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ABSTRACT. We present a algebraist-friendly framework which packages the structural aspects of “chromatic stable homo-
topy theory”, together with an analysis of a few other simple examples, ultimately meant to spur curiosity about what might
happen in general. This talk was delivered at a summer graduate student seminar at UC Berkeley.

1. INTRODUCTION

This talk amounts to a discussion of the broader landscape of stable homotopy theory, but because my intended
audience is algebraic-leaning people who are comfortable with stacks and not a bunch of actively practicing stable
homotopy theorists, I’d like to spend the first segment of the talk setting up the main ideas and players of the subject.

The basic object of study is the spectrum. Spectra come about by trying to reconcile the differences between
homotopy and homology.

Definition 1. A homology functor is a functor eE∗ : hoSpaces∗→ AbelianGroupsZ that sends cone sequences to long
exact sequences and (infinite) wedges to (infinite) direct sums.

For A≤X , there is a notion of “relative homotopy groups” π∗(X ,A) which belongs to a long exact sequence with
π∗X and π∗A, but the definition is not directly related to the “cone sequence” that appears in homology. It turns out
to be possible to compare these in low degrees:

Theorem 2. Let (X ,A) be n–connected and A be m–connected. Then (X ,A)→ (X /A,∗) is an (n+m)–equivalence. �

Corollary 3. This has the following consequences:
(1) In the situation above, π∗ converts the cone sequence to a long exact sequence through degree n+m.
(2) The map π∗X →π∗+1ΣX is an equivalence through twice the connectivity of X .
(3) For X n–connected and Y m–connected, π∗ converts their wedge sum to a direct sum through degree n+m. �

By suspending a space indefinitely and sending its connectivity towards infinity, these corollaries eliminate the
axiomatic differences between homology and homotopy, and the resulting “stable homotopy groups” become a
homology functor. It is then common to close up indefinitely suspended spaces under shifts and inductive colimits,
and the resulting category is called Spectra. The first nontrivial success of the field is that Spectra is rich enough to
house the objects involved for any homology functor:

Theorem 4 (Boardman, Brown, . . . ). There are assignments Σ∞ and B as in

hoSpaces∗ Spectra HomologyTheories,Σ∞ B

with Σ∞ a functor and B not a functor,1 such that

eE∗(X ) =π∗(B(E)⊗Σ
∞X ). �

We have left one term here undefined: ⊗. The smash product of spaces can be promoted, with some cleverness, to
a monoidal product on Spectra so that Σ∞ is a monoidal functor and S=Σ∞S0 is its unit. The spectrum S acquires
the structure of a ring, and generic spectra are modules for it, so that Spectra=ModulesS has something of the flavor
of a derived category, where the spectra associated to finite cell complexes play the role of Modules

perf
S . However, it

is a bit dangerous to draw too much intuition from this, and it is especially dangerous to conflate Modules
perf
S with

Dperf(Modulesπ∗S), because of the results like the following:

1Every map of homology theories lifts to a map of spectra, but perhaps not uniquely.
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Lemma 5. The homotopy groups π∗S/2, with S/2=Cone(2: S→ S), are not all 2–torsion. �

Nonetheless, because of the evident complexity of Spectra and difficulty of stable homotopy theory in general, we
would like to codify some kind of algebraic model from which to draw intuition.

2. CONTEXTS

Putting stable homotopy and homology on such even footing lets us directly compare them, and in particular we
can try to use one to study the other. Applying B to ordinary homology eH∗(−; R) yields a spectrum H R, which is a
ring spectrum when R is a ring and which then receives a map η : S→H R selecting the unit class

1 ∈ R= eH∗(S
0; R) =π0H R.

