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ABSTRACT. In this note, we record the computation of the physical states of the BRST quantization of a relativistic point-
particle. It was written in preparation for a short presentation at the end of a course on QFTs taught by Reshetikhin.

1. THE BRST CHARGE

In this note, we analyze the BRST quantization of the local behavior of a relativistic point-particle system in a
D -dimensional spacetime. In the classical Lagrangian formalism, such a system in n-dimensional space is described
by a path generalized coordinate fields Xµ and an auxiliary field e =pgττ , called the einbein. A path through this
phase space describes a hypothetical world-line of a particle; we define the Lagrangian action on such a worldline by
the integral

S =
∫

dτ
1

2

�1

e
ẊµẊµ−m2e

�

.

The field e has the effect of coupling the point-particle to 1-dimensional gravity. We further define the Lagrangian L
itself to be the integrand in this expression. Classical mechanics says that physically realizable worldlines are those
for which this action is minimized, and we’ll spend the remainder of this note analyzing this problem.

We can transform the D + 1 second-order Euler-Lagrange equations into 2(D + 1) first-order equations by re-
placing the target manifold with its cotangent bundle. In the cotangent bundle, the velocities Ẋµ and ė essentially
become first-order objects, corresponding to generalized momenta defined by pµ =

δS
δẊµ and pe =

δS
δ ė ; hence the

cotangent bundle has coordinates {Xµ, pµ, e , pe}. To produce the analogue of the Lagrangian action, one performs

the Legendre transformation to produce the Hamiltonian H = δS
δẊµ Ẋµ+ δS

δ ė ė − L. As ingredients to this formula,
we compute

δS

δẊµ
= e−1Ẋµ, Ẋµ = e pµ,

δS

δ ė
= 0,

which begets the following formula for the Hamiltonian:

H = pµẊµ− L= pµẊµ−
1

2

�1

e
ẊµẊµ−m2e

�

= e pµ pµ−
1

2

�

e pµ pµ−m2e
�

=
1

2
e
�

pµ pµ+m2
�

.

The cotangent bundle is an example of a symplectic manifold, so comes equipped with a Poisson bracket

{A,B}=
∂ A

∂ pµ

∂ B

∂ Xµ −
∂ A

∂ Xµ

∂ B

∂ pµ
.

The bracket can be calculated on these fields to be {Xµ, pν}= δµν and {e , pe}= 1, with all others vanishing. In turn,
this gives us the means to compute dA

dτ = {A, H} for any physical quantity A(qµ, pν , e , pe ).
From the form of the Hamiltonian, we can identify the role of the einbein: it is a Lagrange multiplier, enforcing

the constraining condition dG
dτ = 0 for G = 1

2 (pµ pµ+m2). Additionally, there is a group of reparametrizations of
the phase space which act on this system, detected by the einbein. The goal of the BRST method is two-fold: first,
we may set the einbein to e = 1, which we accomplish by introducing a field B selecting this parametrization via a
δ-functional; second, with the einbein eliminated we must promote the constraint G to another first-order object,
which we accomplish by extending the target space F by a Grassmann algebra of “ghost-antighost pairs,” while
maintaining its structure as a symplectic manifold. That is, we’re going to promote the cotangent bundle to a super-
Poisson manifold whose odd coordinates are given by the ghost-antighost pairs. In our situation, to counterbalance
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the single constraint G we introduce a single ghost-antighost pair c and c̄ , over which we extend the Poisson bracket
by the general formula

{A,B}=
∂ A

∂ pµ

∂ B

∂ Xµ −
∂ A

∂ Xµ

∂ B

∂ pµ
+ i(−1)|A|

�

∂ A

∂ cα
∂ B

∂ c̄α
+
∂ A

∂ c̄α

∂ B

∂ cα

�

.

The second bicovector field is rotated by the imaginary unit to prevent it from interfering with the original Poisson
bracket. In particular, we can compute {cα, c̄β}=−iδα

β
.

The purpose of introducing these new fields is to produce a vector field of infinitesimal transformations, the
BRST charge Ω, which encodes the constraint equation and against which the action is invariant. The charge is
defined in general by the equation

Ω= cα(Gα+Mα),

where Mα is some quantity Mα =
∑∞

n=1
i n

2n! c
α1 · · · cαn Mβ1···βn

αα1···αn
c̄β1
· · · c̄βn

, determined recursively in n. Specifically, Mα

is chosen so that the action of Ω is nilpotent, i.e., {Ω,Ω} = 0. In our case, because {G,G} = 0, we may take M = 0
and hence Ω= cG.

