

Two Qubit Circuits and the Monodromy Polytope

Int'l Workshop on Quantum Compilation November 7th, 2019 in Westminster, CO

Which programs can be encoded efficiently onto a given target?

- Topological constraints
- Expression of the input program
- Target instruction set

• Execution characteristics, e.g. fidelity

. . .

Which programs can be encoded efficiently onto a given target?

- Topological constraints
- Expression of the input program
- Target instruction set

• Execution characteristics, e.g. fidelity

. . .

CZ	CX	CPHASE	ISWAP
$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right)$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\varphi} \end{array}\right)$	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$
XY	fSim	В	MS
$\begin{array}{ccc} 0 & 0 & 0 \ \cos arphi & -i \sin arphi & 0 \end{array}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(2 & -i\sin(2 & 0) \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 & -i \\ 0 & 1 & i & 0 \end{pmatrix}$	$\left(\begin{array}{cccc} 1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \end{array} \right)$

Cartan decomposition:

- Any 2Q gate U can be written as $U = K_1 A K_2$.
- K₁ and K₂ are *local*, A *"feels diagonal"*: commute, determined by eigenvalues,
- U, V satisfy U = K V K' exactly when U, V have the same A component.

Cartan decomposition:

- Any 2Q gate U can be written as $U = K_1 A K_2$.
- K₁ and K₂ are *local*, A *"feels diagonal"*: commute, determined by eigenvalues,
- U, V satisfy U = K V K' exactly when U, V have the same A component.

Kraus-Cirac: "Draw (the logarithms of) the eigenvalues of A", as in

Question: If U, V's positions are known in the Kraus-Cirac picture, where can the circuit VU lie?

Question: If U, V's positions are known in the Kraus-Cirac picture, where can the circuit VU lie?

Equivalent question: How does one rewrite AKA as KAK?

1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in RZ(a) RY(b) RZ(c) = RY(d) RZ(e) RY(f)?

1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in RZ(a) RY(b) RZ(c) = RY(d) RZ(e) RY(f)?

 $\cos(e) = \cos(a) \cos(c) - \cos(b) \sin(a) \sin(c)$.

Observations: e is nonlinear as a function of b.

The main trick is that 1Q operators have few eigenvalues.

1Q analogue: How do YZY-Euler decompositions multiply?

For a, c known and b unknown, what can be said about e in RZ(a) RY(b) RZ(c) = RY(d) RZ(e) RY(f)?

 $\cos(e) = \cos(a) \cos(c) - \cos(b) \sin(a) \sin(c)$,

or,

 $|a - c| \le e \le \pi - |a + c - \pi|$.

Observations: e is nonlinear as a function of b.

The "allowable e"s form a line segment. The main trick is that 1Q operators have few eigenvalues. **Theorem:** The set of 2Q programs of the form K₁ CX K₂ CX K₃ is the triangle connecting I, CZ, and ISWAP.

Observations: The set is again a "convex body". The main trick is that CX has a simple formula.

(The relationship between K_2 and A actually is linear—a happy accident.)

A such some internation of A softisficience

Theorem, abbrev.: Fix A_1 , A_2 , and consider the set of A_3 satisfying $A_1 K A_2 = K A_3 K$.

In the Kraus-Cirac picture, it becomes the union of two convex polytopes.

Proof: Nonabelian Yang-Mills, Riemann surface, symplectic reduction, principal G-bundle with g-valued connection, monodromy, moment map, moduli of curves, parabolic bundle, semistability, Grassmannian, Schubert classes, quantum cohomology ring, intersection form, Gromov-Witten invariants,

Theorem, abbrev.: Fix A_1 , A_2 , and consider the set of A_3 satisfying $A_1 K A_2 = K A_3 K$.

In the Kraus-Cirac picture, it becomes the union of two convex polytopes.

Proof: Nonabelian Yang-Mills, Riemann surface, symplectic reduction, principal G-bundle with g-valued connection, monodromy, moment map, moduli of curves, parabolic bundle, semistability, Grassmannian, Schubert classes, quantum cohomology ring, intersection form, Gromov-Witten invariants,

Observations: Proof is hard, but the result can be wielded by a computer. A₁ and A₂ can range over polytopes themselves, still OK. Iterable: describe the space of circuits of depth 3, 4, 5, *Does not* produce circuit decompositions. **Theorem:** The set of 2Q programs using 2 ISWAPs is the same as with CX. The set of 2Q programs using 3 ISWAPs is the same as with CX.

ISWAP is simple enough that one can extract circuits.

(P.-Crooks-Smith 19)

Theorem: The set of 2Q programs using 2 CPHASEs is the same as with CX. The set of 2Q programs using 3 CPHASEs is the same as with CX.

(P.-Crooks-Smith 19)

Theorem: The set of 2Q programs using 3, 4, 5 \checkmark CZs is as in the picture:

Theorem: The set of 2Q programs using 3, 4, 5 \checkmark CZs is as in the picture:

Theorem examples: XY

٢.

Approximations: A factor determines the average-case-best approximation. For CZ, the best approximation is simple to compute. General closed formula?

Decompositions: We know only *when* there is a decomposition. For CZ, one can easily build circuits. For ISWAP, less easily. In general, even numerical methods look interesting.

Errors: Depth 2 polytope is not flat \Rightarrow local errors become nonlocal.

Many-body: This analysis can't be obviously extended to \ge 3Q. Recursive decompositions of \ge 3Q into 2Q specifically use CNOT.

Thank You!

eric@rigetti.com