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ABSTRACT. Chromatic homotopy theory is an attempt to divide and conquer algebraic topology by studying a sequence of
what we’d first assumed to be “easier” categories. These categories turn out to be very strangely behaved — and furthermore
appear to be equipped with intriguing and exciting connections to number theory. To give an appreciation for the subject,
I’ll describe the most basic of these strange behaviors, then I’ll describe an ongoing project which addresses a small part of
the “chromatic splitting conjecture”. This talk is meant to contain something for the novice and for the expert.

1. AN APPARENT CONNECTION TO ARITHMETIC

In algebraic topology, we are very concerned with understanding the homotopy groups of spheres. It’s clear
at least why algebraic topologists are interested in these groups: they encode structural data about the way cell
complexes are assembled. They also seem to be extremely hard to compute — and so the sector we as a society
understand correlates to our technological maturity in algebraic topology. No large collection of them has been
computed without some corresponding major theoretical breakthrough.

To date, the most successful and encompassing program for organizing these groups goes under the banner of
“chromatic homotopy theory.” Chromatic homotopy theory makes central use of the homology theory BP , which
is a slight modification of p-localized complex bordism. Its coefficient ring is polynomial:

BP∗ =Z(p)[v1, v2, . . . , vn , . . .], |vn |= 2(pn − 1).

It is motivated to a large extent by an intensive study of the BP -Adams spectral sequence, in which one can spot a
great many patterns that are periodic against multiplication by powers of these generators vn . This, in turn, pushes
chromatic homotopy theorists to study the homology theories v−1

n BP as n varies, in an effort to understand these
patterns one at a time.1

Each of these homology theories v−1
n BP comes with its own Adams spectral sequence, and Bousfield’s theory of

localization shows that each of these spectral sequences converges to the homotopy of some spectrum LnS0. These
Ln functors come equipped with natural transformations Ln→ Ln−1, begetting a tower

· · · → LnX → Ln−1X → ·· · → L1X → L0X .

When X is a finite spectrum (in particular, when X = S0), there is an equivalence X(p) ' limn LnX , called “chromatic
convergence.” This is a sort of sanity theorem, reassuring us that organizing the homotopy groups of spheres using
this tower is a reasonable program.

Motivated by this last theorem, we can build a spectral sequence which encapsulates the chromatic stratification
of the finite spectrum X . Define the nth monochromatic layer of X to be the fiber in the fiber sequence

MnX → LnX → Ln−1X .

There is then the “geometric chromatic spectral sequence” of signature

E1
s ,n =πs MnX =⇒ (πs X )⊗Z(p).

We thus arrive at the study of the groups π∗MnS0 — and this is where the promised intriguing miracles begin to
appear. First, there is the following theorem of Mark Behrens:

1We’re also motivated by some remarkable formulas associated with BP -theory which link it to the theory of formal Lie groups. A compre-
hensive introduction would be entirely couched in that language, but that’s not my goal here, so I will instead entirely avoid it.
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Theorem (Mark Behrens). Take p ≥ 5. A certain elementβi/ j ,k , defined abstractly by properties, exists in the homotopy
groups π∗M2S0 if and only if there exists a p-adic modular form fi/ j ,k of a particular weight depending upon i and
satisfying particular congruences dependent upon j and k.2

So, the homotopy of M2S0 — while very difficult to express — encodes something about p-adic modular forms. The
homotopy of M1S0 is not so difficult to express:

Theorem (J. Frank Adams, as interpreted by Michael Hopkins). Take p ≥ 3. Let ζ̄ denote the composite

ζ̄ :N
z 7→ζ (1−z)
−−−−−→Q→Q/Z(p) =Z/p∞,

where ζ is the Riemann ζ -function. The homotopy π∗M1S0 takes the form

π∗M1S
0 =Σ−2Z/p∞⊕

⊕

s=−1+|v1|k
Σs 〈ζ̄ |k|〉,

where 〈ζ̄ |k|〉 denotes the subgroup of Z/p∞ generated by the value ζ̄ |k|.3,4

Suddenly, serious arithmetic has begun to appear in our study of algebraic topology! This means we are doing
something of interest to more than just topologists — everyone is interested in arithmetic, to one degree or another.

