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We describe an optimal procedure, as well
as its efficient software implementation, for
exact and approximate synthesis of two-qubit
unitary operations into any prescribed dis-
crete family of XX–type interactions and local
gates. This arises from the analysis and ma-
nipulation of certain polyhedral subsets of the
space of canonical gates. Using this, we ana-
lyze which small sets of XX–type interactions
cause the greatest improvement in expected
infidelity under experimentally-motivated er-
ror models. For the exact circuit synthesis of
Haar-randomly selected two-qubit operations,
we find an improvement in estimated infidelity
by ≈31.4% when including CX1/2 and CX1/3

alongside the standard gate CX , near to the
optimal limit of ≈36.9% obtained by including
all fractional applications CXα, α ∈ [0, 1].

1 Introduction
In this paper, we describe an optimal synthesis routine
for two-qubit unitary operations which targets any
discrete family of two-qubit gates, each locally equiv-
alent to some exp(−iaXX). We refer to such gates as
being of XX–type and note that this class includes all
controlled unitaries. Gate sets of XX–type are com-
mon on contemporary platforms: the gate CX is an
example, and synthesis routines for it have long been
known to give rise to algorithmic schemes for uni-
versal quantum computation, making it an attractive
target for device engineers. The physical processes
which give rise to the operation CX can typically be
truncated to produce “fractional applications” CXα

for 0 ≤ α ≤ 1, each of which is also of XX–type,
giving rise to an infinite family of further examples.1
Such fractional applications can be found on devices
based on superconducting qubits (e.g., IBM’s), as
well as on those based on ion traps. Though not
required for universal computation, the availability
of these “overcomplete” basis gates has the potential
to yield more efficient synthesized circuits, particu-
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1Up to local equivalence, this family is an exhaustive set of
examples.

larly if the error magnitude of CXα correlates with
α: while the universally programmable CX circuit in-
vokes CX three times, the universally programmable
fractional CX circuit invokes CXα, CXβ , and CXγ

with 〈α+ β + γ〉 = 3/2.2
In practice, however, these parametric families are

difficult to operate. The relationship between the de-
gree of physical process truncation and the value α
is often nonlinear and prone to imperfect measure-
ment, and constraints in the steering electronics (e.g.,
waveform sample rate) can make truncations unavail-
able below some threshold, so that wholesale use of
these families may be prohibited on realistic hard-
ware. Still, precision can be guaranteed for any par-
ticular value of α, which gives rise to the following
question:

Question. Given a fixed “calibration budget” which
permits the tuning of n fractional operations, which
set of values α1, . . . , αn maximizes (average-case) de-
vice performance? How does one efficiently find ex-
pressions for generic two-qubit unitaries in terms of
these operations? How does one simultaneously guar-
antee the optimality of such expressions, as measured
against device performance?

We answer this question fully. Our fundamen-
tal results are an efficient test for when a two-
qubit unitary operation admits expression as a cir-
cuit using any particular sequence of XX–interaction
strengths (α1, . . . , αn) with local gates interleaved
(Theorem 4.1), an efficicent synthesis routine for man-
ufacturing such circuits (Procedure 6.1, Theorem 5.5),
and an efficient routine for producing the best ap-
proximation (in average gate fidelity) within the set
of such circuits (Procedure 6.8).3 These tools com-
bine to give an optimal synthesis scheme for reason-
ably behaved cost functions (e.g., average gate infi-
delity). An implementation of our technique can be
found in Qiskit’s quantum_info subpackage as the
class XXDecomposer [3], where it can be verified that it
outperforms blind numerical search in both wall time
and output quality (cf. Figure 8). We leverage these
results to explore the design space of gate set exten-
sions where we constrain α1, . . . , αn to be drawn from

2See [1] for numerical justification or [2] for a proof.
3To our knowledge, this is the first optimal synthesis algo-

rithm which targets a “heterogeneous” set of multiqubit inter-
actions.
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U =


0.098 + 0.121j −0.26− 0.391j −0.443− 0.322j −0.662 + 0.133j
0.748− 0.132j 0.372− 0.084j −0.432− 0.027j 0.261− 0.148j
−0.137− 0.365j −0.453 + 0.334j −0.28− 0.547j 0.296− 0.257j
−0.474− 0.147j 0.44− 0.352j −0.265− 0.255j 0.328 + 0.439j
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Relative infidelity
Gateset description [5] [6] Ours
{XX π

4
} (baseline) 133% 100% 100%

{XX π
8
} 67% 67% 50%

{XX π
12
} 56% 56% 44%

{XX π
4
,XX π

8
,XX π

12
} n/a n/a 39%

Figure 1: Four syntheses of a two-qubit operator U ∈ SU(4)
with canonical coordinate (0.968, 0.273, 0.038). (1) An ex-
act, optimal synthesis into a triple of CX gates. (2) An
exact, optimal synthesis into a triple of XX π

8
gates. (3)

An exact, optimal synthesis into four XX π
12

gates. (4) An
exact, optimal synthesis into a mixed set of gates. Finally,
we include the relative infidelity costs of these syntheses in
an error model where XX gate infidelity is linearly related to
the parameter with a small affine offset. Relative infidelity:
We assume that XX gate infidelity is linearly related to the
parameter with a small affine offset and that infidelity is ap-
proximately additive over that of its gates. We refer to the
infidelity of circuit (1) as the “baseline”, and we report as
“relative infidelity” the percentage of this value achieved by
other synthesis strategies. See Figure 8 and Section 7 for
similar statistics where U is allowed to range.

some small, fixed set of pretuned angles. For exper-
imentally realistic error models,4 our main findings
are first that including first CX1/2 and then CX1/3

give significant improvement over CX alone at several
common tasks5, and second that these two gates cap-
ture almost all of the benefit of allowing α1, . . . , αn
to be drawn without constraint (cf. Figure 15). Fi-
nally, we note that some of our proofs rely on using
a computer algebra system to manipulate polytopes,
and we have released both this framework and the
proof software under the Qiskit umbrella of packages

4In practice, we find that these models amount to a
weighted count of circuit elements, where the weights depend
linearly on the exponents αj .

5Specifically, we examine synthesis of random unitaries, as
encountered during whole-circuit resynthesis, and reported on
in Figure 18; and we exaxmine synthesis of certain structured
operators like QFT, as encountered in peephole optimization
of highly structured circuits, and reported on in Figure 2.

Gates emitted
n CX {XX π

4
,XX π

8
,XX π

12
} Rel. Infidelity

3 CX6 XX2
π/12 ·XX2

π/8 27.8%
4 CX12 XX6

π/12 ·XX3
π/8 29.2%

5 CX20 XX12
π/12 ·XX4

π/8 30.0%
6 CX30 XX20

π/12 ·XX5
π/8 30.6%

7 CX42 XX30
π/12 ·XX6

π/8 31.0%

Figure 2: Qiskit syntheses of QFT circuits over n qubits,
targeting a family of qubits supporting either S = {CX} or
S = {XX π

4
,XX π

8
,XX π

12
} and with all-to-all connectivity.

At right, we include the expected circuit infidelity, reported
as a fraction of that of traditional synthesis methods, under
the assumptions that XX gate infidelity is linearly related to
the parameter with a small affine offset and that infidelity is
approximately additive. In the limit of a large qubit count,
the expected infidelity of a QFT circuit synthesized to the
fractional gate set drops by two-thirds that of the standard
CX–based gate set. We don’t intend circuit synthesis for
QFTs to be a “killer app”, but rather as evidence that these
methods are not limited to random inputs.

as monodromy [4].

Related literature
We give a non-exhaustive survey of existing ideas.