Tensoring η with a spectrum X and passing to homotopy gives the Hurewicz map

π∗X →π∗Σ
∞X

π∗(η⊗Σ∞X )
−−−−−−→π∗(H R⊗Σ∞X ) = eH∗(X ; R),

recognized from more algebro-geometric contexts as a sort of pullback along η.
Based on this, we might ask a more nuanced question: can we recover the S–module Σ∞X (or its homotopy)

from H R⊗ Σ∞X (or its homotopy) via descent along η? There is a rephrasing of descent that is particularly
amenable to this situation: a descent datum for an S–module N along a map f : R→ S is a choice of isomorphism
ϕ : ( f ⊗ 1)∗N ∼= (1⊗ f )∗N , and an R–module M induces a descent datum on N = f ∗M = S ⊗R M via the identity

( f ⊗ 1)∗N = (( f ⊗ 1) ◦ f )∗M = ((1⊗ f ) ◦ f )∗M = (1⊗ f )∗N .

This is the 1–truncation of the homotopical situation, where the descent datum associated to an H R–module
Y =H R⊗Σ∞X along the ring map η is given by the cosimplicial object

DH R(Σ
∞X ) :=
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.

Whereas the R–module M is classically recovered as an equalizer when f is of effective descent, the S–module
Σ∞X is recovered as the homotopy limit of the diagram DH R(Σ

∞X ) when η is of effective descent. The ability
to formulate this homotopy limit is an important technical condition: the ring spectrum in question must be an
“A∞–ring spectrum”—which, luckily, H R always is. Passing to homotopy groups then yields the H R–Adams spectral
sequence, whose E1–page is assembled from the homology groups of X and which abuts to the stable homotopy of X .
The basic effectivity result is as follows:

Theorem 6. For F ∈Modules
perf
S , the homotopy limit of DHZ(F ) (resp., of DHFp

(F )) recovers F (resp., the p–completion
of F ), and the HZ–based (resp., HFp –based) Adams spectral sequence is strongly convergent to π∗F (resp., π∗F

∧
p ). �

A clear next step is to prove a bunch of theorems about the input of the Adams spectral sequence, since these
directly translate through the spectral sequence to theorems about its output in homotopy groups. A more reserved
first step is to assign a name to this input, where again we draw inspiration from algebraic geometry:
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Definition 7. Let E be an A∞–ring spectrum. The cosimplicial abelian group

ME (Σ
∞X ) :=
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determines a quasicoherent simplicial sheaf over the simplicial scheme

ME :=
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,

called the context of E .2 The input to the E–Adams spectral sequence is then computed by Čech cohomology:

E∗,∗2 = Ȟ ∗(ME ;ME (Σ
∗X ))⇒π∗Σ

∞X .

In practice, this set-up is a lot less scary than it looks, which we illustrate for E =HF2. There is a Segal equivalence

E⊗( j+1) '−→ (E ⊗ E)⊗E j ,

which, together with the Künneth isomorphism for homology with mod–2 coefficients, shows thatMHF2
is 1–

truncated—i.e., it is a groupoid-scheme. This object is manageable: the Čech cohomology of sheaves over groupoid-
schemes is actually an invariant of the associated stack, which have a well-developed theory in algebraic geometry. In
this example, this stack has been completely determined:

Theorem 8 (Milnor). The contextMHF2
is given by the stacky quotient SpecF2//Aut(ÒGa).

3 �

3. THE CHROMATIC PICTURE

Our daydream about contexts has some obnoxious realities.

• Suppose we work with the ring spectrum E =HFp for an odd prime p. The “arrows” part of the groupoid-
scheme, π∗(HFp ⊗HFp ), has odd-dimensional homotopy and is not a commutative ring. We therefore
cannot apply “Spec” to it.
• Suppose we work with the ring spectrum E =HZ. Not only is π∗(HZ⊗HZ) not even, and it is also not a

flat Z–module, so the Künneth theorem for HZ does not apply. The resulting object is thus not 1–truncated.
• Suppose we work directly with the ring spectrum S. Its structure maps are flat, but π∗S is also skew-

commutative.

Amazingly, there is an A∞–ring spectrum which is of effective descent for perfect S–modules, whose homotopy is
even, whose ring of cooperations is even, and whose context is 1–truncated.

Theorem 9 (Milnor). The complex bordism spectrum, MU, has these properties in ModulesS. �

2It is important to note that this assignment from spectra to sheaves does not target the derived category and is not a triangulated functor. It
can be shown that any such functor must be ordinary homology, eliminating most of the richness of stable homotopy theory.

