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Abstract. In this talk, we’ll introduce the field of chromatic homotopy theory, which is where all the major
advancements on the πS

∗ problem have come from in the past 30+ years. Our express goal will be to study

the Picard groups of the K(n)-localized stable categories, but to even make sense of that we’ll have to go
on a fairly deep safari through chromatic homotopy. Technical aspects will be mostly kept to a minimum,

but some passing familiarity with algebraic geometry will help.

1. Introduction

In algebraic topology, we compute algebraic invariants of topological spaces. The most routinely useful
of these invariants, called homology theories, satisfy a kind of locality: given a decomposition of the space
in question, one should be able to reconstruct the invariant assigned to the total space by studying the
invariants assigned to the pieces in the decomposition, together with the structure of the decomposition
itself. It turns out that all invariants assigned in this way are “stable” in the following sense: a classical
decomposition of a space is to turn it into a collection of sewn-together cells, which are unit disks in Rn.
From a space X so decomposed, we can build a new space ΣX which contains all the same cells and attaching
data as that of X, but with all of the cell dimensions shifted up by 1. Then, the invariant assigned to ΣX
is exactly that assigned to X, shifted up by one. Many interesting invariants fit into this framework, and
the study of stable homotopy theory is the study of this collection of invariants and how they relate to one
another.

The homotopy groups of spheres (i.e., the homotopy classes of maps Sn → Sm) are a hugely intractable
object. While it’s likely we’ll never have full information about them, the size of the understood sector is
a good yardstick for progress made in the field. Over the past few decades, all of the major advances in
this problem have come from a single place: chromatic homotopy theory. Our goal in this talk is to visit
the major components of chromatic homotopy, driven by a particular application, and hopefully to spark
some interest in the subject. The topology involved will be standard fare for these talks, but the algebraic
geometry requirements will be much steeper than usual.

2. Morava’s portrait

The starting point of this subject is with MU , the homology theory of complex bordism. While complex
bordism has a geometric construction and interpretation in terms of bordism classes of stably almost-complex
manifolds, we will be interested in an entirely different interpretation, uncovered in the ’60s:

Theorem 1 (Quillen). The stackification of the groupoid-valued functor corepresented by the Hopf algebroid
(MU∗,MU∗MU) is MFG, the moduli of commutative, one-dimensional formal Lie groups1. Moreover, the
output MU∗X of the homology theory MU can be reinterpreted as a quasicoherent sheaf MU(X) on MFG.

This theorem is remarkable on its own, in that it’s surprising that something geometrically defined has a
connection to such a strange algebraic object. What is truly inspiring is how good this connection is:

Theorem 2 (Adams, Novikov). There is a conditionally convergent spectral sequence H∗(MFG;MU(X))⇒
π∗X. As MU(S) is the structure sheaf of MFG, there is a convergent spectral sequence H∗MFG ⇒ π∗S.

1A great many calculations in homotopy theory end up being organized by power series, and so it’s important to have some

geometric receptacle for them. This role is filled by formal affine n-space: Ân := colim SpecR[x1, . . . , xn]/〈xm1
1 , . . . , xmnn 〉, which

has the property that Hom(Ân, Âm) = {(f1, . . . , fm) | fi ∈ RJx1, . . . , xnK}. These appear naturally in algebraic geometry when
completing the ring of functions of a variety at a smooth point. An abelian n-dimensional formal Lie group is an abelian

group object structure on Ân; such things appear when completing an algebraic group at the identity, and the algebraic group’s

multiplication and inversion laws Taylor expand to appropriate power series satisfying the group axioms.
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So, given this spectral sequence, one thing we might do to inform our understanding of the stable category
is to study the structure ofMFG. Any facts, qualitative or quantitative, about its cohomology will translate
rather directly into statements about stable homotopy groups of spaces. Digging through the literature of
arithmetic geometry, we find several results, provided we first localize at an odd prime p; from now on,
everything will be assumed so local.

Theorem 3 (Cartier). There is2 a unique closed substack Sn ⊆MFG for each nonnegative codimension n.
(While we’re at it, we notate Un =MFG \ Sn and in : Un →MFG the inclusion.)

Figure 1. A diagram of MFG: the gray is S0, the green is S1, the yellow is S2, and the
red is the completion of U2 along U2 ∩ S1.

Moreover, this structure is reflected in the existence of several interesting cohomology theories:

Theorem 4 (Johnson, Morava, Ravenel, Wilson, etc.). There exist cohomology theories P (n), E(n), and
K(n) modelling3 Sn, Un, and the unique geometric point of Sn \ Sn+1 respectively.