[7] Shende, Markov, and Bullock showed how to syn-
thesize optimal-depth circuits for CX–based gate
sets.

[8] Cross et al. extended that to synthesize optimal-
infidelity circuits for CX–based gate sets.

[5, 9, 10] Zhang, Vala, Sastry, and Whaley (see also
Zhang, Ye, and Guo) gave a synthesis method for
gate sets based on controlled unitary operations.
Our method constructs circuits out of the same
building blocks, but our method for how to ar-
range those blocks is different. This difference
in synthesis strategy gives us optimal circuits,
whereas often6 they miss by a constant offset.

[11] Peterson et al. showed how to detect when a two-
qubit unitary operation admits expression using
a given circuit type with sufficiently many freely
ranging local operations. This gives rise to a
method for analyzing the optimality of a synthe-
sis strategy, but it does not show how to perform
the actual synthesis.

[12] Earnest, Tornow, and Egger have shown how
to produce the entire family of XX–type in-
teractions from a particular pulse-level imple-
mentation of CX , which then permits the use

6More exactly, for 1
2 (5 + 4 log(2)− 6 log(3)) ≈ 59% of pos-

sible native XX interactions; cf. [5, Figure 2].
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of a straightforward synthesis method. Their
method does not extend to other hardware im-
plementations of CX , including the implementa-
tion used by the IBM group to achieve quantum
volume 64 [13], which does not lend itself to non-
calibrated scaling.

[14] Huang et al. have recently shown how to syn-
thesize (optimal) circuits for a gateset containing√

ISWAP, a particular “fractional ISWAP”. De-
spite surface similarities, our results depart sub-
stantially:

√
ISWAP is not of XX–type; they

work with the fixed gate
√

ISWAP as opposed
to an unknown family of fractional applications;
and they consider circuits of depth at most 3.

[6] Lao et al. have used brute-force numerical search
to uncover which fractional interactions might be
valuable to include in a native gate set put to
various specific purposes. This has substantial
overlap with our discussion of gate set optimiza-
tion, but it does not solve the synthesis prob-
lem: numerical search is both non-optimal and
two orders of magnitude slower than our direct
synthesis.

The case of one qubit
To give a sense of our methods and results, let us
analyze the analogous problem for one-qubit uni-
taries: decomposition into a fixed set of fractional X–
rotations and unconstrained Z–rotations. The fixed
X–rotation most typically available is Xπ

2
, and an

Xπ
2
–based circuit can be synthesized for a unitary U

through “Euler ZYZ decomposition”. Namely, there
are angle values θ, φ, and λ which satisfy

U = Zφ ·Yθ · Zλ = Zφ+π ·Xπ
2
· Zθ+π ·Xπ

2
· Zλ,

easily calculable by diagonalizing UUT . Since U
can freely range, the right-hand side of this equation
gives a universally programmable quantum circuit. A
downside to this circuit is that the operational cost of
U is always that of a pair of Xπ

2
gates, even if U itself

is a “small” rotation of the Bloch sphere.7
For circuits based on other choices of choices of X–

rotation angles, such as

Yθ = Zι′ ·Xψ · Zι ·Xψ′ · Zι′′ ,

one perform some mathematical analysis to discern
the limited set of synthesizable operations Yθ, ulti-
mately arriving at the critical relationship

cos θ = cosψ · cosψ′ − cos ι · sinψ · sinψ′,

and the remaining parameters ι′, ι′′ can be explicitly
determined by inspecting complex phases. Varying ι,

7One can set aside special cases when θ is zero or π
2 , but

these are probability-zero events in common measures.

ι′, and ι′′, this trigonometric equation admits a solu-
tion precisely when θ satisfies

|ψ − ψ′| ≤ θ ≤ π − |π − (ψ + ψ′)| .

Let us refer to this interval as Iψ,ψ′ . In the same man-
ner, a longer sequence of interactions Xψ1 , . . . ,Xψn in-
terleaved with Z–rotations gives rise to a correspond-
ing interval Iψ1,...,ψn of achievable values of θ.

Suppose that any given gate Xψ, with ψ ∈ [0, π],
can be made available in an experimental setting with
infidelity

m ·
(π

2

)−1
· ψ + b

for some error model parameters m and b, and at a
fixed calibration cost per gate. We seek a small set of
gates {Xψ1 , . . . ,Xψn} so that the intervals constructed
above cover the possible values of θ so as to minimize
the expected infidelity cost of a given operation. For
instance, Figure 3 shows the relevant intervals for the
gate set {Xπ

2
,Xπ

3
}. Several aspects of this goal can

also be understood with additional nuance:

“Expected”: The distribution of operations U to be
synthesized will affect the relative importance of
the various choices of ψ. A safe assumption is
that U is drawn according to the Haar distribu-
tion, in which case the distribution of angle values
θ is given by p(θ)dθ = 1

2 sin(θ)dθ.

“Cost”: In addition to the operational cost of a syn-
thesized circuit (i.e., the cost from gate appli-
cations), one can also incorporate a cost stem-
ming from synthesizing some θ′ rather than
the requested θ. There are then some circum-
stances where it is profitable to deliberately mis-
synthesize Yθ as Yθ′ , provided the difference be-
tween θ and θ′ is small and the difference in oper-
ational cost between the two circuits is large. Av-
erage gate infidelity gives a popular embodiment
of this idea, where the fidelity of two one-qubit
operations is given by the formula

Favg(Yθ,Yθ′) = 2 + cos(θ − θ′)
3 .

Against this yardstick, the θ′ ∈ Iψ,ψ′ which gives
the best approximation to a θ 6∈ Iψ,ψ′ occurs at
one of the interval endpoints.

“Given operation”: Rather than synthesizing the
operation U requested, the compiler can choose
to inject a reversible logic operation R and its
inverse R−1 into the program, synthesizing the
composite U · R and either commuting R−1 for-
ward through the circuit or absorbing its effect
into software. This option can be used to further
shape the expected distribution of inputs. For
single-qubit operations, a typical choice of R is

Accepted in Quantum 2022-04-05, click title to verify. Published under CC-BY 4.0. 3
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Figure 3: The optimal synthesis regions for the one-qubit
gate set {Xπ

2
,Xπ

3
,Zcts}. The interval being covered is the

set of angles [0, π] appearing as the middle parameter in a
ZYZ–decomposition of a generic U ∈ PU(2).

the classical logic gate Xπ, which has the effect
of trading Xθ for Xπ−θ.8

Considering only exact synthesis for now, we compute
the following expected (i.e., Haar-averaged) average
gate infidelities for various gate sets:

Xπ
2
: 2m+ 2b, the standard decomposition, used as a
baseline.

Xπ
3
: 3

2m + 9
4b, an improvement of ≈ 25% over the

baseline, provided b� m.

{Xπ
2
,Xπ

3
}: 19−

√
3

12 m + 2b, an improvement of ≈ 28%
over the baseline, provided b� m.

{Xcts}: In the continuous limit with all gates Xθ

available, the cost becomes m + b, an improve-
ment of 50% over the baseline.

These values can be further improved by considering
approximate synthesis, mirrored synthesis, or both.

Outline
Our analysis of the two-qubit case follows along the
same lines as above, and in the same order.

Section 2: Generalizing Euler decomposition, we
give a lightning review of KAK decomposition
as specialized to two-qubit unitary operations.

Section 3: We describe a more detailed plan of at-
tack on the two-qubit problem, outlining the
steps in the proofs to come.

Section 4: Generalizing the interval Iψ,ψ′ , we give a
compact description of which two-qubit gates are
accessible to a circuit built out of a fixed sequence
of XX–type interactions with one-qubit opera-
tions interleaved (Theorem 4.1). This leverages
previous work of Peterson et al. [11]: it detects
when a two-qubit operation admits synthesis as a
circuit of a certain type, but it does not indicate
how to produce the circuit.

