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ABSTRACT. Classical K–theory ranks among the most well-studied objects in homotopy theory, and its many rich struc-
tures enjoy interpretations which are simultaneously geometric and algebraic. The “chromatic” perspective on homotopy
theory promotes the organization of such algebraic information through algebraic geometry and uses this to highlight
useful patterns and generalizations. I’ll explain how such techniques apply to K–theory, including a sketch of how they
show the existence of the complex σ–orientation, and then speculate about how a computation joint with Hughes and Lau
suggests the presence of an interesting new sequence of infinite loopspaces over BU [2k ,∞).

1. FORMAL SCHEMES FOR SPACES

The main goal of this talk is to communicate a way to organize computational results from algebraic topology
in your head. If you flip back through the literature in the 70s and 80s (and we will do some of that ourselves in a
moment), you’ll find yourself very envious of such a system. People back then were writing these enormous papers
with enormous manipulations of enormous formulas, and there was a real industry built around having sufficient
facility with, say, the formula for the right–unit for Brown–Peterson cohomology, or with being adept with multi-
index bookkeeping. This was very hard work then, and it’s fairly hard work now to go back and try to understand
what these topologists were up to. Attempting to untangle any of it will imbue you with an immediate appreciation
for any kind of method that will allow you to compress one of these results into a small space.

I don’t know who first considered the following method, but I do know that the majority of its appearance in
the literature is connected, directly or indirectly, to Neil Strickland. The essential idea is to directly apply algebraic
geometry to the situation: rather than associating to a space X the cohomology ring E∗X , we go one step further and
associate the scheme Spec E∗X (over Spec E∗). There’s a clear caveat here: algebraic geometry interprets commutative
rings, so E∗ and E∗X had better be commutative, and the easiest way to enforce this is by restricting attention to
spaces with E∗X even–concentrated. Secondly, it turns out to be useful to remember some of the topological structure
associated to the original space: the sorts of X we consider in homotopy theory are all “CW”, and the “C” means
that they’re exhausted by their compact subspaces: X = colimα{Xα}α. The cohomology E∗Xα of any one of these
individual spaces is a finite-dimensional E∗–algebra,1 and so we form a formal scheme from the system

XE := Spf E∗X := {Spec E∗Xα}α.

The prototypical example of this construction is its value on X =CP∞ for ordinary cohomology E =HFp . As
X has a presentation as a cell complex, it’s sufficient to take the subsystem of finite subcomplexes to define XE . In
this case, the finite subcomplexes are Xn =CPn , with cohomology HF∗pCPn = Fp[x]/xn+1, and so altogether

CP∞HFp
= bA1
Fp

,

where bA1
R = Spf R¹xº is the “formal affine line”.2 We can make two immediate further observations:

(1) The condition that a cohomology theory E admit an isomorphism E∗CP∞ ∼= E∗¹xº is called the complex–
orientability of E . In our language, E being complex orientable exactly means thatCP∞E is (non-canonically)
isomorphic to a formal affine line.

(2) The space CP∞ = BU (1) has a map classifying the tensor of complex line bundles:

CP∞×CP∞
⊗−→CP∞.

1Actually, some care is required here, since Xα need not all have even–concentrated cohomology even if X does. In the examples of interest,
this won’t be an issue — for instance, it suffices for H∗X to be even and torsion–free. I’d advise you to ignore the wrinkle for now.

2For that matter, a prototypical formal scheme comes from taking the germ of a point in a Noetherian scheme.
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Just by checking degrees, one can calculate that the induced map

CP∞HFp
×CP∞HFp

→CP∞HFp

acts on points by (x, y) 7→ x + y, and so a yet better name for CP∞HFp
is ÒGa . In general, when E is complex–

orientable CP∞E carries the structure of a commutative 1–dimensional smooth formal group.3

2. A SECOND EXAMPLE: BU (n)E
To a certain crowd, illustrating features of this functor as applied toCP∞ is old hat; anytime complex orientations

are mentioned, formal group laws also arise, and we really weren’t exploring anything beyond that. The thesis I want
to advance is that Neil’s construction continues to be useful when applied to other spaces too, and for slightly more
serious example in the same vein we’ll explore the spaces BU (n).

2.1. BU (n)E ∼= bAn . The space BU (n) classifies complex vector bundles of rank n; suppose that we have such a
bundle V over a space X . Associated to V we can form its fiberwise projectivization P(V ), which is a CPn−1–
bundle over X . The space P(V ) itself comes equipped with a canonical line bundle, and hence a map

P(V )
pV−→X ×CP∞.

