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Abstract. Simplicial complexes are much more useful and versatile than mere combinatorial models for

topological spaces, the first context they’re introduced in. The goal of this talk is to show how co/simplicial
objects and their associated spectral sequences can be used to help organize your topological life generally.

We will instantiate these objects in a variety of settings and compute some explicit examples to see what’s
what.

1. Simplicial objects

First things first: a simplicial object in a category C is an object of C for each integer n, representing
the collection of n-simplices, together with maps that discard vertices from the n-simplex to form (n − k)-
simplices and maps that form degenerate flat (n + k)-simplices. Formally, one considers the category ∆,
whose objects are finite ordinals and whose morphisms are order-preserving maps of linearly ordered sets. A
simplicial object in C is exactly a functor S : ∆op → C; the functor S sends the ordinal [n] to the collection
of n-simplices, and the various maps among ordered sets correspond to these face and degeneracy maps.

Simplicial objects arise in a lot of ways. Here are three especially useful ones:

(1) Given a category C, we can quite obviously form the bottom two rungs of a simplicial set (i.e., a
simplicial object in Sets), called N(C), the nerve of C: the set of objects of the category is N(C)[0]
and the set of morphisms of the category is N(C)[1]. The domain and codomain information of
a morphism gives the required face maps N(C)[1] ⇒ N(C)[0], and the identity arrows give the
degeneracy map N(C)[0] → N(C)[1]. Composition gives us the means to fill this out to a full
simplicial object. The n-simplices, N(C)[n], is the set of n-chains of composable arrows. Drawing out
all the individual compositions reveals why these deserve to be considered n-simplices. For instance,

a 2-simplex is a pair of composable morphisms A
f−→ B

g−→ C, and the composite A
gf−→ C fills out the

diagram to a triangle. Similarly, all possible composites in a 3-chain yield a tetrahedron, and so on.
The face maps are given by discarding one of the vertices in this simplex of composites, yielding a
sub-simplex whose edges are still composable with the prescribed composites. The degeneracy maps
are given by inserting the identity morphism and extending along it.

(2) There are a sequence of standard n-simplex topological spaces described by the following bounded
hyperplane: the n-simplex is the subset of Rn+1 satisfying

∑n
i=0 xi = 1 and 0 < xi < 1 for all i. For

giggles, denote this subspace ∆n. Then, for any topological space X, one has a set of continuous
maps ∆n → X, which form the levels of a simplicial set Π∞X. The face and degeneracy maps are
those induced by the inclusions of and projections onto faces of these standard simplices.

(3) Let {Ui}i∈I be a cover of a fixed space X. We can build a simplicial space (i.e., a simplicial object
in the category of spaces) denoted ČechU , called the Čech complex, whose n-simplices are given by
(ČechU)[n] =

∐
|J|=n UJ0

∩ · · · ∩ UJn
. The degeneracy maps are given by intersecting with more

elements of the cover to raise the intersection degree, and the face maps are given by including into
the parent spaces of lesser intersection degree.

2. The bar spectral sequence

By reading Hatcher, you’ve likely heard of a close cousin of simplicial sets: simplicial complexes. Indeed,
given a simplicial set S, we can build a simplicial complex using the following formula:

|S| = colim

∐
n≥0

S[n]×∆n

∐
n

∐
i≤n

∐
x∈S[n](S(si)(x)×∆(si))

−−−−−−−−−−−−−−−−−−−−−−−→
∐

n+1≥0

S[n+ 1]×∆n+1

 .
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This is called the geometric realization of S. Consider, for instance, the following semisimplicial1 set S: it
has three 0-simplices a, b, and c, and three 1-simplices X, Y , and Z with face maps

s0X = a, s0Y = b, s0Z = c,

s1X = b, s1Y = c, s1Z = a.

Then the formula above for |S| consists of 3 copies of ∆0, 3 copies of ∆1, and the inclusions described by
the various values given in the table above. In the end, the three ∆1s glue together, end to end, to form a
circle.