3This group-scheme is quite large, so that actually the bulk of the theory of stacks is not so directly applicable. Alas.
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This theorem alone is enough to produce a conservative functor

MMU (−) : ModulesS→QCoh(MMU ),

and the MU–Adams spectral sequence additionally controls to what extent the functor fails to be faithful. The
algebraic target QCoh(MMU ) is not that useful, however, unless we can recognize it in plainer terms, as Milnor did for
HF2. Amazingly, this can be done, and this amounts to the core of chromatic homotopy theory:

Theorem 10 (Quillen). The context associated to MU is the moduli stack of formal groups,Mfg. �

This theorem is exceptionally useful: not only isMMU recognizable, butMfg is an object that has received enormous
attention in algebraic number theory, so that many of its geometric features are available in the literature.

This emboldened topologists so much that they began asking questions about the fullness and surjectivity of this
functor as well. The most literal interpretation of these questions is too strong:

Theorem 11 (Adams). Consider the spectrum Cone(p : S→ S). At p = 2, there is no map v : Σ2Cone(2)→ Cone(2)
such that KU (v) is multiplication by the Bott class β ∈π2KU . By consequence,MMU (−) is not full. �

However, there are gentler interpretations, including the following version inspired by noncommutative geometry:

Definition 12. The Balmer spectrum of a monoidal∞–category is the collection of thick prime tensor ideals, where
a subcategory is thick when it is closed under cone sequences, retracts, and weak equivalences; it is a tensor ideal
when it satisfies the ideal property against the monoidal structure; and it is prime when it satisfies the prime ideal
property against the monoidal structure.4

The basic theorem about this definition is that the Balmer spectrum (when additionally equipped with a suitable
structure sheaf) associated to the derived category of perfect R–modules recovers the Zariski spectrum of R. However,
the definition is also well-adapted to homotopical situations like ours. Using this definition, one can prove the
following “fullness” result:

Theorem 13 (Hopkins–Smith). The map Spec(Modules
perf
S )→ Spec(Coh(Mfg)) is a homeomorphism. �

The main engine powering this result is the following:

Theorem 14 (Devinatz–Hopkins–Smith). The E∞–page of the MU–Adams spectral sequence for X = S has an asymp-
totically flat vanishing curve.5 �

This ensures that primality results deduced for QCoh(Mfg) are ultimately not too far from results about ModulesS.
In addition to the result about Balmer spectra, this theorem has all sorts of interesting consequences in stable

homotopy theory. Here are two:

Remark 15. In Figure 1, we have included a picture of the MU (2)–Adams spectral sequence through a small range.
The dots in the picture correspond to various (higher-order) invariants of formal groups: for instance, α1 for a group
law x +ϕ y corresponds to the coefficient in the expansion

x +ϕ x = 2x +ϕ α1(ϕ)x
2+ · · · (mod 2),

or, alternatively, to the module of 1–jets associated to ϕ, and there are similar interpretations for the other glyphs.
The differentials mediate the difference between the algebraic model and the actualities of stable homotopy theory,
and so require genuine geometric input to deduce. That α1 survives the spectral sequence means that it corresponds
to an object in stable homotopy theory: in this case, the nontriviality of the cell decomposition for the space CP2.

Remark 16. A central application of these ideas is that there exist a family of homology theories {K(n)}∞n=0, each
equipped with a kind of “generalized Bott class” β(n), such that every p–local finite spectrum F admits an integer
n and a map v : ΣmX →X where K(n)∗v induces multiplication by a power of β(n) and K(m)∗F = 0 for m < n.
The spectra K(0) and K(1) are familiar: they are HQ and KU/p respectively. The differing “wavelengths” of these
elements β(n), |β(n)|= 2(pn − 1), is where “chromatic homotopy theory” gets its poetic name.

4The Balmer spectrum can be enriched to carry a topology and a structure sheaf, either of rings or of∞–categories of local objects.
5The curve is moreover conjectured to grow according to a square-root law.
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FIGURE 1. Pictures of the MU (2)– and MU (3)–Adams spectral sequences (left, right respectively)
through a small range.

