Spectra and G-spectra

Eric Peterson

September 23, 2015

http://math.harvard.edu/~ecp/latex/talks/intro-to-spectra.pdf

Cell structures

Definition

A *cell structure* on a pointed space X is an inductive presentation by iteratively attaching n-disks:

æ

個 と く ヨ と く ヨ と …

Cell structures

Definition

A *cell structure* on a pointed space X is an inductive presentation by iteratively attaching n-disks:

Suspension Σ is an operation on spaces which preserves gluing squares, and $\Sigma S^{n-1} \simeq S^n$ and $\Sigma D^n \simeq D^{n+1}$. So, Σ is a "shift operator" on cell structures.

個人 くほん くほん しほ

Cell structures

Definition

A *cell structure* on a pointed space X is an inductive presentation by iteratively attaching n-disks:

Suspension Σ is an operation on spaces which preserves gluing squares, and $\Sigma S^{n-1} \simeq S^n$ and $\Sigma D^n \simeq D^{n+1}$. So, Σ is a "shift operator" on cell structures.

Theorem ("Stability")

$$H^{n}(X; A) \cong H^{n+1}(\Sigma X; A),$$

$$\Sigma H^{*}(X; A) \cong H^{*}(\Sigma X; A).$$

Suspension: Freudenthal's theorem

Ca	lculation: π	r _* of	a s	suspension 3 4 5 6 7 8 0 0 0 0 0						
	n	1	2	3	4	5	6	7	8	
	$\pi_n S^1$	\mathbb{Z}	0	0	0	0	0	0	0	
	$\pi_{n+1}\Sigma S^1$	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	

<->→ □→ < ≥→</>

< ≣ >

æ

Suspension: Freudenthal's theorem

Ca	lculation: π	ulation: π_* of a suspension $n \parallel 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid \dots$								
	n	1	2	3	4	5	6	7	8	
	$\pi_n S^1$	\mathbb{Z}	0	0	0	0	0	0	0	
	$\pi_{n+1}\Sigma S^1$	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	

Theorem (Freudenthal)

- X: s-connected space $(\pi_{*\leq s}X = 0)$
- Y: t-dimensional space (no cells above dimension t)

Then

$$F(Y, X) \rightarrow F(\Sigma Y, \Sigma X)$$

is a (2s - t)-equivalence.

回 と く ヨ と く

Suspension: Freudenthal's theorem

Ca	lculation: π	π_* of a suspension $1 2 3 4 5 6 7 8 \dots$								
	п	1	2	3	4	5	6	7	8	
	$\pi_n S^1$	\mathbb{Z}	0	0	0	0	0	0	0	
	$\pi_{n+1}\Sigma S^1$	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	

Theorem (Freudenthal)

• X: s-connected space
$$(\pi_{*\leq s}X=0)$$

• *Y*: *t*-dimensional space (no cells above dimension *t*)

Then

$$F(Y,X) \rightarrow F(\Sigma Y,\Sigma X)$$

is a (2s - t)-equivalence.

Corollary

The 2 matters: $\pi_n F(\Sigma^m Y, \Sigma^m X)$ is independent of $m \gg n$.

Call " $\Sigma^{\infty} X$ " the suspension spectrum of X.

$$[\Sigma^{\infty}Y, \Sigma^{\infty}X] = \operatorname{colim}_{m}[\Sigma^{m}Y, \Sigma^{m}X]$$

문 문 문

⊡ ▶ < ≣ ▶

Call " $\Sigma^{\infty} X$ " the suspension spectrum of X.

$$[\Sigma^{\infty}Y, \Sigma^{\infty}X] = \operatorname{colim}_{m}[\Sigma^{m}Y, \Sigma^{m}X]$$

= $\operatorname{colim}_{m}[Y, \Omega^{m}\Sigma^{m}X]$
= $[Y, \operatorname{colim}_{m}\Omega^{m}\Sigma^{m}X] =: [Y, QX]$