8For two-qubit operations, a common choice of R is the
classical logic gate SWAP.

Section 5: Generalizing the formula relating cos θ
and cos ι, we single out a method for choosing
local circuit parameters which are simple to ana-
lyze (Theorem 5.3). We then compare with Sec-
tion 4 and prove that each of these restricted cir-
cuits nonetheless exhaust the space of possibili-
ties (Theorem 5.5).

Section 6: Generalizing the discussion around cost,
we provide an efficient method to find the best
approximation within a given circuit family (The-
orem 6.10), and we couple it to the preceding re-
sults to produce the promised efficient synthesis
method (Procedure 6.1, Procedure 6.8).

Section 7: Generalizing the calculations of expected
cost for various gate sets, we use experimental
data to justify the use of a particular error model
as a cost function (Definition 7.3), study the ef-
fect of choice of gate set (Example 7.6), and de-
scribe what is left to gain in the large limit of
fractional gate count (Remark 7.8).

We give a small example of the effectiveness of these
techniques as applied to a random operator in Fig-
ure 1 and to a family of structured operators in Fig-
ure 2, reserving further analysis for Section 7.

Conventions
We use the following abbreviations throughout:

cθ = cos(θ), sθ = sin(θ), x+ =
∑
j

xj .

2 Résumé on two-qubit unitaries and
the monodromy map
We briefly recall the theory of Cartan decompositions
as it applies to two-qubit unitary operations and its
role in circuit synthesis.

Lemma 2.1 ([15], [16], [17], [11]). Let CAN denote
the following two-qubit gate:

CAN (a1, a2, a3) = exp(−i(a1XX +a2YY +a3ZZ )) =
eia3ca1−a2 0 0 −ieia3sa1−a2

0 e−ia3ca1+a2 −ie−ia3sa1+a2 0
0 −ie−ia3sa1+a2 e−ia3ca1+a2 0

−ieia3sa1−a2 0 0 eia3ca1−a2

 .

Any two-qubit unitary operation U ∈ PU (4) can be
written as

U = L · CAN (a1, a2, a3) · L′,

where L,L′ ∈ PU (2)×2 are local gates and a1, a2, a3
are (underdetermined) real parameters.

Definition 2.2 (“Canonical decomposition”, cf. [11]).
In Lemma 2.1, there is a unique triple (a1, a2, a3) sat-
isfying a1 ≥ a2 ≥ a3 ≥ 0, π

2 ≥ a1 + a2, and one of

Accepted in Quantum 2022-04-05, click title to verify. Published under CC-BY 4.0. 4



either a3 > 0 or a1 ≤ π
4 . Such a triple is called a pos-

itive canonical coordinate, and we denote the space
of such as AC2 . This unicity determines a function
Π: PU(4)→ AC2 , called the monodromy map. Away
from the plane a3 = 0, this function is continuous.9

Example 2.3. Here are the positive canonical triples
for some familiar gates:

Π(I) = (0, 0, 0),

Π(SWAP) =
(π

4 ,
π

4 ,
π

4

)
,

Π(CX) =
(π

4 , 0, 0
)
.

Generalizing the last example, the positive canonical
triple for any controlled unitary gate has the form
(a1, 0, 0); we say that such an operation is of XX–
type, and we abbreviate such gates to

XXa1 = CAN (a1, 0, 0).

Specifically, the fractional gate CXα is of XX–type,
with coordinate Π(CXα) = (α · π4 , 0, 0), so that

CXα = (H ⊗ I) ·XXα·π4 · (H ·Z−π2 ⊗Z−π2 ) ≡ XXα·π4 .

From this perspective, the varying coordinate mea-
sures interaction duration or interaction strength, so
that smaller values give rise to less entanglement.

For us this apparatus has two main uses, captured
in the following pair of results:

Lemma 2.4. A pair of two-qubit operations U and
V are said to be locally equivalent when there exist
local gates L,L′ ∈ PU (2)×2 with U = L · V · L′. This
condition holds if and only if Π(U) = Π(V ).

Theorem 2.5 ([11]; [4]). Let S,S ′ ⊆ PU(4)
be two sets of two-qubit operations whose images
Π(S),Π(S ′) ⊆ AC2 through Π are polytopes (e.g., a
set of isolated points). The image of the set

S·PU (2)×2·S ′ =
{
S · (L⊗ L′) · S′

∣∣∣∣ S ∈ S, S′ ∈ S ′,L, L′ ∈ PU (2)

}
through Π is then also a polytope. Given explicit de-
scriptions of the input polytopes as families of linear
inequalities, the output polytope can also be so de-
scribed.

Our work will lead us directly into considering fam-
ilies of two-qubit gates and their parametrizations, so
we introduce some attendant language.

Definition 2.6. A gate set is any collection of two-
qubit unitaries; typically we will consider gate sets

9Near the plane a3 = 0, the function Π becomes continuous
after imposing the identification (a1, a2, 0) ∼ (π2 − a1, a2, 0).

which are made up of finitely many controlled uni-
taries. For a gate set S, an S–circuit is a finite se-
quence of members of S and local gates. The opera-
tion which it enacts is given by the product of the se-
quence elements. A circuit shape10 is a circuit-valued
function

C : θ 7→ (L0(θ), S1, . . . , Ln−1(θ), Sn, Ln(θ)),

where each Lj is a parametrized local operator and
each Sj ∈ S is fixed.

It can be convenient to place further restrictions on
the Lj (e.g., that they consist only of Z–rotations),
but absent explicit mention we take each Lj to surject
onto PU (2)×2. In this surjective case, the sequence
(S1, . . . , Sn) determines the image of C, and it follows
from Theorem 2.5 that the image of Π ◦ C in AC2

is a polytope, called the circuit polytope of C (or of
(S1, . . . , Sn)). In the case that S consists of gates
of XX–type, locally surjective circuits can be further
identified with the underlying sequence of interaction
strengths (α1, . . . , αn) with Sj ≡ XXαj .

Remark 2.7. The coordinate system given in Defini-
tion 2.2 is not unique: a similar theorem holds for
any choice of “Weyl alcove” in pu4. When g is the
Lie algebra of a simply connected Lie group (e.g.,
su4), each Weyl alcove is related to every other by
a discrete set of linear transformations including re-
flections and shears. Without the simply-connected
hypothesis (e.g., pu4), they are related by linear trans-
formations and “scissors congruence”. Our choice of
coordinate system differs from that used in previous
work of Peteron et al. [11] by a nontrivial scissors
congruence, effectively replacing the condition stated
there,

(LogSpecU)3 + 1/2 > (LogSpecU)1,

by the alternative

(LogSpecU)2 + (LogSpecU)3 > 0.

Remark 2.8 (cf. Remark 4.5). Later, it will be conve-
nient for us to consider a variant of positive canonical
triples which are not required to be sorted. Unsorted
triples (a1, a2, a3) which become positive canonical
triples upon sorting are those which satisfy 0 ≤ aj
and aj + ak ≤ π

2 for all choices of j and k. The set of
such triples still gives a convex polytope.

3 XX -based synthesis: Strategy
Let us turn to the task of synthesizing for any two-
qubit unitary operator U and gate set S consisting of
XX interactions an S–circuit C modeling U . To set
the stage for our strategy, suppose instead that C is

10Also commonly called a (circuit) template.
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given. We can produce from it a sequence of trun-
cations Cj that retain steps 1 through j. Each Cj
is also a circuit modeling some other unitary opera-
tor Uj , and if C is optimal for circuits modeling U
against some well-behaved cost function (e.g., opera-
tion count), then each Cj will be so optimal for Uj .
The images pj = Π(Uj) ∈ AC2 of these intermediate
operators then describe a path through the Weyl al-
cove, where the jth step in the path belongs to the
region Pj of operations whose optimal circuits take
the form of Cj .