To understand the sheaf cohomology H∗(MFG;MU(X)), then, we might employ this descending filtration
of the base to divide the problem into easier bits. These spectra realize the various morphisms of (sub)stacks
in play, but to make use of them we still need to understand sheaves supported on Sn and how to push and
pull sheaves around. The first piece of this is fairly easy to describe:

Theorem 5 (Hopkins, Smith). Let Cn denote4 the category of finite spectra X for which K(n− 1)∗X = 0.
This is closed under cofibrations, weak equivalences, and retracts. There is a tower

· · · ⊆ Cn ⊆ Cn−1 ⊆ · · · ⊆ C1 ⊆ C0.

In Morava’s picture, X ∈ Cn corresponds to a sheaf supported on Sn. Moreover, we have the following useful
detection property: the ground ring of K(n)-homology is K(n)∗ = Fp[v±n ]. A finite spectrum X is in Cn if

and only if it has a map fn : X → Σ|vn|NX such that K(n)∗(fn) = vNn · − for some N ∈ N.

Then, in the 70s, p-primary homotopy theory was coming into its own with giants like Serre who very
successfully computed the homotopy of various spaces once all the q-torsion, q 6= p, was stripped out. A
lot of effort then went in to actually building spaces modelling the resulting homotopy groups. This was
originally accomplished by Sullivan, and a broad generalization was subsequently suggested by Adams: fixing

2Actually, this theorem and all the consequences we draw from it belong to the moduli of p-typical formal group laws. In
topology, this is reflected by a multiplicative splitting LpMU '

∨
Σ∗BP , where BP , short for Brown-Peterson, is yet another

cohomology theory. The p-localized moduli of formal groups also splits into a sum of isomorphic summands, and the unshifted

such summand is the moduli of p-typical formal groups. It is not worth paying attention to that distinction here.
3It’s orthogonal to the purpose of this talk, but topologists may be comforted by seeing the coefficient rings of these spectra.

The largest one is BP , with π∗BP = Z(p)[v1, . . . , vn, . . .] with |vi| = 2(pi−1). For P (n), we have π∗P (n) = Z(p)[vn+1, . . .]. The

complement is π∗E(n) = Z(p)[v1, . . . , vn−1, v
±
n ]. Finally, the quotient field of the index-shifted intersection is π∗K(n) = Fp[v±n ].

4This is also commonly written 〈K(n− 1)〉, using the notation of Bousfield classes.
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a homology theory E, to each space X there should exist a fiber sequence GEX → X → LEX, where GEX
is E-acyclic and [Y,LEX] = 0 for any E-acyclic Y . Adams’ original statement of this idea had serious
set-theoretic difficulties, which were successfully sorted out by Bousfield. Bousfield localization interacts
very well with Morava’s picture:

Theorem 6. The localization functor LE(n) corresponds to the functor Rin∗◦i∗n on sheaves. The localization
functor LK(n) corresponds to the completion of Un along Un ∩ Sn−1.

Stable homotopy theory Algebraic geometry

MU (or really BP ) MFG

LpX quasicoherent sheaf / complex of sheaves
LpF for F finite finite complex of q.c. sheaves
LpS OMFG

homotopy groups hypercohomology
P (n) substratum Sn ⊆MFG of codimension n
E(n) Un =MFG \ Sn
K(n) total quotient field of Un+1 ∩ Sn
category Cn subcategory of sheaves supported on Sn
functor LE(n) functor Rin∗ ◦ i∗n
functor LK(n) completion of Un+1 along Un+1 ∩ Sn
...

...
smash product tensor product
function spectra sheaf RHom(A∗, B∗)
chromatic tower the Cousin complex
...

...

Figure 2. The Morava-Hopkins dictionary.

3. Calculations of two Picard groups

The stable homotopy category is symmetric monoidal with respect to the smash product ∧ and with unit
S, the sphere spectrum. One thing we like to do in unital monoidal categories is to compute their Picard
groups, which for us is

Pic = {X ∈ Spectra | ∃X−1 ∈ Spectra, X ∧X−1 ' S}.

The answer, it turns out, is familiar:

Theorem 7. Pic = {Sn | n ∈ Z} ∼= Z.