문 문 문

⊡ ▶ < ≣ ▶

Call " $\Sigma^{\infty} X$ " the suspension spectrum of X.

$$\begin{split} [\Sigma^{\infty}Y, \Sigma^{\infty}X] &= \operatorname{colim}_{m}[\Sigma^{m}Y, \Sigma^{m}X] \\ &= \operatorname{colim}_{m}[Y, \Omega^{m}\Sigma^{m}X] \\ &= [Y, \operatorname{colim}_{m}\Omega^{m}\Sigma^{m}X] =: [Y, QX] \end{split}$$

A⊒ ▶ ∢ ∃

Good news: stable invariants

 $\pi_* \Sigma^{\infty} X = [\Sigma^{\infty} S^*, \Sigma^{\infty} X]$ is a stable invariant of X.

⊡ ▶ < ≣ ▶

Good news: stable invariants

 $\pi_* \Sigma^{\infty} X = [\Sigma^{\infty} S^*, \Sigma^{\infty} X]$ is a stable invariant of X.

On the other side, the sequence $Q\Sigma^*X$ represents a stable functor. This is because $Q\Sigma X$ deloops QX: $\Omega(Q\Sigma X) = QX$. Hence,

$$[\Sigma Y, Q\Sigma^* X] = [Y, \Omega Q\Sigma^* X] = [Y, Q\Sigma^{*-1} X.]$$

Good news: stable invariants

 $\pi_* \Sigma^{\infty} X = [\Sigma^{\infty} S^*, \Sigma^{\infty} X]$ is a stable invariant of X.

On the other side, the sequence $Q\Sigma^*X$ represents a stable functor. This is because $Q\Sigma X$ deloops QX: $\Omega(Q\Sigma X) = QX$. Hence,

$$[\Sigma Y, Q\Sigma^* X] = [Y, \Omega Q\Sigma^* X] = [Y, Q\Sigma^{*-1} X]$$

Bad news: not all stable invariants

K(A, n) represents a stable functor too:

 $[Y, K(A, n)] = H^n(Y; A).$

K(A, n + 1) deloops K(A, n), but $K(A, n) \neq QX$ for any X.

同 ト イヨ ト イヨト

$$\pi_* \Sigma^{\infty} \mathcal{K}(A, n) = \begin{cases} A & \text{if } * = n, \\ 0 & \text{if } * \le 2n, \ * \ne n, \\ \text{mystery groups} & \text{if } * > 2n. \end{cases}$$
So, "colim_n $\Sigma^{-n} \Sigma^{\infty} \mathcal{K}(A, n)$ " has the right homotopy groups.

A⊒ ▶ ∢ ∃

$$\pi_* \Sigma^\infty \mathcal{K}(A, n) = \begin{cases} A & \text{if } * = n, \\ 0 & \text{if } * \leq 2n, * \neq n, \\ \text{mystery groups} & \text{if } * > 2n. \end{cases}$$

So, "colim_n $\Sigma^{-n} \Sigma^{\infty} K(A, n)$ " has the right homotopy groups.

Definition (Boardman, more or less)

A spectrum is an ind-diagram of things like $\Sigma^{-n}\Sigma^{\infty}X$. The Eilenberg-Mac Lane spectrum is presented by the ind-system

$$HA := \{\Sigma^{-n}\Sigma^{\infty}K(A, n)\}.$$

Smash product, representability

Theorem (Boardman)

The smash product \land lifts from spaces to spectra:

$$\{\Sigma^{n_{\alpha}}\Sigma^{\infty}X_{\alpha}\} \wedge \{\Sigma^{m_{\beta}}\Sigma^{\infty}Y_{\beta}\} =: \{\Sigma^{n_{\alpha}+m_{\beta}}\Sigma^{\infty}(X_{\alpha} \wedge Y_{\beta})\}.$$

It has an adjoint, the function spectrum: $[Z \wedge Y, X] \simeq [Z, X^{Y}]$.