Of course, if our intended goal was to understand the homotopy groups of spheres, we have not done a very good
job of reducing the problem. Knowing that homotopy groups are expressable in terms of number theory won’t
make our lives any easier, as number theory is a difficult subject, nor will calculations in homotopy theory be much
help in resolving quantitative questions in number theory, because this connection is fuzzily defined. However, the
rich structure of these fields may help shed some light on the qualitative behavior of these groups, and the “chromatic
splitting conjecture” is meant to predict the behavior of the divisible groupsZ/p∞ in the above formulas as n varies.

2. THE K(n)-LOCAL CATEGORY

Having now communicated some of the importance of studying monochromatic layers, I want to tell you a bit
about what it feels like to actually do so. The right way to study any invariant, including monochromatic layers, is
to find a “good” category in which it’s valued and then study that category thoroughly. Such a category exists: it is
the category of K(n)-local spectra.

Theorem. There is a spectrum K(n) with the property that Mn LK(n) ' Mn and LK(n)Mn ' LK(n) (i.e., the homotopy
types LK(n)X and MnX determine each other, functorially).

The spectrum K(n) has many reasonable properties that make it pleasant to study: most important of all, it is a
“skew field spectrum”, meaning that it has Künneth isomorphisms.5 In the rest of this section, I will describe three
essential facts about the K(n)-local category, but before we proceed I’d like to give a more proper statement of the
chromatic splitting conjecture from a moment ago:

Conjecture (Michael Hopkins). The nonzero torsion–free classes in π∗LK(n)S0 belong to an exterior algebra on classes
x1, x3, . . . , x2n+1 with x2i+1 ∈π−(2i+1)LK(n)S0.

2For the curious, the specific conditions are: fi/ j ,k is of weight i |v2|/2; fi/ j ,k (q) 6≡ 0 (mod p); either ordq fi/ j ,k (q) > (i |v2| − j |v1|)/24 or

ordq fi/ j ,k (q) = (i |v2|− j |v1|−2)/24; there does not exist a modular form g of lower weight with fi/ j ,k (q)≡ g (q) (mod pk ); and for every prime

` 6= p there exists a form g` ∈M(i |v2 |− j |v1 |)/2(Γ0(`)) satisfying fi/ j ,k (q
`)− fi/ j ,k (q)≡ g`(q) (mod pk ).

3When k = 0, we encounter the singularity at ζ (1). At this point, I intend 〈ζ̄ (0)〉 to mean the whole group Z/p∞.
4Actually, this theorem is superficially misstated. The degree (−2) divisible factor is what really belongs to the pattern with the ζ -function,

rather than the divisible factor in degree (−1). The maximum cuteness of this theorem is thwarted by discussing π∗M1S0, rather than π∗LK(1)S0.
5In fact, Morava K -theories and ordinary homology with field coefficients form an exhaustive list of field spectra. So, even if you weren’t

interested in the chromatic program, you would run into these spectra as natural examples.
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The full statement of this conjecture is a lot stronger and a lot more interesting — this is actually its least interesting
part. It has been around for just under two decades now, with little progress made toward any part of it.6

2.1. The K(n)-local Picard group. Here’s a less pretentious way to describe Adams’s calculation:

πs LK(1)S
0 =











Zp when s = 0,

Zp/(k p) when s =−1+ k|v1|,
0 otherwise.

This formula suggests a way the connection to the ζ function could be strengthened: the quotient in the formula
still makes sense when k is taken to be a general p-adic integer; any good notion of “ p-adic ζ -function” should also
be well-behaved on p-adic integer inputs; and these two situations could be compared. Iwasawa theory in number
theory assures us that a p-adic ζ -function does exist, and it moreover agrees with the right–hand side of our formula.
However, in terms of topology, this leads to an interesting question: if k is a p-adic integer, then s could be too —
that is, we would be obligated to make sense of the mapping set [Ss , M1S0], where s is a p-adic integer. What should
this mean?

What makes a sphere, anyway? Here’s one answer: in the classical category, the 0-sphere S0 is the unit of the
smash product, and the s -sphere Ss has the property Ss ∧ S−s ' S0. It turns out that the spheres are actually the
only spectra with inverses, and hence one characterization is that spheres are the elements of the Picard group of the
stable category. In the K(n)-local setting, when n = 1 and p ≥ 3, there is an encouraging calculation:

Pic(LK(1)Spectra)∼=Zp ×Z/|v1|.

