
quilc

The Rigetti Quil compiler

Eric Peterson

Rigetti Quantum Computing

August 16, 2019

Eric Peterson quilc The Rigetti Quil compiler

Rigetti’s execution stack

The stack: Ideal

Joe User classical program quantum program

compiler compiler

{
frontend
backend

}

classical executable quantum executable

CPU QPU

Eric Peterson quilc The Rigetti Quil compiler

Rigetti’s execution stack

The stack: Summer 2017

Joe User native Quil

compiler

{
backend

}

quantum executable

CPU QPU

Eric Peterson quilc The Rigetti Quil compiler

Rigetti’s execution stack

The stack: Today

Joe User
very small set of

classical programs
any low-level

quantum program

compiler

{
frontend
backend

}

quantum executable

CPU QPU

at end

at start

Eric Peterson quilc The Rigetti Quil compiler

Rigetti’s execution stack

The stack: Today

Joe User
very small set of

classical programs
any low-level

quantum program

compiler

{
quilc

backend

}

quantum executable

CPU QPU

at end

at start

Eric Peterson quilc The Rigetti Quil compiler

Quil, the language

High-level

Assembly-like. Small set of instructions, qubit “registers”.

DECLARE ro BIT[32]

CNOT 0 1

RX(pi/2) 4

MEASURE 4 ro[4]

Salient features

Portability Gate-based architecture assumed, not much else.

Hybrid prim. Language-level support for:

1 yield-type functionality,
2 simple classical reasoning,
3 memory shared between the coprocessors.

Simplicity Simple grammar, simple semantics, minimal
functionality.

Eric Peterson quilc The Rigetti Quil compiler

Quil, the language

High-level

Assembly-like. Small set of instructions, qubit “registers”.

DECLARE ro BIT[32]

CNOT 0 1

RX(pi/2) 4

MEASURE 4 ro[4]

Salient features

Portability Gate-based architecture assumed, not much else.

Hybrid prim. Language-level support for:

1 yield-type functionality,
2 simple classical reasoning,
3 memory shared between the coprocessors.

Simplicity Simple grammar, simple semantics, minimal
functionality.

Eric Peterson quilc The Rigetti Quil compiler

quilc: A typical run

Main tasks

Complex, high-level, device non-specific operations become
simple, low-level, device-specific operations.

Identify clever decompositions and deploy them.
Identify unnecessary work and eliminate it.

quilc passes

Analyze CFG Segment “purely quantum” subprograms from
intervening classical computation. Eliminate
unnecessary logic.

Address Decompose complex operations and marry
user-specified resources to target device resources.

Optimize Remove redundant gates.

Reconstitute Prepare program for transmission.

Each of these involves crawling the program in a distinct way.

Eric Peterson quilc The Rigetti Quil compiler

quilc: Guiding principles

Primary use case

Execution of advantage-class algorithms on our devices.

Supporting principles

Monolithic operation

Retargetability

Production-grade software

Eric Peterson quilc The Rigetti Quil compiler

quilc: Guiding principles

Monolithic operation

Problem: Interplay of passes in compiler makes it hard to predict
the full effect of any particular optimization.

Redress: Encourage new interactions among new passes, and
make the default mode of use cash in on these interactions.

Case study: 2Q depth of random 4Q interaction on a line

gateset old QISKit challenge all-to-all

CZ 230 (2.0x) 210 (1.82x) 115 (1.0x)
CZ + ISWAP 180 (1.56x) 130 (1.13x) 115 (1.0x)

reweighted 230 (2.0x) 184 (1.57x)

Guess: CZ and ISWAP are “mirror gates”: SWAP ≡ ISWAP · CZ.
Try: Weight ISWAP as twice CZ.
Conclusion: Somehow, CZ + ISWAP + QISKit strategy actually
does better than CZ + ISWAP or QISKit strategy on their own.

Eric Peterson quilc The Rigetti Quil compiler

quilc: Guiding principles

Monolithic operation

Problem: Interplay of passes in compiler makes it hard to predict
the full effect of any particular optimization.

Redress: Encourage new interactions among new passes, and
make the default mode of use cash in on these interactions.