Smash product, representability

Theorem (Boardman)

The smash product \wedge lifts from spaces to spectra:

$$\{\Sigma^{n_{\alpha}}\Sigma^{\infty}X_{\alpha}\}\wedge\{\Sigma^{m_{\beta}}\Sigma^{\infty}Y_{\beta}\}=:\{\Sigma^{n_{\alpha}+m_{\beta}}\Sigma^{\infty}(X_{\alpha}\wedge Y_{\beta})\}.$$

It has an adjoint, the function spectrum: $[Z \wedge Y, X] \simeq [Z, X^{Y}]$.

Theorem

$$X\mapsto \pi_*(\mathit{HA}\wedge\Sigma^\infty X) \quad ext{and} \quad X\mapsto \pi_{-*}(\mathit{HA}^{\Sigma^\infty X})$$

satisfy the axioms of ordinary (co)homology with A coefficients.

・ 同・ ・ ヨ・

Smash product, representability

Theorem (Boardman)

The smash product \wedge lifts from spaces to spectra:

$$\{\Sigma^{n_{\alpha}}\Sigma^{\infty}X_{\alpha}\}\wedge\{\Sigma^{m_{\beta}}\Sigma^{\infty}Y_{\beta}\}=:\{\Sigma^{n_{\alpha}+m_{\beta}}\Sigma^{\infty}(X_{\alpha}\wedge Y_{\beta})\}.$$

It has an adjoint, the function spectrum: $[Z \wedge Y, X] \simeq [Z, X^{Y}]$.

Theorem

$$X\mapsto \pi_*(\mathit{HA}\wedge\Sigma^\infty X) \quad ext{and} \quad X\mapsto \pi_{-*}(\mathit{HA}^{\Sigma^\infty X})$$

satisfy the axioms of ordinary (co)homology with A coefficients.

Theorem (Brown, Atiyah)

For $E_*(-)$ and $E^*(-)$ generalized (co)homology theories, there is a spectrum E such that

$$\widetilde{E}_*(X)\cong \pi_*(E\wedge \Sigma^\infty X) \quad ext{and} \quad \widetilde{E}^*(X)=\pi_{-*}(E^{\Sigma^\infty X}).$$

Eric Peterson Spectra and G-spectra

Moral

Spectra are an enrichment of homology theories where homotopy theory can be done.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

Moral

Spectra are an enrichment of homology theories where homotopy theory can be done.

Example: Quotient sequences

The quotient sequence $\mathbb{S}\xrightarrow{2}\mathbb{S}\to\mathbb{S}/2$ induces an exact sequence

Spectra guarantee that these problems have consistent solutions.

▲圖▶ ▲ 国▶ ▲ 国▶

$$(a \circ (b \circ c))
ightarrow ((a \circ b) \circ c)$$

$$(a \circ (b \circ c)) o ((a \circ b) \circ c) \hspace{1cm} wo \hspace{1cm} S^0 o F(E^{\wedge 3},E)$$

$$\begin{array}{cccc} (a \circ (b \circ c)) \rightarrow ((a \circ b) \circ c) & & \rightsquigarrow & S^0 \rightarrow F(E^{\wedge 3}, E) \\ ((a \circ b) \circ c) \circ d & \longrightarrow (a \circ b) \circ (c \circ d) \\ & \downarrow & & \\ (a \circ (b \circ c)) \circ d & & \\ & \downarrow & & \\ a \circ ((b \circ c) \circ d) & \longrightarrow a \circ (b \circ (c \circ d)) \end{array}$$