Theorem. When E is complex oriented and E∗X is even, the induced map E∗X –module map takes the form

E∗(X ×BU (1)) E∗P(V )

E∗X ⊗ E∗¹xº E∗X ⊗ E∗¹xº/〈c∗(V ), of degree n〉.

Using this theorem, we define the Chern classes of V by

0= xn − c1(V )x
n−1+ c2(V )x

n−2+ · · ·+(−1)n cn(V ).

This polynomial is called c∗(V ), the total Chern class of V ; it is a monic polynomial generating the ideal corresponding
to the quotient ring E∗P(V ). A second basic theorem declares that these classes c j account for all of E∗BU (n):

Theorem. A complex orientation of E begets an isomorphism E∗BU (n)∼= E∗¹c1, . . . , cnº.

In our language, this allows us to identify the formal scheme BU (n)E as the smooth formal scheme BU (n)E ∼= bAn .

2.2. BU (n)E ∼= Div+n CP∞E . We can do better than this. Applying our formal scheme functor to pV , the same
theorem asserts that P(V )E → XE ×CP∞E is a closed inclusion, i.e., an effective divisor of degree n on CP∞E , or a
E∗X –point of Div+n CP∞E .

Theorem. A complex orientation of E begets an isomorphism BU (n)E ∼=Div+n CP∞E .

Let’s take the time to show that this is a serious description, carrying much more information that you might think.
To begin, recall that iterated projectivization can be used to prove the following essential theorem:

Theorem (Splitting principle). Suppose V ↓ X is a rank n complex vector bundle on X . There exists a natural space
f : Y →X over X for which . . .

(1) . . . the induced map f ∗ : E∗X → E∗Y is an injective map of rings.
(2) . . . the pullback bundle f ∗V has a canonical splitting into complex lines:

f ∗V ∼=
n
⊕

j=1

L j .

That is, the classifying map X → BU (n) lifts across the direct sum map
n times

︷ ︸︸ ︷

BU (1)× · · ·×BU (1) ⊕−→ BU (n).

3The reader is invited to check CP∞KU
∼=ÒGm .
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Applying the splitting principle to V and using properties of the total Chern class c∗, we then have

c∗( f
∗V ) = xn − f ∗c1(V )x

n−1+ · · ·+(−1)n f ∗cn(V ) = c∗

 

n
⊕

j=1

L j

!

=
n
∏

j=1

c∗(L j ) =
n
∏

j=1

(x − c1(L j )).

These are called the “Chern roots” of c( f ∗V ), and it’s now plain that the splitting principle is a topological lift of
the factorization of the Chern polynomial. The space Y enlarges the cohomology ring to be sufficiently solveable
so that roots exist, and then additionally the roots are realized by complex lines. This digression is meant to provide
some intuition about how the isomorphism BU (n)E ∼= Div+n CP∞E behaves: the point corresponding to a vector
bundle V is mapped to the divisor which, after sufficient base extension, is given by the formal sum of its Chern
roots.

Additionally, the spaces BU (n) come with formal sum and tensor product operations:

BU (n)×BU (m) ⊕−→ BU (n+m), BU (n)×BU (m) ⊗−→ BU (n ·m).

The first of these is easy to account for: the total Chern class has c∗(V ⊕W ) = c∗(V ) · c∗(W ), so the induced map

BU (n)×BU (m) BU (n+m)

Div+n CP∞E ×Div+mCP∞E Div+n+mCP∞

⊕

+

sends a pair of divisors to their formal sum. The tensor product is easiest to describe through the splitting principle:

c(V ⊗W ) = c

  

n
⊕

j=1

L j

!

⊗
�

m
⊕

k=1

Hk

�

!

=
∏

j ,k

c(L j ⊗Hk ).

From the example at the top of the hour, we know what the Chern polynomial of a tensor product of lines corre-
sponds to: we’re using the group structure of CP∞E to build the formal sum

 

n
∑

j=1

[a j ]

!

·
�

m
∑

k=1

[bk]
�

=
∑

j ,k

[a j + bk].

Collectively, these isomorphisms efficiently describe a ring scheme structure on
∐

n Div+n CP∞E reflecting all of the
structure on the cohomology rings E∗BU (n).

3. kU 2k

Given these descriptions, it’s easy to take the colimit in n to get a description of BUE : just as BU classifies stable
vector bundles of virtual rank zero, BUE

∼= Div0CP∞E classifies stable divisors of virtual weight zero. Eliminating
this weight condition, we also have (BU×Z)E ∼=DivCP∞E . These two spaces suggest a new avenue of generalization,
as they are both spaces in the connective complex K–theory spectrum:

BU ×Z' kU 0, BU ' kU 2.