Since our goal is to construct C, we might instead
begin by constructing the path (pj)j , subject to the
two constraints:

1. pj lies in Pj .

2. The hop from pj to pj+1 is given by some nice
circuit.

In order to understand the first constraint, we give
a compact description of Pj by way of describing the
circuit polytope associated to an arbitrary sequence
of XX–type interactions. We call this the global the-
orem (Theorem 4.1) since it describes the large-scale
structure of the problem and does not reference the in-
dividual point pj . Though our main tool here is The-
orem 2.5, for a generic sequence of interactions it can
only guarantee an exponential-sized family of convex
bodies, themselves each of increasing facet complexity.
It is a special feature of interactions of XX–type that
the associated circuit polytopes have a fixed number
of convex bodies, each of fixed complexity, indepen-
dent of the sequence length.

To understand the second constraint, we choose a
particular “nice circuit” and analyze the effect un-
der Π of appending such a circuit to a canonical
gate (Lemma 5.1), resulting in a family of constraints
we call “interference inequalities” (Theorem 5.3).
This, too, is specific to our case: even for interac-
tions of XX–type, not all choices of unit circuit have
a discernable image under Π, nevermind a polytope.

We complete the program by linking these two to-
gether in the local theorem (Theorem 5.5): we show
that for any pj+1 ∈ Pj+1, we can always find a pj ∈ Pj
linked to pj+1 by one of these simple circuits. This
argument can then be reorganized into a constructive,
efficient synthesis routine (Procedure 6.1). Addition-
ally, we show how to select a point p′ ∈ Pj which is
the best approximation by average gate infidelity to
p = Π(U) (Theorem 6.10).

4 The global theorem
One of our overall goals is to describe the set of pos-
itive canonical triples whose optimal circuit imple-
mentation uses a sequence of interaction strengths
(α1, . . . , αn). This can be accomplished by describ-
ing those positive canonical triples which admit any

such circuit implementation, even if suboptimal. Op-
timality can then be enforced by taking a complement
against positive canonical triples which admit supe-
rior circuit implementations. In this section, we ac-
complish this goal, summarized in the following The-
orem:

Theorem 4.1. Let (αj ∈ [0, π4 ])j be a sequence of
interaction strengths, and let (a1, a2, a3) be a pos-
itive canonical coordinate. The canonical operator
CAN (a1, a2, a3) admits a presentation as a circuit of
the form

L0 ·XXα1 · L1 · · · · · Ln−1 ·XXαn · Ln,

where Lj are local operators, if and only if either of
the following two families of linear inequalities is sat-
isfied: α+ ≥ a1 + a2 + a3,

mink α+ − 2αk ≥ −a1 + a2 + a3,
mink 6=` α+ − αk − α` ≥ a3; −π2 + α+ ≥ −a1 + a2 + a3,
π
2 + mink α+ − 2αk ≥ a1 + a2 + a3,

mink 6=` α+ − αk − α` ≥ a3.

We respectively refer to the first, second, and third
inequalities in each family as the strength, slant, and
frustrum bounds.

Important Remark. From a physical perspective,
the circuit polytope ought to be invariant under in-
jecting extra zero-strength interactions into the defin-
ing sequence of interaction strengths. Accordingly, we
always treat expressions like “mink 6=` α+ − αk − α`”
as if the sequence were padded by arbitrarily many
zero entries.

Proof of Theorem 4.1. For the base case, note that
the empty list of interaction strengths yields the poly-
tope

a1 = a2 = a3 = 0,

which agrees with the set of circuits locally equivalent
to the identity interaction.

Suppose then that we have established the claim for
a sequence of interaction strengths (α1, . . . , αn), and
we would like to establish the claim for (α1, . . . , αn, β)
for some new interaction strength β. By allowing the
(n + 1) different strengths to range, we note the re-
gion in the claim is naturally expressed as a polytope
in (n + 1) + 3 dimensions. In fact, we can reduce it
to a certain 6–dimensional polytope as follows: writ-
ing α′ and α′′ respectively for the largest and second-
largest elements in the hypothesized sequence of inter-
action strengths, we may rewrite the inequality fami-
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lies above as α+ ≥ a1 + a2 + a3,
α+ − 2α′ ≥ −a1 + a2 + a3,

α+ − α′ − α′′ ≥ a3; −π2 + α+ ≥ −a1 + a2 + a3,
π
2 + α+ − 2α′ ≥ a1 + a2 + a3,
α+ − α′ − α′′ ≥ a3.

with the additional constraints

n · π4 ≥ α+, α+ ≥ α′ + α′′,
π

4 ≥ α
′ ≥ α′′ ≥ 0.

Altogether, these statements over a1, a2, a3, α+, α
′, α′′

describe a pair of convex polytopes in 6–dimensional
space.
Theorem 2.5 gives an explicit, finite family of lin-

ear inequalities (the “monodromy polytope”) so that
a1, a2, a3, a

′
1, a
′
2, a
′
3, b1, b2, b3 satisfies the constraints if

and only if there is a local gate L and a local equiva-
lence

CAN (a1, a2, a3)·L·CAN (a′1, a′2, a′3) ≡ CAN (b1, b2, b3).

We combine this with the polytope from the induc-
tive hypothesis so that its coordinates are shared with
(a1, a2, a3) and the coordinates (a′1, a′2, a′3) are set to
(β, 0, 0). This produces a union of convex polytopes
in 10–dimensional space, a point of which simultane-
ously captures:

(α+, α
′, α′′): Values extracted from the prefix of in-

teraction strengths.

(a1, a2, a3): A positive canonical coordinate which
admits expression as an XX–circuit as in the in-
ductive hypothesis.

β: A new interaction strength.

(b1, b2, b3): A canonical coordinate which admits ex-
pression as a concatenation of the aforementioned
circuit, a local gate, and XXβ .

Our goal is to describe a certain projection of this
polytope. Projection has the effect of introducing
an existential quantifier into the above description:
a point belongs to the projection of a polytope ex-
actly when it is possible to extend the projected
point by the discarded coordinates so that it satis-
fies the original constraints. This trades the actual
data housed in the lost coordinates—which may be
complicated to the point of distraction—for the mere
predicate that such data exists. In our case, we seek
to project away the coordinates (a1, a2, a3), which
leaves only constraints on (b1, b2, b3), given in terms
of (α+, α

′, α′′, β), ensuring that a prefix circuit of the
indicated type exists, without actually naming it.
To compute this projection, we apply Fourier–

Motzkin elimination to project away the remaining

coordinates and eliminate redundancies in the result-
ing inequality set. These reduced inequality sets have
the following form:

α+ + β ≥ b1 + b2 + b3,

min
{
α+ + β − 2α′
α+ + β − 2β

}
≥ −b1 + b2 + b3,

min

 α+ + β − α′ − α′′
α+ + β − α′ − β
α+ + β − β − α′′

 ≥ b3,

−π2 + α+ + β ≥ −b1 + b2 + b3;

min
{

π
2 + α+ + β − 2α′
π
2 + α+ + β − 2β

}
≥ b1 + b2 + b3,

min

 α+ + β − α′ − α′′
α+ + β − α′ − β
α+ + β − β − α′′

 ≥ b3,

where we have collected the inequalities which give
communal upper bounds into single expressions using
“min”. Notationally absorbing β into the sequence of
interaction strengths completes the proof.
See check_main_xx_theorem in monodromy [4] for

an executable proof.

