
Eric Peterson and Peter Karalekas @ European Lisp Symposium XIV, 3 May 2021

aether
Distributed system emulation in Common Lisp

Motivation: Steering quantum electronics

 
↑ Typical control electronics, Ryan et al., BBN

 “Chandelier”, Rigetti Comp. ➝

https://arxiv.org/abs/1704.08314

Motivation: Steering quantum electronics
The basic problem

• Situation: Quantum errors look like lines, 
but the electronics only get notified about 
endpoints.

Motivation: Steering quantum electronics
The basic problem

• Situation: Quantum errors look like lines, 
but the electronics only get notified about 
endpoints.

• Task: Reconstruct the lines given just the 
endpoints. (Ambiguous, but tolerates 
approximate answers.)

Motivation: Steering quantum electronics
The proposed solution: the Blossom algorithm, sorta

• Situation: Quantum errors look like lines, 
but the electronics only get notified about 
endpoints.

• Task: Reconstruct the lines given just the 
endpoints. (Ambiguous, but tolerates 
approximate answers.)

• Engineering: Run on this kind of system ➝  
and maintain bounded resource use even 
as it scales.

Towards aether
Objectives

• Software: Make precise Fowler’s proposal for an algorithmic solver

• Hardware: Emulate its execution on “generic” hardware

• Instrumentation: Check the claimed properties w/r/t resource usage

• More hardware: Increase emulation fidelity, uncover architecture restrictions

aether
Distributed system emulation in CL

• Time-domain simulation: Flexibly process discrete time-ordered events
• Networking:
• “Physical” courier layer for simulating congestion, routing, …

• “Logical” message layer for robust communication between actors

• Actor framework: Heterogeneous components in communication

• Describe transitions for individual hardware components

• Describe hardware-opaque application components

aether by example
Coloring a line w/ three colors

(defclass process-coloring (process)
 ((color :type (integer 3) ...)
 (neighbors :type list ...))) ; of addresses

aether by example
Coloring a line w/ three colors

(defclass process-coloring (process)
 ((color :type (integer 3) ...)
 (neighbors :type list ...))) ; of addresses

(defstruct (message-color-query
 (:include message)))

(define-rpc-handler handle-message-color-query
 ((process process-coloring)
 (message message-color-query)
 now)
 (process-coloring-color process))

(define-message-dispatch process-coloring
 (message-color-query
 'handle-message-color-query))

aether by example
Coloring a line w/ three colors

(defclass process-coloring (process)
 ((color :type (integer 3) ...)
 (neighbors :type list ...))) ; of addresses

(defstruct (message-color-query
 (:include message)))

(define-rpc-handler handle-message-color-query
 ((process process-coloring)
 (message message-color-query)
 now)
 (process-coloring-color process))

(define-message-dispatch process-coloring
 (message-color-query
 'handle-message-color-query))

(define-process-upkeep
 ((process process-coloring) now) (START)
 (process-continuation process `(QUERY)))

(define-process-upkeep
 ((process process-coloring) now) (IDLE)
 (process-continuation process `(IDLE)))

aether by example
Coloring a line w/ three colors

(defclass process-coloring (process)
 ((color :type (integer 3) ...)
 (neighbors :type list ...))) ; of addresses

(defstruct (message-color-query
 (:include message)))

(define-rpc-handler handle-message-color-query
 ((process process-coloring)
 (message message-color-query)
 now)
 (process-coloring-color process))

(define-message-dispatch process-coloring
 (message-color-query
 'handle-message-color-query))

(define-process-upkeep
 ((process process-coloring) now) (START)
 (process-continuation process `(QUERY)))

(define-process-upkeep
 ((process process-coloring) now) (IDLE)
 (process-continuation process `(IDLE)))

(define-process-upkeep
 ((process process-coloring) now) (QUERY)
 (let (listeners)
 (with-slots (color neighbors)
 process
 (setf color (random 3))
 (setf listeners
 (send-message-batch
 #'make-message-color-query
 neighbors))
 (with-replies (replies) listeners
 (when (member color replies)
 (process-continuation process `(QUERY))
 (finish-with-scheduling))
 (process-continuation process `(IDLE))))))

aether by example
Coloring a line w/ three colors

(dolist (node-count '(2 4 8 16 32 64 128 256 512))
 ;; ... loop over trials for statistical average ...