Proof. Applying the Künneth formula to X ∧X−1 ' S, we know that H∗(X) = Z in some dimension k ∈ Z,
giving a homology isomorphism Sk → X in the Postnikov tower of X. Similarly, there is a map S−k → X−1,
and smashing through with ΣkX gives a second map X → Sk, and together the two split X as X = Sk ∨A.
Similarly, X−1 = S−k ∨ B. We compute S = X ∧X−1 = S ∨ Σ−kA ∨ ΣkB ∨ (A ∧ B), and so, as the stable
homotopy groups of spheres are finitely generated, we must have π∗A = π∗B = 0, and hence A = B = pt. �

We saw in the previous section that the filtration onMFG gives rise to a number of interesting localizations
of the whole stable category, and so we turn our attention to the categories of K(n)-local spectra. These
categories also carry a symmetric monoidal structure: while given K(n)-local X and Y it is not guaranteed
X ∧Y will be again K(n)-local, we can make it so by defining X ∧K(n) Y := LK(n)(X ∧Y ). We can then ask
a similar question to before: what is Picn, the Picard group of the K(n)-localized stable category? First, we
have the following general characterization:

Theorem 8. For X a K(n)-local spectrum, X is invertible if and only if dimK(n)∗X = 1.
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Proof sketch. The rightward implication is handled by K(n)-homology Künneth isomorphisms. For the
leftward implication, we guess5 the inverse Y = F (X,LK(n)S0) with its evaluation map X ∧ Y → S0. One
shows that this is an isomorphism on K(n)-homology, and hence an equivalence after K(n)-localization; this
is argued by replacing S0 with an arbitrary spectrum Z and reasoning about the class of such Z for which
such an isomorphism exists. �

Now, we need some spectra to work with:

Lemma 9. Consider the cofiber sequence

S0 pj−→ S0 →M0(pj)

defining the “Moore spectrum” M0(pj). There are maps M0(pj)
ij,k−−→ M0(pk) for j < k which limit to give

a K(n)-local equivalence colimjM
0(pj) = M0(p∞) ' S1.

Proof. We compute K(n)∗M
0(pj) to have copies of K(n)∗ in degrees 0 and 1. Each stage in this system

is an isomorphism on the top copy and the zero map on the bottom copy, and so in the limit we have
dimK(n)∗M

0(p∞) = 1, so certainly it is invertible. But, we can say more: by limiting over n through
the defining cofiber sequences as n grows large, we produce a fiber sequence S0 → p−1S0 → M0(p∞). The
middle object is K(n)-acyclic, and hence M0(p∞)→ S1 is a K(n)-local equivalence. �

Since we’re coning off the v0-self-map on S0 to build the Moore spectrum, they are members of C1 and
as such admit v1-self-maps.

Construction 10. Let 0 ≤ λi < p be the digit sequence of some p-adic integer a ∈ Z∧p with truncations

an =
∑n
i=0 λip

i. Then, we form a sequence of spectra using the recipe:

M−1(p)
v
λ0
1−−→M−|v1|a0−1(p)

i1,2−−→M−|v1|a0−1(p2)
v
pλ1
1−−−→M−|v1|a1−1(p2)

i2,3−−→ · · · .

The homotopy colimit of this sequence is denoted S−|v1|a.

Lemma 11. The spectrum S−|v1|a is a K(1)-locally invertible spectrum. If a ∈ Zp is an ordinary integer,

then the limit of this system is M−|v1|a−1(p∞) 'K(n) S−|v1|a.

Proof. Taking K(1)-homology interacts well with homotopy colimits, and so we can can actually calculate
dimK(1)∗S−|v1|a = 1. Second, if a is an ordinary integer, then λi = 0 for large i, and the system degenerates
to one we have already described. �

Theorem 12 (Hopkins, Mahowald, Sadofsky). This is essentially all of Pic1; we also have to take into
account shifts by the spheres S1, . . . ,S|vn|, and so in total we have the computation Pic1 = Z∧p × Z/(2p− 2).
In general, a similar construction gives an embedding Z∧p → Picn.

Indication of proof. Define the Morava module6 of X by K1,∗(X) := limn(KU∧p )∗(X ∧M0(pn)). It turns

out that X ∈ Pic1 if and only if K1,∗(X) ∼= K1,∗(Sk) for some k. When K(1)∗X is even-concentrated, we

say X lies in the subgroup Pic0
1, and we reduce to the case k = 0 when identifying its Morava module.