Example 4.2. We include a visualization of an exam-
ple XX–circuit polytope in Figure 4.
Remark 4.3. The two convex bodies in the statement
of Theorem 4.1 are related by the linear transforma-
tion

(a1, a2, a3) 7→
(π

2 − a1, a2, a3

)
.

Remark 4.4. Theorem 4.1 is manifestly invariant un-
der permutation of the interaction strengths.
Remark 4.5. By dropping the assumption that the
entries of positive canonical triples are ordered de-
scending (as in Remark 2.8), we can rewrite the above
inequality families in a manner that is more pleasingly
symmetric. For example, the first11 family is rewrit-
ten as:

α+ ≥ a+,

min
k
α+ − 2αk ≥ min

k
a+ − 2ak,

min
k 6=`

α+ − αk − α` ≥ min
k 6=`

a+ − ak − a`.

We note that we have won these pleasing formulas by
losing convexity: the “min”s appearing in the lower
bounds encode disjunctions of linear sentences rather
than conjunctions, so we see merely a non-convex
union of these convex polytopes.
Remark 4.6 ([5]). In the case of a uniform interaction
strength α, we compute the quantities appearing in
the upper bounds of Theorem 4.1 to be

α+ = nα,

min
k
α+ − 2αk = (n− 2)α,

min
k 6=`

α+ − αk − α` = (n− 2)α.

11The second is similar, but less pleasing to the eye.
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Figure 4: Two perspectives on the XX–circuit polytope for
the interaction strength sequence (π6 ,

π
8 ,

π
12 ). From the per-

spective where SWAP is near the eyepoint, the strength faces
are the pair facing inwards, the slant faces are the pair facing
outwards, and the frustrum face is colored tan.

This causes the slant and frustrum inequalities to de-
generate, which recovers a theorem of Zhang et al. as
a special case.

5 The local theorem
In this section, we study the problem of appending a
single new XX interaction strength β to a specific cir-
cuit formed from a sequence of strengths (α1, . . . , αn).
Note that Theorem 4.1 gives us an understanding of
the “global” effect of appending XXβ , where the in-
teraction strengths are fixed but the circuit is allowed
to range. Note also that if we are able to achieve such
a local understanding, we would then like to use it in
reverse: given a point pn+1 which Theorem 4.1 guar-
antees to be modelable using a circuit with strengths
(α1, . . . , αn, β), we would like to guarantee the ex-
istence of—and algorithmically identify!—a point pn
which is modelable by (α1, . . . , αn) and for which pn+1
is reachable by appending XXβ and some local gates.

Excepting the caveat about algorithmic identifica-
tion, this can be accomplished directly using noth-
ing more than the methods of the monodromy poly-
tope. However, because we are interested in circuit
construction, we restrict what sorts of circuits we are
willing to append to those of the particularly simple
form given in Lemma 5.1. In trade, the method of the
monodromy polytope no longer directly applies.

We show in Theorem 5.3 the “forward” direction
of the strategy described above, then in Theorem 5.5
the “reverse” direction, culminating in the recursive
step in a synthesis procedure whose full description
we defer to Section 6. First, however, we introduce
the simplified circuit which we will consider.

Lemma 5.1. For any choice of a1, a2, β, d, e in

U := CAN (a1, a2, 0) · (Zd ⊗ Ze) · (XXβ),

there exist values r, s, t, u, b1, and b2 so that the
operator U may be equivalently expressed as

(Zr ⊗ Zs) · CAN (b1, b2, 0) · (Zt ⊗ Zu).

Proof. The vector subspace

g = span{XX ,YY ,XY ,YX ,ZI , IZ}

forms a Lie subalgebra of pu4, and the subspaces

a = span{XX ,YY }, k = span{IZ ,ZI}

give rise to aKAK decomposition yielding the desired
result.

Next, we note that this choice of simple local gates
gives rise to the desired explicit expressions for the
gate parameters.
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Lemma 5.2. Except for the outer parameters r, s,
t, and u, the parameters in Lemma 5.1 are related by
the equations

c2
a1−a2

c2
β + s2

a1−a2
s2
β − c2

b1−b2

2ca1−a2cβsa1−a2sβ
= c2(d+e),

c2
a1+a2

c2
β + s2

a1+a2
s2
β − c2

b1+b2

2ca1+a2cβsa1+a2sβ
= c2(d−e).

The outer parameters r, s, t, and u can then be de-
duced from a linear system with input the phases of
the top half of the left-hand matrix.

Proof. The trigonometric equalities follow by equat-
ing the square-norms of the matrix entries in
Lemma 5.1. The (1, 1) and (3, 3) entries respectively
yield

|cb1−b2 |2 = |cβca1−a2 − e2i(d+e)sβsa1−a2 |2,
|cb1+b2 |2 = |cβca1+a2 − e−2i(d−e)sβsa1+a2 |2,

where we have used the absolute values to suppress
some of the phases. We then apply the identity

|x+ reiθ|2 = x2 + r2 + 2xr cos θ

and isolate d and e to deduce the statement.
The linear system then arises by inspecting the

phases of any nondegenerate quadruple of entries. For
example, the nonzero entries in the top half, read left-
to-right, have respective phases

exp(−i(r + s+ t+ u)),
exp(−i(r − s+ t+ u),

−i exp(−i(−r + s− t+ u)),
−i exp(−i(r + s− t− u)).

This collection of linear combinations is of full rank.

We can interpret the constraints imposed by these
expressions on the positive canonical triples in terms
of β.

Theorem 5.3 (“Interference inequalities”). For pos-
itive canonical triples (a1, a2, 0) and (b1, b2, 0) and for
β an interaction strength, there exist parameters d and
e satisfying

CAN (a1, a2, 0) · (Zd ⊗ Ze) ·XXβ ≡ CAN (b1, b2, 0)

if and only if the following inequalities hold:12

a1 + a2 − β ≤ b1 + b2 ≤
π

2 −
∣∣∣π2 − (a1 + a2 + β)

∣∣∣ ,
|a1 − a2 − β| ≤ b1 − b2 ≤ a1 − a2 + β.

Moreover, the local gates witnessing the equivalence
can be taken to be Z–rotations.

12It is extremely unusual that image under Π of a circuit
with constrained local gates is again a polytope. This is, per-
haps, the most important ingredient in our approach.

Proof. Starting from Lemma 5.2, there exist solutions
to d and e exactly when the following inequalities are
met:

|c2
a1−a2

c2
β + s2

a1−a2
s2
β − c2

b1−b2
| ≤ |2ca1−a2cβsa1−a2sβ |,

|c2
a1+a2

c2
β + s2

a1+a2
s2
β − c2

b1+b2
| ≤ |2ca1+a2cβsa1+a2sβ |.

Using the inequalities a1 + a2 ≤ π
2 , a1 ≥ a2, and

0 ≤ β ≤ π
4 , we see that both the right-hand quanti-

ties are always positive, hence the right-hand absolute
value can be suppressed. The left-hand absolute value
can be equivalently expressed as a pair of inequalities,
giving

−2ca1−a2cβsa1−a2sβ ≤ c2
a1−a2

c2
β + s2

a1−a2
s2
β − c2

b1−b2
,

c2
a1−a2

c2
β + s2

a1−a2
s2
β − c2

b1−b2
≤ 2ca1−a2cβsa1−a2sβ ,

−2ca1+a2cβsa1+a2sβ ≤ c2
a1+a2

c2
β + s2

a1+a2
s2
β − c2

b1+b2
,

c2
a1+a2

c2
β + s2

a1+a2
s2
β − c2

b1+b2
≤ 2ca1+a2cβsa1+a2sβ .