$$\begin{array}{cccc} (a \circ (b \circ c)) \rightarrow ((a \circ b) \circ c) & & \longrightarrow & S^0 \rightarrow F(E^{\wedge 3}, E) \\ ((a \circ b) \circ c) \circ d & \longrightarrow & (a \circ b) \circ (c \circ d) \\ & \downarrow & & \\ (a \circ (b \circ c)) \circ d & & & \\ & \downarrow & & \\ & a \circ ((b \circ c) \circ d) & \longrightarrow & a \circ (b \circ (c \circ d)) \end{array} \longrightarrow S^1 \rightarrow F(E^{\wedge 4}, E).$$

$$\begin{array}{cccc} (a \circ (b \circ c)) \rightarrow ((a \circ b) \circ c) & & \rightarrow & S^{0} \rightarrow F(E^{\wedge 3}, E) \\ ((a \circ b) \circ c) \circ d & \longrightarrow & (a \circ b) \circ (c \circ d) \\ & \downarrow & & \\ (a \circ (b \circ c)) \circ d & & \downarrow & \\ & \downarrow & & \downarrow & \\ a \circ ((b \circ c) \circ d) & \longrightarrow & a \circ (b \circ (c \circ d)) \\ & & \vdots & & \rightsquigarrow & \vdots \end{array}$$

Ring-valued cohomology theories induce multiplication maps on representing spectra. In homotopy theory, associativity is a structure rather than a property:

 $(a \circ (b \circ c)) \rightarrow ((a \circ b) \circ c) \qquad \qquad \rightsquigarrow \qquad S^0 \rightarrow F(E^{\wedge 3}, E)$ $((a \circ b) \circ c) \circ d \longrightarrow (a \circ b) \circ (c \circ d)$ \rightsquigarrow $S^1 \rightarrow F(E^{\wedge 4}, E).$ $(a \circ (b \circ c)) \circ d$ $a \circ ((b \circ c) \circ d) \longrightarrow a \circ (b \circ (c \circ d))$

Leads to quasicategories and A_{∞} -rings ("coherently associative"). It pays off: A_{∞} -rings have a good theory of modules,

Theorem (Atiyah–Hirzebruch)

Let E be a generalized homology theory and X a cellular space.

$$E^1_{p,q} = C^{\mathsf{cell}}_p(X; E_q) \Rightarrow E_{p+q}X.$$

Theorem (Atiyah–Hirzebruch)

Let E be a generalized homology theory and X a cellular space.

$$E_{p,q}^1 = C_p^{\mathsf{cell}}(X; E_q) \Rightarrow E_{p+q}X.$$

A cell structure suspends to a presentation of $\Sigma^{\infty}X$ by shifts of wedges of S. Applying $E \wedge -$ to these diagrams give a presentation of $E \wedge \Sigma^{\infty}X$ by shifts of wedges of E.

Theorem (Atiyah-Hirzebruch)

Let E be a generalized homology theory and X a cellular space.

$$E_{p,q}^1 = C_p^{\operatorname{cell}}(X; E_q) \Rightarrow E_{p+q}X.$$

A cell structure suspends to a presentation of $\Sigma^{\infty}X$ by shifts of wedges of S. Applying $E \wedge -$ to these diagrams give a presentation of $E \wedge \Sigma^{\infty}X$ by shifts of wedges of E.

For E = HA, there is a sense in which $HA \wedge \Sigma^{\infty}X \simeq C_*(X; A)$.

$$E \wedge \Sigma^{\infty} X \iff "E$$
-chains on X ".

In good cases, this is "base change" from S to E.