For a topological generator γ ∈ (Z∧p )×, we define ev(X) to be the eigenvalue of the completed Adams

operation ψγ on K1,0(X), which fairly clearly determines an injective homomorphism Pic0
1 → (Z∧p )×. That

ev is also surjective requires more work, but boils down to considering truncations of ev(X) and building a
“convergent sequence;” in the end this gives an isomorphism Pic0

1
∼= (Z∧p )× ∼= Z∧p × Z/(p − 1). Lastly, the

sequence Pic0
1 → Pic1 → Z/2 is seen to not be split. �

5It’s worth emphasizing that this really is a guess. There is not, to my knowledge, a general criterion ensuring that the dual
of a dualizable spectrum is the inverse in the monoidal structure, but it is often true and so seems like a place to start.

6This is a cousin of Morava E-theory, if that helps.
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4. Continuity of the Picard group

There are many features of this answer that are remarkable, but first and foremost we see that Pic1

comes with a topology induced by7 picking off the eigenvalue of ψγ , or by the embedding of Z∧p , which is
not something expected from the definition. In general, where does the topology on Picn come from? At
integers n larger than 1, the description of K(1) and K1,∗ in terms of complex K-theory breaks down, and so
we lose the Adams operations with which we previously made our analysis. One idea is to use the collection
of (generalized) Moore spectra, by which the presently known elements of Picn are constructed, to filter the
group. Though we haven’t discussed this point here, this idea already surfaces in the construction of the
Morava spectral sequence H∗(Sn;Kn,∗F ) ⇒ π∗LK(n)F , which, among other things, encodes an algebraic
approximation to the Picard group as computed through continuous group cohomology.

Question 13. How can we describe the topology on Picn in general? How does it interact with these two
known topologies, coming from Z∧p → Picn and from the algebraic Picard group?

Given that the Picard group of the whole stable category is exactly the sphere spectra, which we use
to define homotopy groups of spaces, for a K(n)-local space we might define πλX = [Sλ, X], where Sλ is
the invertible spectrum corresponding to a point λ ∈ Picn. Putting these two thoughts together, then, the
natural question is: is the topology on Picn reflected in some kind of continuity of the functors πλ(−) as λ
varies? Again taking a cue from arithmetic geometry, one thing we might try is to construct a single module
πX over a ring Λ, to be thought of as Λ ≈ WFpn JPic∗nK, the completed monoid-ring of continuous WFpn -
valued functions on the topologized group Picn. Then, each element λ ∈ Picn should have a corresponding
Λ-module λ̃ selecting it, such that πX ⊗Λ λ̃ ∼= πλX.

This is a bit complicated, so it is worth saying what this would mean in the untopologized case: writing
G = Z for the indexing set and R = Z for the ground ring, we assemble the homotopy groups of X into the
single module M =

⊕
g∈G πgX. Then, we have an action of R[G∗] on M by the formula

(rf) ·
∑
g∈G

pg =
∑
g∈G

rf(g) · pg,

where f ∈ G∗ is a set theoretic function G → R. For any g ∈ G we can produce an R[G∗]-module
g̃ ∼= R picking out the copy of R ⊆ R[G∗] corresponding to the characteristic function on {g}. This gives
M ⊗R[G∗] g̃ = πgX.

This setup becomes nontrivial when G carries a topology and we restrict to considering only continuous
functions f : G → R. In particular, there is not a näıve construction of g̃, since characteristic functions
are not continuous — instead, a bump function peaking at g maybe also collect some information from the
homotopy groups nearby. The assertion, then, that πX ⊗R[G∗] g̃ = πgX becomes highly nontrivial.

Question 14. Does there exist a ring Λ, Λ-modules λ̃, and an Λ-module πX such that the above is true?

One key thing to note about this line of thought is that Λ will be a fairly reasonable ring from the
perspective of commutative algebra. Compare this with the setting of classical homotopy theory: we have
two basic ring actions on the graded groups π∗X: that of Z and that of π∗S. In the first instance, there is
basically nothing to say, since a Z-module is exactly an abelian group. In the second instance, the ring π∗S
is so miserable to an algebraist, with its immense amounts of torsion and nilpotence, that almost nothing
can be inferred about structure inherited by π∗X. On the other hand, in this new setting, we replace the
Z-action on π∗X by a Λ-action on πX. Unlike Z, the ring Λ is quite complicated, and unlike π∗S it is quite
nice, hence one could expect its structure to reveal a lot about the structure of πX. As a testing ground,
this can be manually built to work in the case of Pic1, where on its own it very neatly captures important
qualitative descriptions connecting im J and π∗LK(1)S1.

7Of course, it’s not obvious that this is independent of γ, and there does not näıvely appear to be a canonical choice of γ.
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