The next space in this sequence is also very accessible. It lies in a fiber sequence Does is map
kU 4 → kU 2 a
map of of infinite
loopspaces?

Does is map
kU 4 → kU 2 a
map of of infinite
loopspaces?

BSU BU BU (1)

kU 4 kU 2 CP∞.

det

For complex–orientable E , the associated Serre spectral sequence is collapsing and we have an induced short exact
sequence of group schemes

BSUE BUE BU (1)E

SDiv0CP∞E Div0CP∞E CP∞E ,
σ
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where σ is the summation map and “SDiv” denotes “special divisors”, i.e., those which sum to zero.
After this space, things get complicated quickly. The fiber sequence

K(Z, 3)→ BU [6,∞)→ BSU

has a somewhat accessible Serre spectral sequence, but the higher analogues do not. In his PhD thesis, Bill Singer
completed this calculation for mod– p cohomology using carefully iterated Eilenberg–Moore spectral sequences:

Theorem (Bill Singer; Bob Stong). Take E =HF2. There is an isomorphism

HF∗2(BU [2k ,∞)) =
HF∗2(BU )

F2[θ2i | σ2(i − 1)< k − 1]
⊗Op[Sq3 ι2k−3],

where “Op[Sq3 ι2k−3]” denotes the smallest sub-Steenrod-Hopf-algebra of HF∗2(K(Z, 2k − 3)) containing Sq3 ι2k−3 and
θ2i ≡ ci modulo decomposables.

This presentation does not suggest any geometric description. Instead, using as motivation the fact that “Div”
constructs a sort of free group scheme, Ando, Hopkins, and Strickland went looking for interesting free construc-
tions laying around. Taking powers of the natural map (L − 1) : BU (1)→ BU ' kU 2 gives an interesting map

BU (1)×k fk−→ kU 2k ' BU [2k ,∞).
Some properties of this map are evident: it is symmetric under permuting the domain, and restricting it to the
basepoint of any of the factors collapses the map. There is an interesting third property, most easily visible by
postcomposing to BU . There, the associated divisor (i.e., point in BUE ) takes the form 〈a1, . . . ,an〉 :=

∏

i ([ai ]−[0]).
We then compute:

〈a1, . . . ,an+1〉= ([0]− [a1])([0]− [a2])([0]− [a3])〈a4, . . . ,an+1〉
= ([0]− [a1])[a2]([0]− [a3])〈a4, . . . ,an+1〉+ 〈a1,a3, . . . ,an+1〉
= ([0]− [a1])([a2]− [a2+ a3])〈a4, . . . ,an+1〉+ 〈a1,a3, . . . ,an+1〉
= 〈a1,a2,a4, . . . ,an+1〉− 〈a1,a2+ a3,a4, . . . ,an+1〉+ 〈a1,a3,a4, . . . ,an+1〉

⇒ 〈a2, . . . ,an+1〉− 〈a1+ a2,a3, . . . ,an+1〉= 〈a1,a2,a4, . . . ,an+1〉− 〈a1,a2+ a3,a4, . . . ,an+1〉,

a kind of cocycle condition. The most important step of this computation is the transition from the second to the
third line: we used the fact that Div0CP∞E is an ideal for DivCP∞E . This informs the following lucky guess:

Theorem (Ando, Hopkins, Strickland). For even–periodic cohomology theories E and k ≤ 3,4 there is a diagram

BU (1)×k
E BU [2k ,∞)E

Ck := Symk
DivCP∞E

(Div0CP∞E ).

'

This is a hard theorem: not only does that map have to be checked to be an isomorphism, but the mere existence
of the symmetric power scheme needs to be checked. It’s also an incredible theorem: suppose that E is an elliptic
cohomology theory, so thatCP∞E comes with a chosen isomorphism to the formal group ÒC of some elliptic curve C .
The “theorem of the cube” in algebraic geometry applied to C furnishes us with a canonical point in M U [6,∞)E ,Expand this?Expand this?
i.e., a canonical multiplicative map M U [6,∞)→ E . Morally, as TMF is the “universal elliptic cohomology theory”,
one can take a homotopy inverse limit over the various choices of C to get a map

M U [6,∞)
σ
−→TMF.

This map indeed exists and is the complex–geometric version of “the σ–orientation” or “Witten’s string genus”.
The construction of this canonical point in M U [6,∞)E uses in an essential way the schematic description, and it’s
difficult to conceive of finding the homotopy theoretic instantiation of this map without employing this language.