This construction is often interesting in the examples of simplicial sets given above. For example, when
X is a CW-complex, the space |Π∞X| has a natural2 map |Π∞X| → X which is a weak equivalence. Now,
fix a group G, and consider the category G−Sets of sets with a faithful and effective G-action, together with
G-equivariant functions between sets. The realization |G−Sets| is a model for BG, the classifying space of G.
To make this believable, suppose that we have a G-bundle Y over X, which has a unique-up-to-homotopy
map X → BG. Then, any point x ∈ X (i.e., the image of ∆0 along some map to X) has a preimage
along the bundle map Y → X which is a G-set. Then, a path in X (i.e., the image of ∆1 along some
map to X) lifts to a path of G-sets in Y , and sending the left-endpoints to the right-endpoints gives a map
of G-sets from the fiber over the left endpoint to the fiber over the right (though this lift may require a
choice through a fibration). Continuing in this way, from Y we can produce a morphism of simplicial sets
Π∞X → N(G−Sets), which realizes to a map of spaces X ' |Π∞X| → |N(G−Sets)|, classifying Y . It is
believable, then, that |N(G−Sets)| is a classifying space for G-bundles, and this construction gives a nice,
combinatorial model for it.

It’s no surprise, though, that the simplicial set N(G−Sets) is quite large, which makes it unwieldy for
computations. To help deal with this, we can add complexity one level at a time to a realization |S|
by considering the skeleton simplicial sets skn S, whose k-simplices are exactly the k-simplices of S for
k ≤ n and which contain only the necessary degenerate simplices for k > n. We can additionally omit the
degenerate simplices to get a semisimplicial set, and the geometric realization of that object is homotopy
weakly equivalent to the realization of the full simplicial set. The inclusion skn−1 S ↪→ skn S gives an
ascending filtration of |S|. The filtration quotient | skn S|/| skn−1 S| is exactly the nondegenerate n-simplices
in S with their boundaries quotiented out.

We can apply this to our simplicial model for BG. The set N(G−Sets)[n] consists of n-tuples of elements
of G — i.e., elements of G×n — and the nondegeneracy condition ensures that the identity element can’t
appear in the tuple, so we’re left with the simplices parametrized by G∧n. Hence, the nth filtration quotient
takes the form (∆n/∂∆n)∧G∧n = ΣnG∧n. Applying E-homology to the filtration, we get a spectral sequence
of the form

E1
p,q = HpΣqG∧q ⇒ HpBG.

Provided that H∗ has a Künneth isomorphism, so that H∗Σ
qG∧q = (H∗ΣG)⊗q, the d1-differential is exactly

that associated to the bar resolution of H∗G, and so we have an additional identification

E2
p,q = TorH∗G∗,∗ (H∗, H∗).

3. Homotopy co/limits and the Mayer-Vietoris spectral sequence

Quotienting is a miserably behaved operation under homotopy. The most common example are the
pushouts colim(pt ← X → pt) and colim(CX ← X → CX), two homotopy equivalent diagrams with very
different colimits: pt and ΣX respectively. Homotopy comes with a “better” operation that has the same
rough effect as quotienting together points: instead, we can add paths between them. So, for instance, the
first diagram can be filled out to colim(pt ← X × I → X ← X × I → pt) = ΣX — this means that the
suspension of X is the “right” answer, homotopically speaking. Taking this idea all the way to its conclusion,
for a diagram F : I→ C, we can detect how much fat we have to add to the object F (i) via the nerve N(i/I).

1“Semisimplicial” means that the degenerate simplices are omitted.
2Indeed, this is the counit.
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This is sewn together in the formula

hocolimI F = colim

 ∐
a:i→j

F (i)× |N(j/I)| ⇒
∐
i

F (i)× |N(i/I)|

 .

As a simple example of how this works, for a simplicial set S we can form the composite S̃ = ∆op S−→
Sets

discrete−−−−−→ Spaces, and there is then a homotopy equivalence

hocolim∆op S̃ = |S|.

For a slightly less trivial example, we also have a variant on Milnor’s theorem: if U∗ is a cover of X with
each k-fold intersection a cofibrant inclusion, then

| ČechU∗| := hocolim∆op ČechU∗ ' X.

