of 2Q programs using 2 CPHASEs is the same as with CX. The set of 2Q programs using 3 CPHASEs is the same as with CX.

Observations: No substantial difference for efficient compilation!! Don’t bother extracting CPHASE circuits—just use CZ.
Theorem: The set of 2Q programs using $3, 4, 5$ \sqrt{CZ}s is as in the picture:

Observations: This feels “worse” than CZ, which needs ≤ 3 applications.
Theorem: The set of 2Q programs using $3, 4, 5\sqrt{CZ}$s is as in the picture:

Observations: This feels “worse” than CZ, which needs ≤ 3 applications. Motivates expected depth: $\langle \sqrt{CZ} \text{ depth} \rangle = 3.60416$, versus $\langle CZ \text{ depth} \rangle = \langle ISWAP \text{ depth} \rangle = \langle CPHASE \text{ depth} \rangle = 3$.
Theorem: The set of 2Q programs using 2 XYs is as in the picture:

Observations: $\langle XY \text{ depth} \rangle = 2.16$. Substantial improvement over CZ.
Theorem: The set of 2Q programs using 2 XY(3π/4)s is as in the picture:

Observations: Looks like the XY figure, but with some corners trimmed. \(\langle \text{XY depth} \rangle < \langle \text{XY(3π/4) depth} \rangle = 2.25 < \langle \text{CZ depth} \rangle. \)
Open questions / further directions

Approximations: A factor determines the average-case-best approximation. For CZ, the best approximation is simple to compute. General closed formula?

Decompositions: We know only *when* there is a decomposition. For CZ, one can easily build circuits. For ISWAP, less easily. In general, even numerical methods look interesting.

Errors: Depth 2 polytope is not flat ⇒ local errors become nonlocal.

Many-body: This analysis can’t be obviously extended to ≥3Q. Recursive decompositions of ≥3Q into 2Q specifically use CNOT.
Thank You!

eric@rigetti.com