Factoring the quadratics then yields

(ca1−a2cβ − sa1−a2sβ)2 ≤ c2
b1−b2

,

c2
b1−b2

≤ (ca1−a2cβ + sa1−a2sβ)2,

(ca1+a2cβ − sa1+a2sβ)2 ≤ c2
b1+b2

,

c2
b1+b2

≤ (ca1+a2cβ + sa1+a2sβ)2.

Rewriting the binomials as cosines of differences /
sums and then converting square cosines to double-
angle cosines yields

c2(a1−a2+β) ≤ c2(b1−b2) ≤ c2(a1−a2−β),

c2(a1+a2+β) ≤ c2(b1+b2) ≤ c2(a1+a2−β).

Finally, we use the piecewise monotonicity and reflec-
tion invariance of cosine, as well as the bounds on the
inputs, to deduce inequalities on the angles:

2(a1 − a2 + β) ≥ 2(b1 − b2),

2(b1 − b2) ≥ max{2(a1 − a2 − β),−2(a1 − a2 − β)},

min{2(a1 + a2 +β), 2π− 2(a1 + a2 +β)} ≥ 2(b1 + b2).

2(b1 + b2) ≥ 2(a1 + b2 − β).

Linear rearrangement yields the claimed inequality
family.

Example 5.4. In Figure 5, we give a visualization of
the regions accessible via Theorem 5.3.

Theorem 5.5 (cf. Figure 6). Given a positive canon-
ical triple (b1, b2, b3) satisfying the conditions of The-
orem 4.1 for a sequence of interaction strengths
(α1, . . . , αn, β), there always exists a positive canoni-
cal triple (a1, a2, a3) satisfying the conditions of The-
orem 4.1 for the sequence (α1, . . . , αn) and for which
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Figure 5: Two perspectives on the configuration of poly-
topes in Theorem 5.3. The solid, inner polytope is the
XX–circuit polytope for a sequence of interaction strengths
(α1, . . . , αn), and the translucent outer polytope is the XX–
circuit polytope for the sequence (α1, . . . , αn, β). We have
chosen a particular point on the edge of the inner figure and
drawn the regions accessible from it by applying Theorem 5.3
for the interaction strength β to any pair of coordinates (red:
XX and YY ; green: YY and ZZ ; blue: XX and ZZ). These
appear as a triple of flat polygons. Theorem 5.5 states that
when the point on the inner body is permitted to range, the
union of the corresponding translates of the red, green, and
blue polygons sweeps out the entirety of the outer body.

W †0 Z−rW ′0† CAN (a1, a2, a3)
W ′0W

′′
0 Zd

XXβ

Z−tW0

W †1 Z−sW ′1† W ′1Ze Z−uW1

Figure 6: The circuit emitted by a typical single step of Pro-
cedure 6.1 (i.e., by Theorem 5.5), modeling CAN (b1, b2, b3)
in terms of CAN (a1, a2, a3), XXβ , and local gates. The
gates W,W ′,W ′′ are quarter-turns which realize the action
of Weyl group elements on a, b ∈ AC2 .

there are Weyl reflections w, w′ so that the following
is solvable:

CAN (a1, a2, a3)w · (Zd ⊗ Ze) · CAN (β)
≡ CAN (b1, b2, b3)w

′
.

The outer gates witnessing the local equivalence can
be taken to be Z-rotations.

Proof. Any canonical gate CAN (b1, b2, b3) can be
written as

CAN (b1, b2, b3) = CAN (0, 0, b3) · CAN (b1, b2, 0).

Applying Theorem 5.3 to the right factor gives

CAN (b1, b2, b3) = CAN (0, 0, b3)·
· (Z−r ⊗ Z−s) · CAN (a1, a2, 0)·
· (Zd ⊗ Ze) · CAN (β)·
· (Z−t ⊗ Z−u),

under certain conditions on a1, a2, b1, b2, and β. Since
local Z–rotations commute with canonical gates of the
form CAN (0, 0, b3), we may abbreviate this to

CAN (b1, b2, b3) = (Z−r ⊗ Z−s) · CAN (a1, a2, b3)·
· (Zd ⊗ Ze) · CAN (β)·
· (Z−t ⊗ Z−u).

Additionally, our choice to factor out b3 is immate-
rial: there are Weyl reflections which permute the co-
ordinates within a canonical triple, so by conjugating
CAN (b1, b2, b3) we can place any of the three values in
the final slot. In short, we may appeal to Theorem 5.3,
provided we fix one coordinate and potentially disor-
der the positive canonical triples.
From here, our proof strategy is similar to that of

Theorem 4.1. Theorem 4.1 itself furnishes us with lin-
ear constraints on the spaces of triples (b1, b2, b3) so
that a triple satisfies the constraints if and only it can
be realized as the positive canonical coordinate of an
XX–circuit with interaction strengths (α1, . . . , αn, β).
Rather than working with ordered triples (a1, a2, a3),
we instead consider unordered triples (ah, a`, af )—
to be referred to as the “high”, “low”, and “fixed”
coordinates—as in Remark 4.5. Then, we interrelate
the a– and b–coordinates:

• We select one coordinate bf from (b1, b2, b3) to
serve as the “fixed” coordinate (and take the
union over such choices), and we set af = bf .

• On ah and a`, we impose the constraint ah ≥
a`. Similarly, of the remaining coordinates in
(b1, b2, b3), we pick bh to be the larger and b` to
be the smaller.

• We impose the constraints from Theorem 5.3 on
(ah, a`, 0), (bh, b`, 0), and β.
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Let us call the resulting (nonconvex) polytope P .
Points in P capture the following interrelated pieces
of data:

• A canonical coordinate (b1, b2, b3) which admits
expression as an XX–circuit with interaction
strengths (α1, . . . , αn, β).

• A canonical coordinate (a1, a2, a3) which admits
expression as an XX–circuit with interaction
strengths (α1, . . . , αn).

• A choice of value to share among the a– and b–
coordinates.

• The condition that, among the unshared coor-
dinates, there exists a circuit of the form in
Lemma 5.1 relating them. (As in the first two
bullets, the polytope does not record the literal
data of such a circuit, only the predicate that one
exists.)

By projecting away (ah, a`, af ) from P , we produce
the polytope of positive canonical triples (b1, b2, b3)
which can be expressed as XX–circuits with the spec-
ified interaction strengths, together with the predicate
constraint that the last step in the circuit decomposi-
tion can be written in the form of the Theorem state-
ment. This is a subpolytope of that of Theorem 4.1,
which merely tracks positive canonical triples which
can be expressed as XX–circuits with the specified
interaction strengths, without the constraint on the
final local operator. Appealing again to a computer
algebra system, we find that these two polytopes are
equal.
See regenerate_xx_solution_polytopes in

monodromy [4] for an executable proof.

Remark 5.6. Naively specified, the polytope P in the
proof of Theorem 5.5 has many convex components:
the two convex regions of a– and b–coordinates each
contribute factors of 2, the choice of which coordinate
to fix contributes a factor of 3, and the choice of which
slant and frustrum bounds apply to the disordered a–
coordinates contribute factors of 2 and 3. However,
the projection of P onto the b–coordinates, which we
used to conclude the theorem, can be shown to have
only four regions:

• The choice of convex region of b–coordinates is
free, but one then uses the same choice for a–
coordinates.

• The fixed coordinate af is taken to be either b1
or b3.

• For the unreflected (resp., reflected) convex re-
gion of b–coordinates, the slant (resp., strength)
inequality is imposed either on af or ah depend-
ing on whether af = b1 or af = b3.

