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Cell structures

Definition

A cell structure on a pointed space X is an inductive presentation
by iteratively attaching n–disks:∨

Sn−1 X (n−1)

∨
Dn X (n).

Suspension Σ is an operation on spaces which preserves gluing
squares, and ΣSn−1 ' Sn and ΣDn ' Dn+1. So, Σ is a “shift
operator” on cell structures.

Theorem (“Stability”)

Hn(X ;A) ∼= Hn+1(ΣX ;A),

ΣH∗(X ;A) ∼= H∗(ΣX ;A).
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Suspension: Freudenthal’s theorem

Calculation: π∗ of a suspension

n 1 2 3 4 5 6 7 8 . . .

πnS
1 Z 0 0 0 0 0 0 0 . . .

πn+1ΣS1 Z Z Z/2 Z/2 Z/12 Z/2 Z/2 Z/3 . . .

Theorem (Freudenthal)

X : s–connected space (π∗≤sX = 0)

Y : t–dimensional space (no cells above dimension t)

Then
F (Y ,X )→ F (ΣY ,ΣX )

is a (2s − t)–equivalence.

Corollary

The 2 matters: πnF (ΣmY ,ΣmX ) is independent of m� n.
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Suspension spectra

Definition

Call “Σ∞X” the suspension spectrum of X .

[Σ∞Y ,Σ∞X ] = colimm[ΣmY ,ΣmX ]

= colimm[Y ,ΩmΣmX ]

= [Y , colimm ΩmΣmX ] =: [Y ,QX ].

SuspensionSpectra

Spaces Spaces.

Ω∞Σ∞

Q
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The Eilenberg–Mac Lane spectrum

Good news: stable invariants

π∗Σ
∞X = [Σ∞S∗,Σ∞X ] is a stable invariant of X .

On the other side, the sequence QΣ∗X represents a stable functor.
This is because QΣX deloops QX : Ω(QΣX ) = QX . Hence,

[ΣY ,QΣ∗X ] = [Y ,ΩQΣ∗X ] = [Y ,QΣ∗−1X .]

Bad news: not all stable invariants

K (A, n) represents a stable functor too:

[Y ,K (A, n)] = Hn(Y ;A).

K (A, n + 1) deloops K (A, n), but K (A, n) 6= QX for any X .
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The Eilenberg–Mac Lane spectrum

π∗Σ
∞K (A, n) =


A if ∗ = n,

0 if ∗ ≤ 2n, ∗ 6= n,

mystery groups if ∗ > 2n.

So, “colimn Σ−nΣ∞K (A, n)” has the right homotopy groups.

Definition (Boardman, more or less)

A spectrum is an ind-diagram of things like Σ−nΣ∞X .
The Eilenberg–Mac Lane spectrum is presented by the ind-system

HA := {Σ−nΣ∞K (A, n)}.
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Smash product, representability

Theorem (Boardman)

The smash product ∧ lifts from spaces to spectra:

{ΣnαΣ∞Xα} ∧ {ΣmβΣ∞Yβ} =: {Σnα+mβΣ∞(Xα ∧ Yβ)}.

It has an adjoint, the function spectrum: [Z ∧ Y ,X ] ' [Z ,XY ].

Theorem

X 7→ π∗(HA ∧ Σ∞X ) and X 7→ π−∗(HA
Σ∞X )

satisfy the axioms of ordinary (co)homology with A coefficients.

Theorem (Brown, Atiyah)

For E∗(−) and E ∗(−) generalized (co)homology theories, there is a
spectrum E such that

Ẽ∗(X ) ∼= π∗(E ∧ Σ∞X ) and Ẽ ∗(X ) = π−∗(E
Σ∞X ).
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Σ∞X ).

Eric Peterson Spectra and G–spectra



Smash product, representability

Theorem (Boardman)

The smash product ∧ lifts from spaces to spectra:

{ΣnαΣ∞Xα} ∧ {ΣmβΣ∞Yβ} =: {Σnα+mβΣ∞(Xα ∧ Yβ)}.

It has an adjoint, the function spectrum: [Z ∧ Y ,X ] ' [Z ,XY ].

Theorem

X 7→ π∗(HA ∧ Σ∞X ) and X 7→ π−∗(HA
Σ∞X )

satisfy the axioms of ordinary (co)homology with A coefficients.

Theorem (Brown, Atiyah)

For E∗(−) and E ∗(−) generalized (co)homology theories, there is a
spectrum E such that
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Gluing homology theories

Moral

Spectra are an enrichment of homology theories where homotopy
theory can be done.

Example: Quotient sequences

The quotient sequence S 2−→ S→ S/2 induces an exact sequence

0 π2S π2S/2 π1S 0

0 Z/2 Z/4 Z/2 0.

Spectra guarantee that these problems have consistent solutions.
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Ring spectra

Ring-valued cohomology theories induce multiplication maps on
representing spectra. In homotopy theory, associativity is a
structure rather than a property:

(a ◦ (b ◦ c))→ ((a ◦ b) ◦ c)

 S0 → F (E∧3,E )

((a ◦ b) ◦ c) ◦ d (a ◦ b) ◦ (c ◦ d)

(a ◦ (b ◦ c)) ◦ d

a ◦ ((b ◦ c) ◦ d) a ◦ (b ◦ (c ◦ d))

 S1 → F (E∧4,E ).

...  
...