 (let (couriers nodes simulation canaries)
 ;; ... instantiate sim, couriers ...

 ;; install courier events
 (loop :for courier :across couriers
 :do (simulation-add-event simulation
 (make-event :callback courier
 :time 0)))

 ...))

aether by example
Coloring a line w/ three colors

(dolist (node-count '(2 4 8 16 32 64 128 256 512))
 ;; ... loop over trials for statistical average ...

 (let (couriers nodes simulation canaries)
 ;; ... instantiate sim, couriers ...

 ;; install courier events
 (loop :for courier :across couriers
 :do (simulation-add-event simulation
 (make-event :callback courier
 :time 0)))

 ;; build nodes within couriers
 (dotimes (j node-count)
 (let ((*local-courier* (aref couriers j)))
 (setf (aref nodes j)
 (spawn-process 'process-coloring))
 (simulation-add-event
 simulation
 (make-event :callback (aref nodes j)
 :time 0))))

 ...))

aether by example
Coloring a line w/ three colors

(dolist (node-count '(2 4 8 16 32 64 128 256 512))
 ;; ... loop over trials for statistical average ...

 (let (couriers nodes simulation canaries)
 ;; ... instantiate sim, couriers ...

 ;; install courier events
 (loop :for courier :across couriers
 :do (simulation-add-event simulation
 (make-event :callback courier
 :time 0)))

 ;; build nodes within couriers
 (dotimes (j node-count)
 (let ((*local-courier* (aref couriers j)))
 (setf (aref nodes j)
 (spawn-process 'process-coloring))
 (simulation-add-event
 simulation
 (make-event :callback (aref nodes j)
 :time 0))))

 ;; ... set up each node's neighbors ...

 ;; define simulation stopping condition
 (dolist (node nodes)
 (push (lambda (now)
 (equalp `((IDLE))
 (process-command-stack node)))
 canaries))

 ;; spin up simulation, run until everyone's stopped
 (simulation-run
 simulation
 :canary (apply #'canary-all canaries))

 ...))

aether by example
Coloring a line w/ three colors

(dolist (node-count '(2 4 8 16 32 64 128 256 512))
 ;; ... loop over trials for statistical average ...

 (let (couriers nodes simulation canaries)
 ;; ... instantiate sim, couriers ...

 ;; install courier events
 (loop :for courier :across couriers
 :do (simulation-add-event simulation
 (make-event :callback courier
 :time 0)))

 ;; build nodes within couriers
 (dotimes (j node-count)
 (let ((*local-courier* (aref couriers j)))
 (setf (aref nodes j)
 (spawn-process 'process-coloring))
 (simulation-add-event
 simulation
 (make-event :callback (aref nodes j)
 :time 0))))

 ;; ... set up each node's neighbors ...

 ;; define simulation stopping condition
 (dolist (node nodes)
 (push (lambda (now)
 (equalp `((IDLE))
 (process-command-stack node)))
 canaries))

 ;; spin up simulation, run until everyone's stopped
 (simulation-run
 simulation
 :canary (apply #'canary-all canaries))

 ;; get the stopping time
 (simulation-horizon simulation)))

; Coloring 4 nodes took 8.952 ticks on average (σ = 6.7618)
; Coloring 8 nodes took 13.898 ticks on average (σ = 8.1636)
; Coloring 16 nodes took 20.114 ticks on average (σ = 10.161)
; Coloring 32 nodes took 24.602 ticks on average (σ = 10.003)
; Coloring 64 nodes took 30.482 ticks on average (σ = 10.125)
; Coloring 128 nodes took 34.502 ticks on average (σ = 9.1873)
; Coloring 256 nodes took 39.608 ticks on average (σ = 9.9049)
; Coloring 512 nodes took 44.954 ticks on average (σ = 9.9954)

aether in Practice
Debugging

• Swank / SLIME:
• Common Lisp already has a really nice debugging system!

• Direct manipulation of world state when you want it

• Structured logging:

• Programmatically trace call effects

• Inspect temporal ordering / temporal windows

• Dereferencing:

• Break address / actor opacity

• Time-domain manipulation:
• Inject new events and latency to explore race conditions

aether in Practice
Instrumentation

• Network pressure:

• Message counting

• Message queue depth

• Interface use

• Computational pressure:

• Live (/ non-blocked) process count

• Actor command hit counts

aether in Practice
Instrumentation

Thank you!

https://github.com/dtqec/aether