4At k = 2, this scheme is not obviously equivalent to the SDiv0 description above. To explain: the map δ factors through kerσ = SDiv0
ÒG;

we will define an inverse φ. Set φn(a) for a tuple a ∈ ÒGn to be φn(a) =
∑n

j=1[σ(a< j ),a j ]. This turns out to be Σn–invariant, so one can write

φ∞. This map has φ∞(a+ b ) =φ∞(a)+φ∞(b )+ [σ(a),σ(b )], so for a and b in ker(σ) it is a homomorphism. This is the desired inverse.
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You’ll also notice that we didn’t gain many new cases with this theorem: we already understood kU 2k for k ≤ 2,
and the Ando–Hopkins–Strickland theorem applies to k ≤ 3. At k = 4, we can already see what’s getting in the
way: the odd–degree class Sq7 Sq3 ι2k−3 becomes nonzero for the first time when k = 4, and the connection to formal
geometry collapses in the presence of odd–degree information. Nonetheless, the schemes Ck continue to exist, and
one can investigate them in their own right.

Theorem (Hughes, Lau, P.). For E = HF2, the Cartier–dual scheme C k = D(Ck ) has an explicit and efficient presen-
tation which can be computed as far as out as one cares. (It isn’t very pretty, though.)

Formal geometry or not, the class fk still exists, and it induces a map

OC k f ′k−→ (HF2)∗BU [2k ,∞).
Given our explicit presentation, we can attempt to analyze this map. Since the source is an even–concentrated Hopf
algebra, its image in the target will also consist of even classes. However, Singer’s calculation indicates that restricting
to the subalgebra of even classes in the target is not sufficient to make f ′k an isomorphism. Instead, there appears to
be one other item to take into account: the Steenrod algebraA∗ = OAut(ÒGa) naturally coacts on both sides.

Conjecture (Hughes, Lau, P.). The map f ′k is Aut(ÒGa)–equivariant. Restricting the target to the Steenrod–Hopf–
subalgebra of even classes which have even diagonals, this map becomes an isomorphism.

We’ve verified this computationally in thousands of bidegrees. I can’t imagine it isn’t true, but I don’t have a proof.
This modest conjecture naturally leads to a more seriously speculative question: is there an infinite loopspace X2k
over kU 2k realizing this factorization? I have no real feelings about this either way, but I do have a philosophical
soapbox to stand on. The platform of this talk is basically that algebraic geometry can be used to capture a lot of what
we do—and can even lead us to proofs of important ideas in homotopy theory, as with the σ–orientation. Faced with
the fact that these two computations don’t line up, we’re forced to admit one of two things: either formal geometry
isn’t quite capturing the natural object of complex K–theory and the formal geometry needs to be augmented, or
complex K–theory isn’t quite capturing the natural algebraic geometry and the spectrum needs to be augmented.

I’m tempted to give the latter viewpoint a fair shake. Geometers seem a little confused about what, morally,
comes after BU [6,∞) and BString= BO[8,∞). The Thom spectra for the spaces that come after also don’t really
seem to fit as nicely into homotopy theory; it’s known, for instance, that M O[9,∞) can’t participate in a (suitably
structured) orientation for the height 3 Morava E–theory. It sure would be interesting if there were some other
candidate spaces X2k with a tighter bond to algebraic geometry and so a better shot at achieving these goals.

Here are three immediate stray thoughts about these proposed spaces:
(1) The spaces X2k cannot themselves assemble into a single infinite loopspace. A result from the 1970s of Adams

and Priddy shows that any spectrum with BU [2k ,∞) as its zeroth space must be a shift of kU . This is a
neat paper; it works by “running the Adams spectral sequence backwards”. Borrowing cues from it could
turn up interesting results about, say, what the homotopy of X2k must look like.

(2) Old work of Steve Wilson gives a description of all sufficiently nice H–spaces local to a prime: they are
produces of spaces appearing as BP 〈m〉k in the Ω–spectrum for truncated Brown–Peterson theory. It would
probably be instructive to understand the cohomologies of these spaces (a calculation due to Kathleen Sink-
inson) and then to compare them with the ring of functions on C k .

(3) Incredibly, there are tools around (due to Alexander Zabrodsky) to delete odd classes from H–space while
preserving their H –spaceiness. These kinds of techniques could be useful here, but I suspect they’ll be too
crude to yield the kind of interesting result we’re looking for.
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