Intermission

・ロン ・雪と ・目と ・目と

æ

Basics of equivariant homotopy theory

Where spaces had points, G-spaces have orbits:

 $G/H \xrightarrow{\text{equivariant}} X.$

Different choices of $H \leq G$ stratify the space:

 $G/H \mapsto F_G(G/H_+, X) = X^H.$

伺 とく ヨ とく

Basics of equivariant homotopy theory

Where spaces had points, G-spaces have orbits:

 $G/H \xrightarrow{\text{equivariant}} X.$

Different choices of $H \leq G$ stratify the space:

$$G/H \mapsto F_G(G/H_+, X) = X^H.$$

Definitions

$$\underline{\pi}_n(X): G/H \mapsto [G/H_+ \wedge S^n, X]_G = \pi_n X^H$$

A weak equivalence of G–spaces is a G–map which is a $\underline{\pi}_*-\text{iso.}$ That is, for each H

$$\pi_* X^H \xrightarrow{\simeq} \pi_* Y^H.$$

A *G*-cell structure on a pointed *G*-space X is a presentation by iteratively attaching *n*-disks of the form $G/H_+ \wedge D^n$ along images of $G/H_+ \wedge S^{n-1}$.

A *G*-cell structure on a pointed *G*-space X is a presentation by iteratively attaching *n*-disks of the form $G/H_+ \wedge D^n$ along images of $G/H_+ \wedge S^{n-1}$.

We would like a cohomology theory that controls the obstructions to extending maps of G-cell complexes across a new cell, analogous to the role of ordinary cohomology.

A *G*-cell structure on a pointed *G*-space X is a presentation by iteratively attaching *n*-disks of the form $G/H_+ \wedge D^n$ along images of $G/H_+ \wedge S^{n-1}$.

We would like a cohomology theory that controls the obstructions to extending maps of G-cell complexes across a new cell, analogous to the role of ordinary cohomology.

 $\underline{C}^{n}(X;\underline{M}): G/H \mapsto \operatorname{Hom}(H_{n}((X^{H})^{n},(X^{H})^{n-1}),\underline{M}(G/H)).$

Satisfies the "obvious" Eilenberg–Steenrod axioms.

A *G*-cell structure on a pointed *G*-space X is a presentation by iteratively attaching *n*-disks of the form $G/H_+ \wedge D^n$ along images of $G/H_+ \wedge S^{n-1}$.

We would like a cohomology theory that controls the obstructions to extending maps of G-cell complexes across a new cell, analogous to the role of ordinary cohomology.

 $\underline{C}^{n}(X;\underline{M}): G/H \mapsto \operatorname{Hom}(H_{n}((X^{H})^{n},(X^{H})^{n-1}),\underline{M}(G/H)).$

Satisfies the "obvious" Eilenberg–Steenrod axioms.

Warning

This works, but it's not great. No Poincaré duality, for instance.

・ロン ・回と ・ヨン・

Bredon cohomology

Question

Sphere could also mean $S^V := V^+$ for V a *G*-representation. Spheres grade cohomology theories: $S^n \leftrightarrow H^n$. When can a representation be put in for * in $\underline{H}^*(X; \underline{M})$?

Bredon cohomology

Question

Sphere could also mean $S^V := V^+$ for V a *G*-representation. Spheres grade cohomology theories: $S^n \leftrightarrow H^n$. When can a representation be put in for * in $\underline{H}^*(X; \underline{M})$?

Answer

Exactly when \underline{M} is a *Mackey functor*:

for any G-map $f: G/H \to G/K$ we choose a "transfer map" $t(f): \underline{M}(G/H) \to \underline{M}(G/K)$

satisfying a "double coset formula" reminiscent of character theory. (The definition is set up so that $G/H \mapsto \text{Rep}(H)$ fits.)

Bredon cohomology

Question

Sphere could also mean $S^V := V^+$ for V a G-representation. Spheres grade cohomology theories: $S^n \leftrightarrow H^n$. When can a representation be put in for * in $\underline{H}^*(X; \underline{M})$?

Answer

Exactly when \underline{M} is a *Mackey functor*:

for any G-map $f: G/H \to G/K$ we choose a "transfer map" $t(f): \underline{M}(G/H) \to \underline{M}(G/K)$

satisfying a "double coset formula" reminiscent of character theory. (The definition is set up so that $G/H \mapsto \text{Rep}(H)$ fits.)