In particular, we have a factor of p-adic integers; we could hope that this factor gives our p-adic interpolation of the
homotopy groups π∗LK(1)S0 — and it indeed turns out to do so.7

2.2. Gross–Hopkins duality. Essentially all familiar geometric duality phenomena appearing in the study of ho-
mology (e.g., Poincaré, Alexander, and Atiyah dualities) can all be fit into the framework of Spanier–Whitehead
duality, where the Spanier–Whitehead dual of a spectrum X is DX = F (X ,S0). The category of spectra also al-
lows for the commingling of algebra with topology, and indeed there is a different sort of duality stemming from
Pontryagin duality: the Brown–Comenetz dual of X is defined by the property

π0I X =Hom(π0X ,Q/Z).

This second construction is a rich source of counterexamples and generally strange behavior — to point out the
dramatic difference between the two, we have an equivalence DS0 ' S0, whereas IS0 is coconnective.

In the K(n)-local category, however, the two constructions nearly coincide.

Theorem (Michael Hopkins and Benedict Gross). Set D̂X = F (X , LK(n)S0) and Î X to be the spectrum with π0 Î X =
Hom(π0MnX ,Q/Z). In the K(n)-local category, there is a natural equivalence

Î X ' D̂X ∧ ÎS0,

and ÎS0 is a ∧-invertible spectrum (i.e., a generalized sphere in the sense of section 2.1).8

6In February 2015, Agnes Beaudry announced a preprint falsifying the chromatic splitting conjecture at p = 2 and n = 2. This is exciting, but
also not really a surprise; in the results above, we have had conditions amounting to p� n, and so perhaps the conjecture will need restatement
at small primes.

7Many questions about the viability of Picard-graded homotopy groups remain open, all of which seem to be nigh-impossible to answer
outside of n = 1, the most simple case. For instance, we are not even aware of what Pic2 looks like at the prime 2, nor do we have any idea how
to make the assignment (λ ∈ Pic(LK(2)Spectra)) 7→πλLK(2)S0 “continuous” — this seems to be especially bewildering, actually.

8This is the subject of another talk entirely, but a major open question in homotopy theory is Freyd’s conjectural “generating hypothesis”,
which hopes that the functor π∗ is faithful when restricted to finite spectra (i.e., a map of finite spectra is nullhomotopic if and only if it induces
the zero map on homotopy groups). There is a chromatic approach to this conjecture, envisioned to Devinatz and Hopkins, which begins with
analyzing the spectra ÎS0.
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2.3. Ordinary homology and monochromatic homotopy. If you know enough algebraic topology to be danger-
ous, an obvious question unaddressed up to this point is: why not apply homology to this situation? After all,
homology is this ultra-computable thing that has been so enormously helpful everywhere else. There is a good
reason for avoiding it: a calculation of Ravenel and Wilson says that it is almost devoid of content here.

Theorem (Douglas Ravenel and W. Steve Wilson). The stable homology groups K(n)∗HZ vanish. Moreover, this occurs
at a finite stage:

K(n)∗K(Z, q + 1)∼=Alt q K(n)∗K(Z, 1+ 1),
where the exterior power is that of Hopf algebras and K(n)∗K(Z, 2) is generated by n elements as a Hopf algebra. In
particular, K(n)∗K(Z, q + 1) is a

�n−1
q−1

�

-dimensional power series ring for 1≤ q ≤ n, and it vanishes for q > n.9

3. DETERMINANTAL K -THEORY

In the remainder of the talk, I want to introduce a new tool in the K(n)-local category and to use it to say
something about the chromatic splitting conjecture. This comes about by consideration of the two edge cases of
the Ravenel–Wilson computation: both of the spaces K(Z, 2) and K(Z, n + 1) have the property that their K(n)-
cohomology is a 1-dimensional power series ring. This observation for K(Z, 2) =CP∞ powers all the computations
which are used to get classical complex K -theory off the ground — in fact, though complex K -theory is typically
motivated via vector bundles, homotopy theorists have become so adept at studying K -theory that this computation
is actually the only observation needed to construct it:

Theorem (Victor Snaith). There is an equivalence of E∞-ring spectra

Σ∞+ CP∞[β−1] '−→KU ,

where β :CP1→CP∞ is the Bott class inducing the isomorphism H2CP1→H2CP∞.