2. THE BRST-EXTENDED ACTION

The BRST construction outlined so far has involved extending the phase space by some additional fields “meant
to encode the constraints Gα.” It would be nice to extend the action S on the classical phase space to an action SBRST
on the BRST phase space, to study its properties as a physical system. In particular, we would request two things:
first, that the extended action reduces to the classical one on the physical sector, and second, that the BRST charge
Ω constructed above is conserved.

Faddeev-Popov techniques instruct us to extend the classical action by a coordinate-momentum term relating the
ghost and antighost fields to find SBRST :

SBRST =
∫

dτ
�

pµẊµ+ i c̄ ċ −
1

2
(pµ pµ+m2)

�

.

Note, here we have integrated out the B field, which fixes e = 1. We now want to study the invariance properties of
SBRST under δΩ(−) = {Ω,−}, and then from that deduce the conserved charge using Noether’s theorem. First, we
compute the action of δΩ on the individual fields:

{Ω,Xµ}=
∂ Ω

∂ pµ
= c pµ, {Ω, pµ}=−

∂ Ω

∂ Xµ = 0,

{Ω, c}= i
∂ Ω

∂ c̄
= 0, {Ω, c̄}= i

∂ Ω

∂ c
=

i

2
(pµ pµ+m2).

Collectively, using integration by parts to swap derivatives around this yields

δΩSBRST =
∫

dτ
d

dτ

�

pµc pµ+ i c i
1

2
(pµ pµ+m2)+ 0

�

=
∫

dτ
d

dτ

�1

2
c(p2−m2)

�

.

This shows that SBRST is invariant under the action of Ω, up to a total time derivative. It’s further worth noting
that this calculation shows our choice of SBRST is not uniquely determined by the above two goals. Rather, we
may add any BRST-exact term to the BRST-extended Hamiltonian and produce a system which, while still the
same classical system on the physical sector, may differ on the non-physical sector. In particular, this allows us to
introduce BRST-exact terms which make subsequent computations simpler — a common technique.

As a consistency check, we now apply Noether’s theorem, which states that if S is invariant under an infinitesimal
transformation qµ 7→ (q ′)µ = qµ+ ε f µ(q), then the charge Ω= pµ f µ(q) is conserved. In our situation, this gives

Ω= pδΩXµ+ i c̄δΩc −δΩSBRST =
1

2
c(p2+m2).

This is exactly the BRST charge we began with.
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3. PHYSICAL STATES

Having introduced these nonphysical fields, we are now challenged to produce the physical states for the orig-
inal system from ours. Invariance under the BRST charge operator exactly corresponds to satisfying the original
constraint equations — but there are more states invariant under the BRST charge than there are physical states.
Namely, if |Ψ〉 satisfies Ω|Ψ〉= 0, then so does |Ψ〉+Ω|χ 〉 for any state χ , since Ω2 = 0. It turns out this is the only
thing that goes wrong: the cohomology group kerΩ/ imΩ encodes exactly the distinguishable physical states of the
system.

Now we have an operator algebra for which we’d like to study the irreducible representations, i.e., the building
blocks of state spaces on which these fields may act. Since the classical fields and ghost fields commute with one
another, we may treat them separately. The classical states are labeled by D -momenta k, and the ghost states are
labeled by ↑ and ↓, corresponding to the unique 2-dimensional irreducible representation of the ghost algebra. The
complete set of states in total is labeled by | ↑, k〉 and | ↓, k〉, which are determined by the operators

pµ| ↑, k〉= kµ| ↑, k〉, pµ| ↓, k〉= kµ,

c̄ | ↑, k〉= | ↑, k〉, c̄ | ↓, k〉= 0,

c | ↑, k〉= 0, c | ↓, k〉= | ↓, k〉.

Using the definition of Ω, then, we can compute

Ω| ↓, k〉=
1

2
(k2+m2)| ↑, k〉, Ω| ↑, k〉= 0.