Case study: 2Q depth of random 4Q interaction on a line

gateset old QISKit challenge all-to-all

CZ 230 (2.0x) 210 (1.82x) 115 (1.0x)
CZ + ISWAP 180 (1.56x) 130 (1.13x) 115 (1.0x)

reweighted 230 (2.0x) 184 (1.57x)

Guess: CZ and ISWAP are “mirror gates”: SWAP ≡ ISWAP · CZ.
Try: Weight ISWAP as twice CZ.
Conclusion: Somehow, CZ + ISWAP + QISKit strategy actually
does better than CZ + ISWAP or QISKit strategy on their own.

Eric Peterson quilc The Rigetti Quil compiler

quilc: Guiding principles

Monolithic operation

Problem: Interplay of passes in compiler makes it hard to predict
the full effect of any particular optimization.

Redress: Encourage new interactions among new passes, and
make the default mode of use cash in on these interactions.

Case study: 2Q depth of random 4Q interaction on a line

gateset old QISKit challenge all-to-all

CZ 230 (2.0x) 210 (1.82x) 115 (1.0x)
CZ + ISWAP 180 (1.56x) 130 (1.13x) 115 (1.0x)

reweighted 230 (2.0x) 184 (1.57x)

Guess: CZ and ISWAP are “mirror gates”: SWAP ≡ ISWAP · CZ.
Try: Weight ISWAP as twice CZ.

Conclusion: Somehow, CZ + ISWAP + QISKit strategy actually
does better than CZ + ISWAP or QISKit strategy on their own.

Eric Peterson quilc The Rigetti Quil compiler

quilc: Guiding principles

Monolithic operation

Problem: Interplay of passes in compiler makes it hard to predict
the full effect of any particular optimization.

Redress: Encourage new interactions among new passes, and
make the default mode of use cash in on these interactions.

Case study: 2Q depth of random 4Q interaction on a line

gateset old QISKit challenge all-to-all

CZ 230 (2.0x) 210 (1.82x) 115 (1.0x)
CZ + ISWAP 180 (1.56x) 130 (1.13x) 115 (1.0x)

reweighted 230 (2.0x) 184 (1.57x)

Guess: CZ and ISWAP are “mirror gates”: SWAP ≡ ISWAP · CZ.
Try: Weight ISWAP as twice CZ.
Conclusion: Somehow, CZ + ISWAP + QISKit strategy actually
does better than CZ + ISWAP or QISKit strategy on their own.

Eric Peterson quilc The Rigetti Quil compiler

quilc: Guiding principles

Retargetability

Problem: Chips’ intended design / actual features / operating
points are in flux on timescales of months / weeks / hours.

Redress: Make it minimum-effort to target new devices.

Data

A “QPU graph” Σ: vertices are qubits, edges are qubit-qubit
interactions. Each piece is tagged with native operations, their
matrix encodings, execution properties (e.g., fidelity, duration),

Data 7→ Strategies

Address Fixed set of strategies available, each suitable for
dealing with any (perhaps irregularly) shaped device.

Nativize/Optimize Starting from Σ’s native gate set, backsolve for
compilation subroutines that rewrite an arbitrary
program into the desired gateset.

Eric Peterson quilc The Rigetti Quil compiler

quilc: Retargetability, expanded

Tiny example Σ with defaults

prog = """H 0

RY(pi/3) 0

RZ(pi/8) 0

RX(2*pi/5) 0"""

isa = {"1Q":

{"0": None}}

RZ(-2.06171187047457) 0 # Entering rewiring: #(0)

RX(pi/2) 0

RZ(1.656541137935280) 0

RX(-pi/2) 0

RZ(1.088693765816577) 0 # Exiting rewiring: #(0)

Eric Peterson quilc The Rigetti Quil compiler

quilc: Retargetability, expanded

Σ with free RXs, RZs

isa = {"1Q":

{"0":

[{"op": "RZ", "params": ["_"], "args": [0],

"fidelity": 0.99, "duration": 80},

{"op": "RX", "params": ["_"], "args": [0],

"fidelity": 0.99, "duration": 80}]}}

RX(-0.8789605131516703) 0 # Entering rewiring: #(0)

RZ(-0.6433291804340883) 0

RX(-0.8994990281493116) 0 # Exiting rewiring: #(0)

Eric Peterson quilc The Rigetti Quil compiler

quilc: Retargetability, expanded

Σ with free RXs, RZs; preferring RZs

isa = {"1Q":