Leads to quasicategories and A∞–rings (“coherently associative”).
It pays off: A∞–rings have a good theory of modules, . . . .
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Generalized cellular chains

Theorem (Atiyah–Hirzebruch)

Let E be a generalized homology theory and X a cellular space.

E 1
p,q = C cell

p (X ;Eq)⇒ Ep+qX .

A cell structure suspends to a presentation of Σ∞X by shifts of
wedges of S. Applying E ∧− to these diagrams give a presentation
of E ∧ Σ∞X by shifts of wedges of E .

For E = HA, there is a sense in which HA ∧ Σ∞X ' C∗(X ;A).

E ∧ Σ∞X ! “E–chains on X”.

In good cases, this is “base change” from S to E .
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Intermission
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Basics of equivariant homotopy theory

Where spaces had points, G–spaces have orbits:

G/H
equivariant−−−−−−→ X .

Different choices of H ≤ G stratify the space:

G/H 7→ FG (G/H+,X ) = XH .

Definitions

πn(X ) : G/H 7→ [G/H+ ∧ Sn,X ]G = πnX
H

A weak equivalence of G–spaces is a G–map which is a π∗–iso.
That is, for each H

π∗X
H '−→ π∗Y

H .
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Equivariant obstruction theory

Definition

A G–cell structure on a pointed G–space X is a presentation by
iteratively attaching n–disks of the form G/H+ ∧ Dn along images
of G/H+ ∧ Sn−1.

We would like a cohomology theory that controls the obstructions
to extending maps of G–cell complexes across a new cell,
analogous to the role of ordinary cohomology.

Cn(X ;M) : G/H 7→ Hom(Hn((XH)n, (XH)n−1),M(G/H)).

Satisfies the “obvious” Eilenberg–Steenrod axioms.

Warning

This works, but it’s not great. No Poincaré duality, for instance.
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Bredon cohomology

Question

Sphere could also mean SV := V+ for V a G–representation.
Spheres grade cohomology theories: Sn! Hn.
When can a representation be put in for ∗ in H∗(X ;M)?

Answer

Exactly when M is a Mackey functor :

for any G–map f : G/H → G/K

we choose a “transfer map” t(f ) : M(G/H)→ M(G/K )

satisfying a “double coset formula” reminiscent of character theory.
(The definition is set up so that G/H 7→ Rep(H) fits.)

These are great: Poincaré duality and everything else you could
hope for.
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G–spectra

Definitions, redux

Define suspension G–spectra by

[Σ∞G Y ,Σ∞G X ]G = [Y , colimV ΩV ΣVX ]G .

Equivariant Freudenthal says this colimit is degenerate. G–spectra
are ind-systems of SV –desuspensions of suspension G–spectra.

Theorem, redux

For E ?(−) and E ?(−) generalized Bredon (co)homology theories
(i.e., ? = V is allowed), there is a G–spectrum E such that

Ẽ ?(X ) ∼= π?(E ∧ Σ∞G X ) and Ẽ
?
(X ) = π−?(EΣ∞

G X ).

Theorem, redux

For any Mackey functor M, there is an Eilenberg–Mac Lane
G–spectrum HM presenting Bredon cohomology H?(−;M).

Eric Peterson Spectra and G–spectra



G–spectra

Definitions, redux

Define suspension G–spectra by

[Σ∞G Y ,Σ∞G X ]G = [Y , colimV ΩV ΣVX ]G .

Equivariant Freudenthal says this colimit is degenerate. G–spectra
are ind-systems of SV –desuspensions of suspension G–spectra.

Theorem, redux

For E ?(−) and E ?(−) generalized Bredon (co)homology theories
(i.e., ? = V is allowed), there is a G–spectrum E such that
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Stable fixed points

We built G–spaces so that they carry fixed point data: “XH”.
This splits into three notions of fixed points for G–spectra:

Geometric: ΦH(Σ∞G X ) = Σ∞XH ,

ΦH(colim α{Xα}) = colim α{ΦHXα},
ΦH(X ∧ Y ) = ΦH(X ) ∧ ΦH(Y ).

Categorical: [E ,XH ] = [E ,X ]H , πn(X ) : G/H 7→ πnX
H .

Homotopical: X hH = FH(EH+,X ).

There is a map of fiber sequences

XhH if H = Cp

? XH ΦH(X )

“homotopy orbits”

XhH X hH X tH .

“Tate spectrum”
“transfer”

Generally, this is the best we can say.
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Stable fixed points

We built G–spaces so that they carry fixed point data: “XH”.
This splits into three notions of fixed points for G–spectra:
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Advertisement: KO ' KUhC2

KU exists as a C2–spectrum with action by complex conjugation.
? XH ΦH(X )

XhH X hH X tH .

X=KU
=⇒
H=C2

KO KO ∗

KO KO ∗.

Homotopy fixed point spectral sequence: H∗gp(C2;π∗KU)⇒ π∗KO
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Advertisement: KO ' KUC2

Slice spectral sequence (Dugger)

You can also get the homotopy groups as Mackey functors.
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Advertisement: THH

Theorem (McCarthy)

Let f : R → S be a surjection of rings with nilpotent kernel. Then
there is a pullback square

K (R)∧p TC (R)∧p

K (S)∧p TC (S)∧p ,

“trace”

“trace”

where

TC (R) = fib
(

lim
n→∞

THH(R)Cpn
R−id−−−→ lim

n→∞
THH(R)Cpn

)
and THH is the subject of this (and the Thursday) seminar.

There are lots of theorems along these lines, relating equivariant
structure on THH to sundry things in algebraic K–theory.
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