• The frustrum bound is always imposed on a`.

The inequalities describing these regions are given in
Figure 20.
Remark 5.7. It is possible for the technophobic reader
to rearrange the proofs of Theorem 4.1 and Theo-
rem 5.5 so as to avoid computer algebra systems.
First, break Theorem 4.1 into a forward implication,
that the positive canonical triple associated to an
XX–circuit satisfies the indicated inequality set, and
the reverse implication. The forward implication can
be checked by hand, using a judiciously chosen sub-
set of inequalities from the monodromy polytope; the
reverse implication is much harder from this point of
view, so we set it aside for a moment.

Now we turn to Theorem 5.5. Its proof also relies
on a computer algebra system, but we may severely
limit the amount of work by inspecting only the con-
vex summands described in Remark 5.6, which is then
small enough to accomplish manually. With only the
forward implication of Theorem 4.1 established, the
proof of Theorem 5.5 instead shows that if the b–
coordinate belongs to the polytope named by The-
orem 4.1 for (α1, . . . , αn, β), then there exists an a–
coordinate in the polytope named by Theorem 4.1
for (α1, . . . , αn) which is related to the b–coordinate
by a particular single-step XX–circuit. Following the
induction described in Procedure 6.1 then yields the
missing reverse implication of Theorem 4.1, which in
turn yields the full strength of Theorem 5.5.

6 Optimal synthesis
We now put the pieces together to form an optimal
synthesis routine. The actual synthesis process is
now straightforward, given in Procedure 6.1, but it
is trickier to pin down exactly what is meant by “op-
timal”. For instance, the notion of optimality consid-
ered by Zhang et al. [5] is to minimize two-qubit oper-
ation count—but in a larger gateset, where different
gates may have uneven performance impact, optimiz-
ing count alone may not optimize performance. Re-
latedly, if performance is the true goal and the perfor-
mance penalty incurred for using gates is high, it may
be preferable to synthesize a circuit modeling some
canonical triple a′ 6= a which requires fewer gates,
trading the performance hit due to the mismatch for
performance gain of dropping some of the gates.

Let us begin with the synthesis procedure itself:

Procedure 6.1 (cf. Figure 6). The existence claim of
Theorem 5.5 can be promoted into an algorithmically
effective synthesis routine. Given a sequence of inter-
action strengths (α1, . . . , αn, β) and a positive canon-
ical triple (b1, b2, b3) which belongs to the associated
circuit polytope, the polytope P from the proof of
Theorem 5.5 can then be specialized so that only ah
and a` are free variables. (We report these inequality
sets in Figure 21.) The content of Theorem 5.5 is that
this specialization is always nonempty, so we may find
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Figure 7: Path of intermediate points in AC2 produced by
Procedure 6.1 synthesizing CAN (0.707, 0.687, 0.687) into
an XX–circuit with strength sequence (π8 ,

π
8 ,

π
12 ,

π
12 ,

π
12 ,

π
12 ).

The various colored regions are the circuit polyhedra for trun-
cations of this sequence of interaction strengths.

a point (ah, a`, af ) in it (e.g., by calculating line-line
intersections until we produce a vertex). This pair of
points can then be fed to Lemma 5.2, which produces
the angle values for the Z–rotations. This proceeds
recursively until the sequence of interaction strengths
is exhausted.

Example 6.2. In Figure 7, we include a visualization
of the intermediate steps produced when using Pro-
cedure 6.1 to synthesize an XX–circuit for a certain
canonical point against a particular sequence of inter-
action strengths.

To progress, we need a quantitative definition of
optimality.

Definition 6.3. Given a target unitary U , a gate
set S, and a cost function CS which consumes U and
an S–circuit C, the approximate synthesis task is to
produce an S–circuit C maximizing CS(U,C). Cost
functions can enjoy a variety of pleasant properties:

Separable: For a circuit template C(θ), CS(U,C) can
be written as a sum C′(U,C(θ)) +C′′S(C, θ) where
C′ depends only on the unitary which the circuit
models and C′′ depends only on the circuit and
parameters—but not its relationship to U .

Locally invariant: C′′S(C, θ) = C′′S(C) is invariant

under choice of parameters θ for local gates in
the circuit C.

Monotonic: Suppose that C is a separable cost func-
tion. If C is contained as a subcircuit in D, then
C′′S(C, θ) ≤ C′′S(D, (θ, φ)).

Non-approximating: The separable cost function
C has C′ given by

C′(U, V ) =
{

0 when U = V ,

∞ otherwise.

These features are chosen both because they feed
into an efficient algorithm for optimal synthesis and
because they are satisfied in the following guiding ex-
ample:
Example 6.4. The average infidelity of two gates U
and V is

I(U, V ) = 1−
∫
ψ∈P(C4)

〈ψ|U†V |ψ〉2

= 16− | trU†V |2
4 · 5 ∈ [0, 4/5].

For S a finite collection of XX–interactions with costs
c : S → R, we define a separable, locally invariant,
monotonic cost function by

CS(U,C) = I(U,C) +
∑
s∈C

c(s).

Average gate infidelity satisfies a few pleasant
generic properties, but it is also tightly connected to
the theory of KAK decompositions. We record these
properties below.
Remark 6.5. Average infidelity detects gate equiva-
lence, in the sense that I(U, V ) = 0 if and only if
U = V . It is also symmetric: I(U, V ) = I(V,U).
However, it fails to satisfy the triangle inequality, even
when U and V belong to the canonical family, hence
does not give a metric. It satisfies compositionality
only to first order:

16− 20 · I(UU ′, (U + εE)(V + ζF ))
= | trV †U†(U + εE)(V + ζF )|2

= |1 + ε trU†E + ζ trV †F + εζ trV †U†EF |2.

Lemma 6.6 ([8]). Let U = CAN (a1, a2, a3) and V =
CAN (b1, b2, b3) be two canonical gates with parameter
differences δj = (aj−bj). Their average gate infidelity
is given by

20·I(U, V ) = 16−16

∏
j

cos2 δj
2 +

∏
j

sin2 δj
2

 .

Lemma 6.7 ([18]). Suppose that C1, C2 are fixed
canonical gates and that L1, L′1 are fixed local gates.
Letting L2 and L′2 range over all local gates, the value
I(L1C1L

′
1, L2C2L

′
2) is minimized when taking L2 =

L1 and L′2 = L′1.
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Figure 8: Comparison of the output and wall-time character-
istics of our algorithm (in red) and that of a numpy numeri-
cal search (in blue), when targeting the two-qubit gate sets
S = {XX π

8
} and S = {XX π

12
}. We plot the histograms of

wall-times separately, as numerical search is > 200× slower.
Numerical search can fall in local wells and produce sub-
optimal circuits.

We now describe an optimal synthesis procedure for
a nice cost function:

Procedure 6.8. Let C be a separable, locally in-
variant, and monotonic cost function. Let S be a
finite gate set of XX–type interactions, and consider
the set of circuit templates given by interleaving un-
constrained local gates into the words formed from
S. Traverse these available circuit templates (i.e., the
words in S) by ascending order of C′′S .13 For each such
circuit template C, use Theorem 4.1 to calculate the
circuit polytope Π(C). Calculate the point p ∈ Π(C)
which optimizes C′(U,CAN (p)). If the total cost CS is
the best seen so far, retain C and p. Continue to tra-
verse circuit templates until Π(U) ∈ Π(C), at which
point C′ vanishes and the ordering of circuit templates
guarantees that all future circuit templates will yield a
worse cost.14 Finally, apply Procedure 6.1 to synthe-
size a C–circuit for CAN (p), then apply Lemma 6.7
to produce U itself.