Just as with the bar spectral sequence, we can consider the skeletal filtration | skn ČechU∗|, which has
filtration quotients | skn ČechU∗|/| skn−1 ČechU∗| = Σn (

∐
J UJ0

∩ · · · ∩ UJn
). Hence, we have a spectral

sequence

E1
p,q = HpΣq

 ∐
|J|=q
Ji 6=Jj

UJ0
∩ · · · ∩ UJq

⇒ HpX,

and again the d1-differential is exactly that associated to the underlying Moore complex3.
Let’s give this spectral sequence a spin for CP2 covered by its affine charts; using the homogeneous

coordinates [x0 : x1 : x2] for CP2, the three charts are Ui = {[x0 : x1 : x2] ∈ CP2 | xi 6= 0}. Their single
intersections Ui ∩ Uj are described by Ui ∩ Uj = {[x0 : x1 : x2] | xi = 1, xj 6= 0} ' S1, and the triple
intersection is U0 ∩ U1 ∩ U2 = {[x0 : x1 : x2] | x0 = 1, x1 6= 0, x2 6= 0} ' S1 × S1. The generators of
H1(U0 ∩ U1 ∩ U2) wrap around the holes in the x1 and x2 coordinates, so if we concern ourselves only with
Ui ∩ Uj where i < j, the map H1(U0 ∩ U1 ∩ U2) → H1(U1 ∩ U2) ⊕H1(U0 ∩ U1) ⊕H1(U0 ∩ U2) is described

by the matrix

 1 1
1 0
0 1

. This Z-linearly row-reduces to

 1 0
0 1
0 0

, and so the d1 differential leaves a Z in

(p, q)-bidegree (2, 0) and another Z in (4, 1). This gives the homology groups in H∗CP2.

4. Cosimplicial objects and the descent spectral sequence

Dual to these ideas, there is also a theory of cosimplicial objects, which are functors C : ∆ → C.
Cosimplicial objects have a sort of dual to realization, called totalization, given by the Eckmann-Hilton type
formula

TotC = lim

∏
n≥0

C[n]∆
n

∏
n

∏
i≤n

∏
x∈C[n] C(si)(x)∆(si)

←−−−−−−−−−−−−−−−−−−−−−
∏

n+1≥0

C[n+ 1]∆
n+1

 .

The skeletal filtration of S also has a mirror image, the coskeletal filtration coskn C of C, where again the
k-cosimplices of coskn C are exactly the k-cosimplices of C for k ≤ n and have “just enough” simplices
to flesh out the codegeneracy and coface maps for k > n. (Formally, this construction is given by Kan
extensions.) However, while geometric realization takes the skeletal filtration to a sequence of cofibration
inclusions, totalization takes the coskeletal filtration to a tower of fibrations. Finally, there is a construction
of a homotopy limit Eckmann-Hilton dual to the homotopy colimit, and we have the familiar formula

TotC = holim∆ C̃.

3... where the Moore complex is the chain complex C∗ built from a semisimplicial group by taking the group of n-simplices
as Cn and building the differential out of an alternating sum of face maps.
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Why all the fuss — where do cosimplicial objects arise? Consider the classical definition of a sheaf as a
set-valued functor F defined on the category of open sets of some space, satisfying the equalizer condition

F (X) = F

colim

∐
i,j

Ui ∩ Uj
ii,ij−−−→

∐
i

Ui

 = lim

∏
i,j

F (Ui ∩ Uj)←
∏
i

F (Ui)


for a cover U∗ of X. Studying this formula in light of the discussions above, we see that what’s really
happening here is that the sheaf condition is a statement about the homotopy limits and colimits of the
1-skeleta of the Cech complex:

F (hocolim sk1 ČechU∗) = holimF (sk1 ČechU∗).

For homotopy theoretical purposes, however, sheaves are often not as useful as one might hope. For instance,
there is no good way to use the original definition of sheaf to build a sheaf of spaces — the equivalence with
the associated étale space breaks down, for instance, ruining much of the theory. The trouble, it turns out,
is that we’re discarding all of the homotopy theoretic information by restricting to the 1-skeleton, which
was fine when we were working with sets as they don’t have homotopy theoretic information anyway, but is
important now. We instead define a sheaf of spaces (or other space-like objects living in some simplicially
enriched and co/tensored model category where all this makes sense) to be a contravariant functor F on
some ground site satisfying the revised sheaf axiom

F (hocolim ČechU∗) = holimF (ČechU∗).

