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At the first Many Cheerful Facts talk this semester, Ben McMillan gave an overview of differential geom-
etry by explaining curvature, ending with the Gauss-Bonnet theorem. An audience member asked whether
this had any ramifications by allowing certain integrals to be computed that had been previously unaccom-
plishable, and no one had any examples for him. To construct a manifold with a prescribed curvature form
while maintaining enough control to read off its genus some other way — what a thought! As it turns out,
this is exactly the goal of the Hirzebruch-Zagier manuscript, which we’ll give a light-hearted tour of here.

1. G-signature theorem

First, let’s recall the nonequivariant signature theorem. Define the L-class of a complex vector bundle
using the Hirzebruch formalism discussed in class and the power series x

tanhx
. The signature theorem then

asserts an equality

Sign(X) = ⟨L(X), [X]⟩ ,

where L(X) = L(TX ⊗R C) and Sign(X) = p+ − p− is the number of positively signed eigenvalues minus
the negatively signed eigenvalues of the operator B(x, y) = ⟨x ⌣ y, [X]⟩ defined on the middle cohomology
of X (relative to the boundary, if X has one). By Poincaré duality, this operator B is “the same” as the
intersection form on the homology of X.

Now, we wish to take into account an orientable action of a compact Lie group G on X. For any g ∈ G,
we can consider the submanifold Xg of points fixed by g; this submanifold has a normal bundle Ng in X
which splits as a sum

Ng
= Ng

π ⊕ ⊕
0<θ<π

Ng
θ ,

where for each θ, g acts by rotation by θ.1 Correpsondingly, the L-class can be modified to parametrize an
RP1’s worth of classes: let Lθ be defined by the power series coth(x + iθ

2
). In particular, Lπ = e/L, where e

the Euler class is given by the power series x.
The appropriate thing to do for the other side of the signature theorem is to consider the G-action on

the cohomology H∗X, which leaves invariant the form B defined above. So, picking an equivariant inner
product, we can define a G-equivariant operator A by ⟨Ax, y⟩ = B(x, y), and provided that X satisfies
dimX ≡ 0 mod 4 we compute that A is self-adjoint.2 Then, V + is the direct sum of the positively-weighted
eigenspaces and V − as the sum of the negatively-weighted eigenspaces, so that Sign(g, V ) = tr(g∣V +)−tr(g∣V −).
The G-equivariant statement of the index theorem is then: for Xg connected and orientable,

Sign(g,X) = ⟨L(Xg
)Lπ(N

g
π) ∏

0<θ<π
Lθ(N

g
θ ), [X

g
]⟩ .

1This forces Ng
θ

to be even-dimensional and to carry an almost-complex structure for θ ≠ π, but there is no information

gained at θ = π. This in turn means that Lπ and L need to be defined for real bundles rather than just complex ones. This is
possible by exploiting a connection between the Pontryagin class and the L-class for complex bundles, then using the Pontryagin
class, which makes sense for real bundles, to extend the definition of L, and hence Lπ , to real bundles as well.

2Generally, one can compute ⟨A∗x, y⟩ = ±⟨Ax, y⟩, depending upon dimX ≡ 0,2 mod 4, so that B is either symmetric or
skew-symmetric respectively. In the skew-symmetric case, there is additionally some care to be taken with regards to the

handed-ness of the group action. See pg. 29-30 of Hirzebruch-Zagier for how to proceed.
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2. An example and Rademacher reciprocity

Now, let G be finite. When G acts freely on X, we have Sign(X/G) = 1
∣G∣ ∑g∈G Sign(g,X) = 1

∣G∣ Sign(X),

using the fact that H∗(X/G) → (H∗X)G is an isomorphism. The G-signature theorem tells us how to
correct this statement when the G-action is not free; for a connected 4-manifold with a faithful3 G-action,
we instead have

∣G∣Sign(X/G) = Sign(X) +∑
x

defx +∑
Y

defY ,

where def denotes the trigonometric expressions4

defx = − ∑
g∈G
gx=x

cot
αx,g

2
cot

βx,g

2

defY = ∑
g∈G

g∣Y =idY

(1 + cot2
θY,g

2
) (Y ○ Y ),

where the angles measure the rotations induced by g on the normal bundle.5 The def terms are so-named
as to measure the “defect” in the group action away from freeness.