There is an analogous theorem in the K(n)-local category for the other edge case:

Theorem (P.). There is a sequence of spectra X P n which colimit to X P∞ = LK(n)K(Z, n+1) and whose associated-graded
consists of generalized sphere spectra. When p� n, there is an equivalence X P 1 'Σn−n2

IS0.10,11

The philosophy of this theorem is more interesting than the statement is; the notion that generalized spheres can
give more efficient cellular descriptions of chromatically local spectra than just classical cells is fresh and unexplored.
In any case, the inclusionβ : X P 1→X P∞ gives a Picard-graded homotopy class of X P∞. We define determinantal
K-theory to be

Kdet =
�

LK(n)Σ
∞
+ K(Z, n+ 1)

�

[β−1].

Let me now address some applications. Craig Westerland has found an alternative construction of this same ring
spectrum, which he uses to prove the following generalization of the calculation of π∗M1S0 given earlier:

Theorem (Craig Westerland). Determinantal K-theory can be constructed in such a way that it acquires a natural map
j det : Kdet → b gl1 LK(n)S0, analogous to the classical J -map sending a vector bundle to its associated spherical bundle.
Furthermore, when p� n, one finds a unique factor

Zp/(k p)⊆ [(X P 1)∧(p−1)k , LK(n)S
1]

in that Picard–graded homotopy group, along with possibly more p-power torsion of order less than Zp/(k p). (In partic-
ular, when n = 1, X P 1 is simply S2 and this recovers the classical result of Adams from the start of this talk.)12

9There are many strange consequences of this result. One is that the K(n)-homology of unstable Postnikov towers must eventually stabilize
— and often to something nonzero. Another is that for spectra satisfying chromatic convergence (e.g., all suspension spectra), the chromatic
tower of any Postnikov section will recover the original spectrum, together with the Postnikov layers you thought you had thrown away.

10These p� n conditions are quadratic in n.
11At n ≥ 2 and regardless of p, IS0 can be demonstrated not to be a classical sphere. Instead, it is a choice-free model of the “determinantal

sphere”, S[det].
12I’ve taken care not to mention E -theory or the Morava stabilizer group, but for those in the know: Craig shows that Kdet can be expressed

as E hSSn
n , where SSn is the kernel of the determinant map Sn →Z×p . In particular, this begets a fiber sequence LK(n)S→Kdet 1−ψγ

−−→Kdet.
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Fascinating! Here’s another intriguing analogy. First, note that CP∞ has the homotopy type of the classifying
space BU (1); the group U (1) has the homotopy type of S1; and the filtration of CP∞ by finite projective spaces is
coincident with the bar filtration on BU (1).

Theorem (P.). The spectrum G(1) = Σ−1X P 1 has an A∞ multiplication which induces equivalences BG(1)(n) ' X P n

and BG(1)'X P∞.

Noting that G(1) is an invertible spectrum, this means that the K(n)-local category has more elements of “Hopf
invariant 1” than the classical stable category does.13

In addition to β, K(Z, n+ 1) comes with another natural class: the fundamental class ιn+1 : Sn+1→ K(Z, n+ 1).
We’ve expressed K(Z, n + 1) = X P∞ as a sequential colimit and Sn+1 is a compact object, so the fundamental
class factors through some finite stage X P m . At the minimal such stage this pushes forward to an interesting class
Sn+1→ X P m → X P m/X P m−1 = (X P 1)∧m . Craig and I can use the A∞ result to show that m must equal 1, which
begets the following factorizaton:

Sn+1 X P∞

X P 1.

ιn+1

α
β

In the case p� n we have X P 1 =Σn−n2
I , and hence α can be interpreted as a class in:

α ∈ [Sn+1,X P 1] = [Sn+1,Σn−n2
I ] = [S1+n2

, I ] =Hom(π−1−n2 MnS
0,Qp/Zp ).

Almost-Theorem (Tyler Lawson, P., and Craig Westerland). So interpreted, α determines a nonzero and divisible class
in π−1−n2 MnS0.

This almost-theorem is meant to give meager evidence for the chromatic splitting conjecture: this is precisely where
the bottom-most divisible group predicted by the chromatic splitting conjecture should live.

13Peter May notes that the p–complete category already has more elements of Hopf invariant 1 than the global stable category, so this sort
of phenomenon is not new.
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