If you haven’t seen this definition before, then you probably haven’t seen many examples either — this
stronger condition is fairly hard to come by! Nevertheless, here’s one: for a finite CW complex X, the
functor F (SpecR → SpecZ) = HR ∧ Σ∞+ X defines a homotopy sheaf of spectra on the fppf site of affines
over SpecZ. A “cover of SpecZ” in this Grothendieck topology means a collection of flat Z-algebras Ri such
that for any Z-module M , the conditions that M = 0 and M ⊗ZRi = 0 for all i are equivalent. For example,
localizations of rings are also flat, and so the rings Z(2) and 2−1Z together form an fppf cover of Z, with

intersection SpecZ(2) ×SpecZ Spec 2−1Z = SpecQ.

Let’s consider the space RP3. The chain complex computing its unreduced cellular homology with R
coefficients is

· · · → 0→ R
0−→ R

2−→ R
0−→ R→ 0.

For R ranging in 2−1Z, Z(2), and Q, this gives the homology groups

H3(RP3; 2−1Z) = 2−1Z, H3(RP3;Z(2)) = Z(2), H3(RP3;Q) = Q,
H2(RP3; 2−1Z) = 0, H2(RP3;Z(2)) = 0, H2(RP3;Q) = 0,

H1(RP3; 2−1Z) = 0, H1(RP3;Z(2)) = Z/2, H1(RP3;Q) = 0,

H0(RP3; 2−1Z) = 2−1Z, H0(RP3;Z(2)) = Z(2), H0(RP3;Q) = Q.

The descent spectral sequence for this cover of the site has

E1
p,q = πp hofib(Totq F(ČechU∗)→ Totq−1 F(ČechU∗))

= πpΩq
∨
J

F(UJ0
∩ · · · ∩ UJq

)

=
⊕
|J|=q

Hp+q(RP3;OUJ0
⊗ · · · ⊗ OUJq

),

and so we have the groups

E1
−1,0 = 2−1Z⊕ Z(2), E1

0,0 = Z/2, E1
2,0 = 2−1Z⊕ Z(2),

E1
−2,2 = Q, E1

1,2 = Q.

There are two locations for a d1-differential, both of type signature 2−1Z⊕Z(2) → Q, and both given by the

formula d1(a/2b, n/m) = am+2bn
2bm

. This has kernel exactly (a/1,−a/1), which is isomorphic to Z. Hence, we
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compute

H3(RP3;Z) = Z,
H2(RP3;Z) = 0,

H1(RP3;Z) = Z/2,
H0(RP3;Z) = Z.

5. Miscellania

I will almost certainly be out of time at this point, but there are various points beyond this that are worth
mentioning.

• Sheaf cohomology: The construction of the descent spectral sequence is entirely natural in our
choice of cover — cover refinements induce maps of spectral sequences, converging to isomorphisms
on the E∞ pages. Just as Čech cohomology refines in the limit to sheaf cohomology, the E2-page
of the descent spectral sequence refines under this construction to the sheaf cohomology E2

p,q =

Hp+q(X;πpF ).
• The Eilenberg-Moore spectral sequence: There is a homotopy theoretic version of the two-

sided bar construction, which for an input space X produces a simplicial object that in good cases
is weakly equivalent to ΩX. The skeletal filtration produces a simple example of the Eilenberg-
Moore spectral sequence, but for a generalized cohomology theory rather than ordinary cohomology
over a field. This spectral sequence suffers from interesting convergence problems for unbounded
cohomology theories.

• Other homotopy sheaves of spectra: A huge goal of derived algebraic geometry is to provide a
source for these homotopy sheaves. For instance, the extremely interesting cohomology theory tmf
appears as the global sections of a sheaf of (structured) ring spectra over the moduli stack of elliptic
curves. There is also a theorem producing spectra related to the Morava E-theories by taking the
global sections of some sheaf of spectra over a stack supporting a a p-divisible group.

• The Adams spectral sequence: The Adams spectral sequence is also formed by building a
cosimplicial object in the stable category, effectively covering a spectrum by “free” spectra over a
fixed ground ring spectrum.
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