4. UNICORNS AND RESOLUTIONS

Many stunning results about the structure of Spectra have been deduced by topologists from this framework, but
the techniques involved have not been transported to other settings. The core difficulty lies in our utilization of MU :
whereas classical homotopy theorists were interested in MU because of its connection to complex manifolds, we do
not have direct access to any such geometric link to guide us in a generic stable setting. In lieu of this, we instead
simply enumerate the properties of MU which we have made use of:

Definition 17. An A∞–ring object R in a monoidal stable ∞–category C is called a unicorn when its natural
homotopy groups are even, its natural cooperation groups are even, its cooperation unit maps are flat, and when it
induces a homeomorphism on the Balmer spectra of C and of QCoh(MR).

Having at least named the desirable properties of such objects, we then turn the question of where to find unicorns.
It turns out that there is a classical theorem which characterizes a unicorn in Spectra and which does not make
reference to complex geometry:

Theorem 18 (Priddy). Let X0 = S(p) be the p–local sphere spectrum, and define Xn from Xn−1 by attaching cells in
degree 2n to minimally delete π2n−1Xn−1. The spectrum X∞ is then a ring and a minimal summand of M U(p).

6 �

We propose to view this theorem not just as a recipe but as an all-or-nothing result: by trying to correct one of the
failures of S(p) to be a unicorn, we actually corrected all of its failures. This same spectrum also arises in another
result which also has this flavor:

Theorem 19. There is a map X∞→HFp which resolves away all odd-dimensional classes in π∗(HFp ⊗HFp ). �

Again, correcting the failure of HFp to have even cooperations produced X∞, which somehow automatically has all
the other desired properties.

However, although it is true that X∞ carries the structure of an A∞–ring, this is not clear from these constructions.
A recent PhD thesis shows that it is also possible to carry out a similar construction in the setting of structured rings:

Theorem 20 (Beardsley). Let X (0) = S(p) be the p–local sphere spectrum, considered as an E2–ring spectrum. Define the
A∞–X (n− 1)–algebra X (n) by attaching A∞–X (n− 1)–cells in degree 2n to delete π2n−1X (n− 1). Then X (n) is again
an E2–ring spectrum, and the spectrum X (∞) is MU (p).

7 �
6For those in the know, this spectrum is usually called BP , the Brown–Peterson spectrum.
7These spectra X (n) are those from the nilpotence and periodicity series: X (n) is the Thom spectra of the tautological bundle on ΩSU (n+ 1).
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Conjecture 21. If the monoidal unit of a monoidal stable∞–category is connective, then a minimal A∞–resolution
of it which forms an even object gives a unicorn.

In the nonconnective case, one cannot rely on a Postnikov filtration to furnish us with an inductive procedure for
removing the undesired odd-degree homotopy groups. Nonetheless, it seems like there is still a possibility for a result
along these same lines, as illustrated in the following examples:

Example 22. The spectrum KO is not even. However, the complexification map KO→KU is a map of A∞–KO–
algebras which presents KU as a KO–unicorn. To see the evenness of the cooperations in KO–modules, use

KU ⊗KO ΣKO
1⊗η
−→KU ⊗KO KO→KU ⊗KO KU →KU ⊗KO Σ

2KO.

This also entails effective descent.8

Example 23. Mildly more exotically, KU∧p plays the role of a unicorn in the K(1)–local stable category. The unit of
this local category, LK(1)S, has highly non-connective and non-even homotopy. Nevertheless, there is a fiber sequence

LK(1)S
η
−→KU∧p

ψγ−1
−−→KU∧p ,

where ψγ is a certain Adams operation, presenting η : LK(1)S→ KU∧p as being of effective descent. It can then be
checked that p–adic K–theory has the other properties desired of a unicorn, provided one does not exit the p–complete
setting.9

8The general result for fixed-points of K(n)–local spectra may follow from work of Mathew–Meier on Tate vanishing.
9Deducing what modifications, if any, need to be made to count the Goerss–Henn–Mahowald–Rezk resolution as a solution to the unicorn

problem for LK(2)Smight be an interesting place to get started.
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