These are great: Poincaré duality and everything else you could hope for.

G-spectra

Definitions, redux

Define suspension G-spectra by

$$[\Sigma^{\infty}_{G}Y, \Sigma^{\infty}_{G}X]_{G} = [Y, \operatorname{colim}_{V}\Omega^{V}\Sigma^{V}X]_{G}.$$

Equivariant Freudenthal says this colimit is degenerate. G-spectra are ind-systems of S^V -desuspensions of suspension G-spectra.

・ 同・ ・ ヨ・

Definitions, redux

Define suspension G-spectra by

$$[\Sigma^{\infty}_{G}Y, \Sigma^{\infty}_{G}X]_{G} = [Y, \operatorname{colim}_{V}\Omega^{V}\Sigma^{V}X]_{G}.$$

Equivariant Freudenthal says this colimit is degenerate. G-spectra are ind-systems of S^V -desuspensions of suspension G-spectra.

Theorem, redux

For $\underline{E}_{\star}(-)$ and $\underline{E}^{\star}(-)$ generalized Bredon (co)homology theories (i.e., $\star = V$ is allowed), there is a *G*-spectrum *E* such that

$$\underline{\widetilde{E}}_{\star}(X) \cong \underline{\pi}_{\star}(E \wedge \Sigma^{\infty}_{G}X) \quad \text{and} \quad \underline{\widetilde{E}}^{\star}(X) = \underline{\pi}_{-\star}(E^{\Sigma^{\infty}_{G}X}).$$

Definitions, redux

Define suspension G-spectra by

$$[\Sigma^{\infty}_{G}Y, \Sigma^{\infty}_{G}X]_{G} = [Y, \operatorname{colim}_{V}\Omega^{V}\Sigma^{V}X]_{G}.$$

Equivariant Freudenthal says this colimit is degenerate. G-spectra are ind-systems of S^V -desuspensions of suspension G-spectra.

Theorem, redux

For $\underline{E}_{\star}(-)$ and $\underline{E}^{\star}(-)$ generalized Bredon (co)homology theories (i.e., $\star = V$ is allowed), there is a *G*-spectrum *E* such that

$$\underline{\widetilde{E}}_{\star}(X) \cong \underline{\pi}_{\star}(E \wedge \Sigma^{\infty}_{\mathcal{G}} X) \quad \text{and} \quad \underline{\widetilde{E}}^{\star}(X) = \underline{\pi}_{-\star}(E^{\Sigma^{\infty}_{\mathcal{G}} X}).$$

Theorem, redux

For any Mackey functor \underline{M} , there is an Eilenberg–Mac Lane G-spectrum $H\underline{M}$ presenting Bredon cohomology $\underline{H}^{\star}(-; M)$.

Stable fixed points

We built G-spaces so that they carry fixed point data: " $X^{H"}$. This splits into three notions of fixed points for G-spectra:

• Geometric:

$$\Phi^{H}(\Sigma_{G}^{\infty}X) = \Sigma^{\infty}X^{H},$$

$$\Phi^{H}(\operatorname{colim}_{\alpha}\{X_{\alpha}\}) = \operatorname{colim}_{\alpha}\{\Phi^{H}X_{\alpha}\},$$

$$\Phi^{H}(X \wedge Y) = \Phi^{H}(X) \wedge \Phi^{H}(Y).$$

- Categorical: $[E, X^H] = [E, X]_H$, $\underline{\pi}_n(X) : G/H \mapsto \pi_n X^H$. • Homotonical: $X^{hH} = E_{V}(EH - X)$
- Homotopical: $X^{hH} = F_H(EH_+, X)$.