Let’s calculate an example. Let X = CP2 with the usual presentation by homogeneous coordinates, and
pick a triple of finite cyclic groups Ca,Cb,Cc ⊆ S

1 ⊆ C× with a, b, and c mutually coprime. Then, setting
G = Ca ×Cb ×Cc, there is a G-action on CP2 given by

(g0, g1, g2) ⋅ [z0 ∶ z1 ∶ z2] = [g0z0 ∶ g1z1 ∶ g2z2].

We can immediately pick off the fixed sets of this action: there are the sub-CP1s Yi = {[z0 ∶ z1 ∶ z2] ∣ zi = 0},
and there are the points xi = [δ0i ∶ δ1i ∶ δ2i]. The subgroups that fix these sets are Ca, Cb, Cc, and G, G, G
respectively. We compute6 the defects for the set Y0 to be

defY0 = ∑

eiaθ=1,
eiθ≠1

(1 + cot2(θ/2)) =
a2 − 1

3

and for x0 to be

defx0 = −bc
a−1
∑
k=1

cot
πkb

a
cot

πkc

a
=∶ −4abc ⋅ s(b, c;a).

Now, note that G = Ca × Cb × Cc ≅ Cabc embeds in S1, as the orders are all coprime, and our definition
of the G-action on CP2 extends to an action of S1. Because S1 is connected and Sign(g,X) is defined
homologically, this shows that Sign(g,X) = Sign(1,X) = Sign(X) for all g ∈ G. This means that Sign(X/G) =
1
∣G∣ ∑g∈G Sign(g,X) = Sign(X) = 1. Assembling all this into an application of the defect formula, we see

∣G∣Sign(X/G) = Sign(X) +∑
Y

defY +∑
x

defx

abc ⋅ 1 = 1 +
a2 − 1

3
+
b2 − 1

3
+
c2 − 1

3
− 4abc(s(b, c;a) + s(c, a; b) + s(a, b; c))

a2 + b2 + c2 − 3abc

12abc
= s(b, c;a) + s(c, a; b) + s(a, b; c).

This last identity is called Rademacher reciprocity for cotangent sums.

3Faithfulness means 1 is the only element of G with codimension 0 fixed set.
4The switch to standard trig functions from hyperbolic ones is explained by the loss of the i factor. The two kinds of trig

functions are related through some complex geometry; every projective quadratic can be made to look like x2 + y2 = z2 (or

whatever) through a linear change of coordinates.
5The class Y ○ Y is the oriented cobordism class of the self-intersection manifold of Y , thought of as an integer by counting

the algebraic number of points. In our example, Y ○ Y will be 1, so don’t worry about it.
6Here I have to handwave a bit, as these calculations actually take some nontrivial patience with trigonometric series

identities. If you’re curious, you can see the argument employed in 9.2 of Hirzebruch-Zagier, pgs. 178-181.
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3. The moral

The point of Hirzebruch-Zagier is that this setup is general enough that it can be used to organize a great
deal of trigonometric calculations arising in number theory, by finding a sufficiently friendly manifold and
stratifying it by fixed sets of some compact Lie group action. You don’t entirely get out of doing the work,
as several steps in our computations of the defects requires some manipulation of trigonmetric sums, but
the topology sort of tells you where you’re going and how to get there. The usefulness of this shouldn’t be
underestimated when lost in a sea of number theoretic identities.

This method for cotangent sums arises chiefly because of the appearance of trigonometric functions in the
Hirzebruch series for the L-class, together with the role of the L-classes in the signature theorem. Other index
theorems will produce similar organizing frameworks for topology to exert some control on the calculational
behavior of whatever Hirzebruch series their correction classes arise from. It is still not clear why, morally,
these topological objects should exhibit such control on number theoretic identities; figuring this out has
fallen in and out of fashion over the years. Hirzebruch-Zagier contains a partial list of references detailing
what all had been done in the mid-1970s, and one can wander outward from there.
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