{"0":

[{"op": "RZ", "params": ["_"], "args": [0],

"fidelity": 0.999, "duration": 80},

{"op": "RX", "params": ["_"], "args": [0],

"fidelity": 0.99, "duration": 80}]}}

RZ(2.65067710991012) 0 # Entering rewiring: #(0)

RX(1.65654113793528) 0

RZ(2.65949009261147) 0 # Exiting rewiring: #(0)

Eric Peterson quilc The Rigetti Quil compiler

quilc: Retargetability, expanded

Σ with free RXs, RZ(Zπ/2)

isa = {"1Q":

{"0":

[{"op": "RZ", "params": [pi/2], "args": [0],

"fidelity": 0.99, "duration": 80},

... other multiples of pi/2 ...

{"op": "RX", "params": ["_"], "args": [0],

"fidelity": 0.999, "duration": 80}]}}

Condition CL-QUIL::NO-COMPILER-PATH was signalled.

Backtrace:

0: FIND-SHORTEST-COMPILER-PATH

1: COMPUTE-APPLICABLE-COMPILERS

2: WARM-HARDWARE-OBJECTS

...

Eric Peterson quilc The Rigetti Quil compiler

quilc: Retargetability, expanded

Σ with free RXs, RZ(Zπ/2)

isa = {"1Q":

{"0":

[{"op": "RZ", "params": [pi/2], "args": [0],

"fidelity": 0.99, "duration": 80},

... other multiples of pi/2 ...

{"op": "RX", "params": ["_"], "args": [0],

"fidelity": 0.999, "duration": 80}]}}

Condition CL-QUIL::NO-COMPILER-PATH was signalled.

Backtrace:

0: FIND-SHORTEST-COMPILER-PATH

1: COMPUTE-APPLICABLE-COMPILERS

2: WARM-HARDWARE-OBJECTS

...

Eric Peterson quilc The Rigetti Quil compiler

quilc: Retargetability, expanded

Teach quilc a new trick

(define-compiler RZ-to-XZXZX

((rz-gate (RZ (alpha) q)))

(inst RX ’(#.-pi/2) q)

(inst RZ ’(#.pi/2) q)

(inst RX ‘(,(- alpha)) q)

(inst RZ ’(#.-pi/2) q)

(inst RX ’(#.pi/2) q))

RX(-2.449756839946568) 0 # Entering rewiring: #(0)

RZ(pi/2) 0

RX(0.6433291804340882) 0

RZ(-pi/2) 0

RX(0.6712972986455852) 0 # Exiting rewiring: #(0)

Eric Peterson quilc The Rigetti Quil compiler

quilc: Retargetability, expanded

Question

For native gates Γ, how

���how
when

can a gate G be written as G = γ1 · · · γn?

A sort of answer (P.–Crooks–Smith)

For Γ = Γ2Q ∪ {1Q gates}, G decomposes iff certain numerical
invariants of G belong to a certain finite union of convex polytopes.

Example: G = γ1Q ·XY(kπ/5) · γ1Q ·XY(kπ/5) · γ1Q
Some polytopes indicating when G decomposes, 1 ≤ k ≤ 5:

Eric Peterson quilc The Rigetti Quil compiler

quilc: Retargetability, expanded

Question

For native gates Γ,

how

���how
when

can a gate G be written as G = γ1 · · · γn?

A sort of answer (P.–Crooks–Smith)

For Γ = Γ2Q ∪ {1Q gates}, G decomposes iff certain numerical
invariants of G belong to a certain finite union of convex polytopes.

Example: G = γ1Q ·XY(kπ/5) · γ1Q ·XY(kπ/5) · γ1Q
Some polytopes indicating when G decomposes, 1 ≤ k ≤ 5:

Eric Peterson quilc The Rigetti Quil compiler

quilc: Retargetability, expanded

Question

For native gates Γ,

how

���how
when

can a gate G be written as G = γ1 · · · γn?

A sort of answer (P.–Crooks–Smith)

For Γ = Γ2Q ∪ {1Q gates}, G decomposes iff certain numerical
invariants of G belong to a certain finite union of convex polytopes.

