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Devices and their gate sets

Which programs can be encoded efficiently onto a given target?
● Topological constraints
● Expression of the input program
● Target instruction set

● Execution characteristics,    
e.g. fidelity

● ...
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A portrait of 2Q gates                                                             Kraus-Cirac 01 (/ Coxeter-Weyl ~1930)

Cartan decomposition:
– Any 2Q gate U can be written as U = K1 A K2 .
– K1 and K2 are local, A “feels diagonal”: commute, determined by eigenvalues, ... .
– U, V satisfy U = K V K’ exactly when U, V have the same A component.
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Cartan decomposition:
– Any 2Q gate U can be written as U = K1 A K2 .
– K1 and K2 are local, A “feels diagonal”: commute, determined by eigenvalues, ... .
– U, V satisfy U = K V K’ exactly when U, V have the same A component.

Kraus-Cirac: “Draw (the logarithms of) the eigenvalues of A”, as in
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Cartan re-decompose

Question: If U, V’s positions are known in the Kraus-Cirac picture,
                   where can the circuit VU lie?

Individually Cartan 
decompose each

Equivalent question: How does one rewrite AKA as KAK?
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Manual examples: 1Q

1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in
RZ(a) RY(b) RZ(c) = RY(d) RZ(e) RY(f) ?



Manual examples: 1Q

1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in
RZ(a) RY(b) RZ(c) = RY(d) RZ(e) RY(f) ?

cos(e) = cos(a) cos(c) – cos(b) sin(a) sin(c) .

Observations: e is nonlinear as a function of b.
                          
                          The main trick is that 1Q operators have few eigenvalues.



Manual examples: 1Q

1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in
RZ(a) RY(b) RZ(c) = RY(d) RZ(e) RY(f) ?

cos(e) = cos(a) cos(c) – cos(b) sin(a) sin(c) ,
or,

|a – c| ≤ e ≤ π – |a + c – π| .

Observations: e is nonlinear as a function of b.
                          The “allowable e”s form a line segment.
                          The main trick is that 1Q operators have few eigenvalues.



Manual examples: CX (and CZ)                                                        Shende-Bullock-Markov 03

Theorem: The set of 2Q programs of the form K1 CX K2 CX K3 is the triangle
                  connecting I, CZ, and ISWAP.

Observations: The set is again a “convex body”.
                          The main trick is that CX has a simple formula.

(The relationship between K2 and A actually is linear—a happy accident.)



AKA → KAK in general     (Agnihotri-Meinrenken-Woodward 99, Falbel-Wentworth 05, P.-Crooks-Smith 19)

Theorem, abbrev.: Fix A1, A2, and consider the set of A3 satisfying
A1 K A2 = K A3 K .

In the Kraus-Cirac picture, it becomes the union of two convex polytopes.
Proof: Nonabelian Yang-Mills, Riemann surface, symplectic reduction, principal G-bundle with g-valued
            connection, monodromy, moment map, moduli of curves, parabolic bundle, semistability, Grassmannian,
            Schubert classes, quantum cohomology ring, intersection form, Gromov-Witten invariants, ... .



AKA → KAK in general     (Agnihotri-Meinrenken-Woodward 99, Falbel-Wentworth 05, P.-Crooks-Smith 19)

Theorem, abbrev.: Fix A1, A2, and consider the set of A3 satisfying
A1 K A2 = K A3 K .

In the Kraus-Cirac picture, it becomes the union of two convex polytopes.
Proof: Nonabelian Yang-Mills, Riemann surface, symplectic reduction, principal G-bundle with g-valued
            connection, monodromy, moment map, moduli of curves, parabolic bundle, semistability, Grassmannian,
            Schubert classes, quantum cohomology ring, intersection form, Gromov-Witten invariants, ... .

Observations: Proof is hard, but the result can be wielded by a computer.
                          A1 and A2 can range over polytopes themselves, still OK.
                          Iterable: describe the space of circuits of depth 3, 4, 5, ... .
                          Does not produce circuit decompositions.



Theorem: The set of 2Q programs using 2 ISWAPs is the same as with CX.
                   The set of 2Q programs using 3 ISWAPs is the same as with CX.

Observations: No substantial difference for efficient compilation.

ISWAP is simple enough that one can extract circuits.

Theorem examples: ISWAP                                                                        (P.-Crooks-Smith 19)



Theorem: The set of 2Q programs using 2 CPHASEs is the same as with CX.
                   The set of 2Q programs using 3 CPHASEs is the same as with CX.

Observations: No substantial difference for efficient compilation!!
                          Don’t bother extracting CPHASE circuits—just use CZ.

Theorem examples: CPHASE                                                                     (P.-Crooks-Smith 19)



Theorem: The set of 2Q programs using 3, 4, 5 √CZs is as in the picture:

Observations: This feels “worse” than CZ, which needs ≤ 3 applications.

Theorem examples: √CZ                                                                               (P.-Crooks-Smith 19)



Theorem: The set of 2Q programs using 3, 4, 5 √CZs is as in the picture:

Observations: This feels “worse” than CZ, which needs ≤ 3 applications.
                          Motivates expected depth:〈√CZ depth〉= 3.60416,
                          versus〈CZ depth〉=〈ISWAP depth〉=〈CPHASE depth〉= 3.

Theorem examples: √CZ                                                                               (P.-Crooks-Smith 19)



Theorem examples: XY                                                                                  (P.-Crooks-Smith 19)

Theorem: The set of 2Q programs using 2 XYs is as in the picture:

Observations:〈XY depth〉= 2.16. Substantial improvement over CZ.



Theorem examples: XY(3π/4)                                                                    (P.-Crooks-Smith 19)

Theorem: The set of 2Q programs using 2 XY(3π/4)s is as in the picture:

Observations: Looks like the XY figure, but with some corners trimmed.
                        〈XY depth〉<〈XY(3π/4) depth〉= 2.25 <〈CZ depth〉.



Open questions / further directions                                                   (You! The near future!)

Approximations: A factor determines the average-case-best approximation.
                               For CZ, the best approximation is simple to compute.
                               General closed formula?

Decompositions: We know only when there is a decomposition.
                                For CZ, one can easily build circuits. For ISWAP, less easily.
                                In general, even numerical methods look interesting.

Errors: Depth 2 polytope is not flat ⇒ local errors become nonlocal.

Many-body: This analysis can’t be obviously extended to ≥3Q.
                       Recursive decompositions of ≥3Q into 2Q specifically use CNOT.
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