So, the physical states are | ↑, k〉 for any k and | ↓, k〉 for k satisfying k2+m2 = 0. However, becauseΩ
�

2
k2+m2 | ↓, k〉

�

=
| ↑, k〉, the states | ↑, k〉with k2+m2 6= 0 are not physically distinguishable from 0 (i.e., they are BRST-coboundaries),
so we are left only with | ↑, k〉 and | ↓, k〉 for k2+m2 = 0.1

4. PROPAGATORS

If a physical theory is to be taken seriously by physicists then it should be able to predict various observations
made in nature - one should be able to compute physically meaningful observables of the theory. In quantum theory
the observables correspond to vacuum expectation values of products of the operators defined in the theory,

〈0|O1(x1) · · · On(xn)|0〉.

The importance of such expectation values stems from the fact that they are related, via the reduction formula, to
scattering amplitudes. Note, we are ignoring subtleties such as the time-ordering of operators.

In terms of path integrals, the vacuum expectation values of such operators are computed as

〈0|O1(x1) · · · On(xn)|0〉=
∫

D[Ψ]D[Ψ†]O1(x1) · · · On(xn)e
i S[Ψ,Ψ†]

∫

D[Ψ]D[Ψ†]e i S[Ψ,Ψ†]
,

where Ψ corresponds to all fields appearing in the theory. If our theory is free - the fields do not interact - then the
action is Gaussian and these integrals can easily be evaluated. However, free theories are (usually) very boring, so we
need a way of interpreting expressions like above when the integrals are not Gaussian. As we will now demonstrate,
a way around this is to expand the action in powers of the coupling constant.

To begin, note that every action can be decomposed into a free part, corresponding to the quadratic term, and
an interaction part, correspoding to the coupled fields,

S[Ψ,Ψ†] = S0[Ψ,Ψ†]+ SI [Ψ,Ψ†].

If we now expand exp(i SI ) out in a power series then we have a sum of path integrals which all look like
∫

D[Ψ]D[Ψ†]O1(x1) · · · On(xn)g
n Pn(Ψ,Ψ†)e i S0[Ψ,Ψ†]

∫

D[Ψ]D[Ψ†]e i S0[Ψ,Ψ†]
,

1Bram then additionally says that | ↑, k〉 is disallowed, because its BRST-momentum is nonvanishing, and its pairing with a genuine physical
state results in a delta function. This, for whatever reason, “violates kinematic law.” I don’t understand this.
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where g is the coupling constant and Pn(Ψ,Ψ†) are monomials in the fields. Thus, we now have a sum of Gaussian
integrals which we can compute. Thanks to Feynman, we have a diagrammatic way of telling which part of the sum
we are computing and also the contribution due to this integral.

A Feynman diagram is nothing more than a graph where each edge corresponds to the propagation of particles
(of the same type) and each vertex corresponds to places where these particles can meet and interact. So, we can see
that the two most important things needed to compute a Feynman diagram are the propagators and the interaction
terms. The propagators correspond to the free part of the action and the interaction terms correspond to the
interaction part of the action, both in the momentum representation. More precisely, the propagator - which is
related to the amplitude for a state to evolve into another - is given by the two-point function

〈0|O (x1)O (x2)|0〉 ≡G(x2, x1).

For our example this becomes

G(xµ2 , xµ1 ) =
∫ ∞

0
dT
∫

DxD pDBDeDcD c̄ e i Sg f [x, p,B ,e ,c ,c̄],

with the gauge-fixed action Sg f from before, namely

Sg f =
∫ T

0
dτ
�

pµ ẋµ+B(e − 1)+ i c̄ ċ −
1

2
(pµ pµ+m2)

�

.

Now, as the fields B , e , c and c̄ are linear in the action we can simply integrate them out using various delta functions.
This leaves us with

G(xµ2 , xµ1 ) =
∫ ∞

0
dT
∫

DxD p e i
∫

dτ[pµ ẋµ− 1
2 (pµ pµ+m2)].

This can be evaluated in the usual method of taking time slices giving

G(xµ2 , xµ1 ) =
∫ ∞

0
dT T −D/2 exp





1

2
i

 

(xµ2 − xµ1 )
2

T
− (m2− iε)T

!

 ,

where we’ve mulitplied the integrand by e−εT /2 to regulate the integral (a common practice in QFT). Note, the
propagator only depends on the difference between the two coordinates G(xµ2 − xµ1 ), as one would expect for two-
point functions. To get the usual expression for the propagator we perform a Fourier transform to momentum
space,

G(xµ2 − xµ1 ) =
∫ d D p

(2π)D
e i p·(x2−x1)

p2+m2− iε
.
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