Example: G = γ1Q ·XY(kπ/5) · γ1Q ·XY(kπ/5) · γ1Q
Some polytopes indicating when G decomposes, 1 ≤ k ≤ 5:

Eric Peterson quilc The Rigetti Quil compiler

quilc: Guiding principles

Production-grade software

Problem: Compilers are highly complex pieces of software, prone
to sprawl, slowness, tricky bugs,

Redress: Follow SWE best-practices: keep speed on the table,
write highly extensible code, make using it feel like other compilers,
build off of half a century of people thinking about compiler design.

Eric Peterson quilc The Rigetti Quil compiler

quilc and Common Lisp

Common Lisp pros

Exploratory Easy to feel out a poorly understood problem space.

Fast Very speedy executables.

Stable Extremely stable language definition. Compilers from
the ’80s are still a rich source of information today.

Extensible CL extends to cover the problem at hand, easing your
colleagues’ work (e.g.: define-compiler).

Common Lisp cons

Unfamiliar Physicists are reluctant to learn it.
“My time is more valuably spent doing physics.”

Insulated Interoperation with outside software requires
attention: can be done, varies by implementation,
isn’t plug-and-play.

Eric Peterson quilc The Rigetti Quil compiler

quilc and Common Lisp

Common Lisp: Personal experience

No opportunity to be skeptical at the start.

Easy language to learn, except for the idioms.

Right tool for the right job.†

Eric Peterson quilc The Rigetti Quil compiler

quilc and Common Lisp

Common Lisp: Personal experience

No opportunity to be skeptical at the start.

Easy language to learn, except for the idioms.

Right tool for the right job.†

Eric Peterson quilc The Rigetti Quil compiler

quilc in the wild

Physicists

Likes Running benchmarks.

Dislikes Optimizing compilers / attempts to hide infidelity.
Respecting abstraction boundaries.
Using enough qubits to need an addresser.

Applications engineers

Likes Hand-optimization.
Maximum chip use.

Dislikes Software trampling their careful optimization.

Eric Peterson quilc The Rigetti Quil compiler

quilc in the wild

Physicists

Likes Running benchmarks.

Dislikes Optimizing compilers / attempts to hide infidelity.
Respecting abstraction boundaries.
Using enough qubits to need an addresser.

Applications engineers

Likes Hand-optimization.
Maximum chip use.

Dislikes Software trampling their careful optimization.

Eric Peterson quilc The Rigetti Quil compiler

quilc in the wild

Newbies

Likes Simply-described quantum programs.
Wasting spatial resources.

Dislikes Hardware limitations.

(Academic) compiler authors

Likes Writing papers.
Doing A/B comparisons.

Dislikes Being locked into a feature.
Being locked into several features.

Important observation

None of these are the supposed default of “advantage-class
algorithms running on advantage-class Rigetti hardware”.

Eric Peterson quilc The Rigetti Quil compiler

quilc in the wild

Newbies

Likes Simply-described quantum programs.
Wasting spatial resources.

Dislikes Hardware limitations.

(Academic) compiler authors

Likes Writing papers.
Doing A/B comparisons.

Dislikes Being locked into a feature.
Being locked into several features.

Important observation

None of these are the supposed default of “advantage-class
algorithms running on advantage-class Rigetti hardware”.

Eric Peterson quilc The Rigetti Quil compiler

quilc in the wild

Newbies

Likes Simply-described quantum programs.
Wasting spatial resources.

Dislikes Hardware limitations.

(Academic) compiler authors

Likes Writing papers.
Doing A/B comparisons.

Dislikes Being locked into a feature.
Being locked into several features.

Important observation

None of these are the supposed default of “advantage-class
algorithms running on advantage-class Rigetti hardware”.

Eric Peterson quilc The Rigetti Quil compiler

quilc in the future

Interoperability: ECL and C-style bindings.

Pulse-level control: quilc to extend downward: everything but
the back-most piece of the compiler backend.

Higher-level constructs: Hamiltonians instead of circuits,
projection operators instead of σz–basis MEASUREs,
automatic mechanisms to trade more resources for
increased connectivity / stability /

“Exotic” gatesets: XY(θ), Google’s goofy gate,

Eric Peterson quilc The Rigetti Quil compiler

Thank you!!
http://github.com/rigetti/quilc

http://rigetti.com
http://chromotopy.org

Eric Peterson quilc The Rigetti Quil compiler