Stable fixed points

We built G-spaces so that they carry fixed point data: " X^{H} ". This splits into three notions of fixed points for G-spectra:

• Geometric:

$$\Phi^{H}(\Sigma^{\infty}_{G}X) = \Sigma^{\infty}X^{H},$$

$$\Phi^{H}(\operatorname{colim}_{\alpha}\{X_{\alpha}\}) = \operatorname{colim}_{\alpha}\{\Phi^{H}X_{\alpha}\},$$

$$\Phi^{H}(X \wedge Y) = \Phi^{H}(X) \wedge \Phi^{H}(Y).$$

• Categorical: $[E, X^H] = [E, X]_H$, $\underline{\pi}_n(X) : G/H \mapsto \pi_n X^H$. • Homotopical: $X^{hH} = F_H(EH_+, X)$.

There is a map of fiber sequences

$$\begin{array}{ccc} ? \longrightarrow X^{H} \longrightarrow \Phi^{H}(X) \\ \downarrow & \downarrow & \downarrow \\ X_{hH} \longrightarrow X^{hH} \longrightarrow X^{tH}. \end{array}$$

Generally, this is the best we can say.

Stable fixed points

We built G-spaces so that they carry fixed point data: " $X^{H"}$. This splits into three notions of fixed points for G-spectra:

• Geometric:

$$\Phi^{H}(\Sigma_{G}^{\infty}X) = \Sigma^{\infty}X^{H},$$

$$\Phi^{H}(\operatorname{colim}_{\alpha}\{X_{\alpha}\}) = \operatorname{colim}_{\alpha}\{\Phi^{H}X_{\alpha}\},$$

$$\Phi^{H}(X \wedge Y) = \Phi^{H}(X) \wedge \Phi^{H}(Y).$$

Categorical: [E, X^H] = [E, X]_H, <u>π</u>_n(X) : G/H → π_nX^H.
Homotopical: X^{hH} = F_H(EH₊, X).

Advertisement: $KO \simeq KU^{hC_2}$

Advertisement: $KO \simeq KU^{hC_2}$

Homotopy fixed point spectral sequence: $H^*_{gp}(C_2; \pi_*KU) \Rightarrow \pi_*KO$

Advertisement: $KO \simeq KU^{C_2}$

Slice spectral sequence (Dugger)

You can also get the homotopy groups as Mackey functors.

Theorem (McCarthy)

Let $f : R \to S$ be a surjection of rings with nilpotent kernel. Then there is a pullback square

$$\begin{array}{ccc} \mathcal{K}(R)_{p}^{\wedge} \xrightarrow{\text{``trace''}} & \mathcal{T}C(R)_{p}^{\wedge} \\ & & & \downarrow \\ \mathcal{K}(S)_{p}^{\wedge} \xrightarrow{\text{``trace''}} & \mathcal{T}C(S)_{p}^{\wedge}, \end{array}$$

where

$$TC(R) = \operatorname{fib}\left(\lim_{n \to \infty} THH(R)^{C_{p^n}} \xrightarrow{R-\operatorname{id}} \lim_{n \to \infty} THH(R)^{C_{p^n}}\right)$$

and THH is the subject of this (and the Thursday) seminar.

Theorem (McCarthy)

Let $f: R \to S$ be a surjection of rings with nilpotent kernel. Then there is a pullback square

$$\begin{array}{ccc} \mathcal{K}(R)_{p}^{\wedge} \xrightarrow{\text{``trace''}} & \mathcal{T}C(R)_{p}^{\wedge} \\ & & & \downarrow \\ \mathcal{K}(S)_{p}^{\wedge} \xrightarrow{\text{`'trace''}} & \mathcal{T}C(S)_{p}^{\wedge}, \end{array}$$

where

$$TC(R) = \operatorname{fib}\left(\lim_{n \to \infty} THH(R)^{C_{p^n}} \xrightarrow{R-\operatorname{id}} \lim_{n \to \infty} THH(R)^{C_{p^n}}\right)$$

and THH is the subject of this (and the Thursday) seminar.

There are lots of theorems along these lines, relating equivariant structure on THH to sundry things in algebraic K-theory.