Remark 6.9. In Figure 8, we study the execution char-
13Using a priority queue, one can perform this traversal

without enumerating all possible words beforehand.
14Theorem 4.1 guarantees that this termination condition

will eventually be met provided S contains any interaction XXβ

with β ∈ (0, π2 ).

acteristics of Procedure 6.8 compared to those of blind
numerical search. The implementation of our method
is available in Qiskit’s quantum_info subpackage as
the class XXDecomposer [3]. Given a Haar-randomly
chosen two-qubit unitary operator U , our numerical
search procedure is to let numpy’s generic optimizer
explore the space of circuits of a particular depth,
with the objective of minimizing the infidelity with
U . If the optimizer cannot find a circuit with infi-
delity below some threshold, we retry with a circuit
of the next larger depth. Altogether, this is similar to
what is implemented in NuOp [6], among other com-
pilation suites. The histograms reported in Figure 8
are the result of sampling over many such U , targeting
either the gate set S = {XX π

8
} or S = {XX π

12
}.15

It remains to describe how to find the point p ∈
Π(C) which optimizes C′(U,CAN (p)). For a non-
approximating cost function, this can be probed di-
rectly: if Π(U) ∈ Π(C), then we take p = Π(U), and
otherwise we reject Π(C) entirely. For the approxi-
mating cost function defined in Example 6.4, we use
the following more elaborate result:

Theorem 6.10. Let P be an XX–circuit polytope,
and let F ⊆ P be an open facet within it. For p ∈ AC2

a fixed positive canonical triple, if b = q is a criti-
cal point of the infidelity distance I|a=p,b∈F as con-
strained to F , then q is also a critical point of the
Euclidean distance to p as constrained to F .
Proof. Theorem 4.1 gives an explicit enumeration of
the available open facets of P , and we approach the
optimization problem over each facet separately. We
defer this to Appendix A.

This result means that we can repurpose the standard
procedure used to calculate the nearest point in Eu-
clidean distance to instead find the best approximat-
ing canonical triple. Namely, to calculate the nearest
point in Euclidean distance, project the point onto the
affine subspaces spanned by each facet of the polytope
(e.g., by solving a least-squares problem), retain those
projections which belong to the polytope, and from
that finite set select the point of minimum (infidelity)
distance.
Remark 6.11. This is extremely unusual behavior for
these two optimization problems and relies on the spe-
cific form of the polytopes appearing in Theorem 4.1.
For contrast, consider the line passing through the
origin with slope (π4 ,

π
50 ,

π
50 ) and the off-body point

( 83π
400 ,

83π
400 ,

83π
400 ). The fidelity-nearest point appears af-

ter traveling for one unit of time, but the Euclidean-
nearest point appears after traveling for ≈ 95% of a
unit of time.

15Neither our implementation of Procedure 6.8 nor our in-
vocation of numpy is particularly clever. We expect that both
distributions can be shifted left with further optimization of
the implementations, but that the multiplicative difference will
be at least as large between “optimal” implementations of each
synthesis method.
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Remark 6.12. Numerical experiment indicates that
the nearest point under infidelity distance exactly
agrees with the nearest point under Euclidean
distance—i.e., that the same critical point achieves
the minimum value in both of these searches. How-
ever, this conjecture yields no algorithmic speedup
when producing these minimizers, so we are not mo-
tivated to pursue it here.

7 Gateset optimization and numerical
experiment
In this section, we bring the theory of Section 6 to bear
on deciding which native gates are worth bestowing
on a device. Even if a device is physically capable
of enacting some quantum operation, there is calibra-
tion overhead to making that operation available as
a reliable user-facing gate. At the same time, the
more high-fidelity native interactions are available,
the more clever and adaptable a synthesis method
(including ours) can be. Accordingly, we would like
to find a small set of XX operations that optimizes
certain objective functions which measure synthesis
performance. The primary objective with which we
will concern ourselves is expected cost:

Definition 7.1. For a two-qubit unitary U ∈ PU (4)
and a native gate set S, let CS(U) := minC CS(U,C)
be a cost function as in Definition 6.3 (e.g., Exam-
ple 6.4 or its non-approximating variant). The ex-
pected cost is defined as

〈CS〉 =
∫
U∈PU(4)

CS(U) dµHaar.

For XX–based gate sets S and for favorable cost
functions, we now show how to compute this value
exactly. Starting with the definition

〈CS〉 =
∫
U∈PU(4)

min
C
CS(U,C) dµHaar,

we use separability and non-approximation to reduce
to the case where U admits an exact model by C:

〈CS〉 =
∫
U∈PU(4)

min
U=C(θ)

C′′S(C, θ) dµHaar.

By assuming S finite and C′′S locally invariant, we learn
that the integrand minU∈C C′′S(C) takes on finitely
many values, supported by finitely many choices of
C. By sorting the C compatibly with C′′S(C), we may
further reduce to

〈CS〉 =
∑
C

∫
U∈Image(C)

U 6∈Image(C′|C′<C)

C′′S(C) dµHaar.

Since C′′S(C) is constant on each region, each sum-
mand is given by the reweighted Haar volume of the
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1.6

1.8

2
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Figure 9: The expected infidelity of a Haar-random operator
decomposed exactly into Sx = {CX ,XXx}. Uses an addi-
tive affine error model with offset b ≈ 1.909×10−3 and slope
π
4 ·m ≈ 5.76× 10−3.

corresponding region. Since constant functions pull
back from constant functions, we can also push these
integrals forward along Π and compute them in AC2 :

〈CS〉 =
∑
C

C′′S(C)
(

Π∗µHaar

(
Π(C) \

⋃
C′<C

Π(C ′)
))

.

Altogether, this reduces the problem to calculating
the Haar volume of the polytopes which appear in
Theorem 4.1. A formula for Π∗µHaar which enables
this was previously reported by Watts et al.:

Lemma 7.2 ([19], [20], [2]). The pushforward of the
Haar measure is given by16,17

Π∗dµHaar = 384
π

∏
1≤j<k≤3

sin(2cj + 2ck) sin(2cj − 2ck).

Such trigonometric integrals over tetrahedra can be
performed exactly. Altogether, this gives us quan-
titative means by which to study the effect of tun-
ing the inputs to a parametric gate set, e.g., S(x) =
{XX π

4
,XXx}. A parametric choice of gate set re-

quires a parametric cost function, and our parametric
cost function of interest is as follows:

Definition 7.3. In our setting, we find it experimen-
tally justified to assume an affine error model: we
take XXx to have fidelity cost mx+ b for some exper-
imentally determined values of m and b.18 From this,

16The extra factor of 2 appearing in this formula comes from
a different scaling of our coordinate systems.

17This density function has a unique local maximum at
(π4 ,

π
8 , 0).

18In one experiment, we measured π
4 · m ≈ 5.76 × 10−3

and b ≈ 1.909 × 10−3. This reported offset b incorporates the
average infidelity cost of local post-rotations, so as to better
model the total circuit execution cost while maintaining local
invariance.

Accepted in Quantum 2022-04-05, click title to verify. Published under CC-BY 4.0. 14



Figure 10: An optimal set of S–circuit polytopes covering
AC2 for S = {XX π

4
,XX π

8
}. There are six regions de-

picted: (π8 ,
π
8 ,

π
8 ) in orange, (π8 ,

π
8 ,

π
4 ) in yellow, (π8 ,

π
8 ,

π
8 ,

π
8 )

in green, (π8 ,
π
4 ,

π
4 ) in blue, (π8 ,

π
8 ,

π
8 ,

π
4 ) in purple, and

(π4 ,
π
4 ,

π
4 ) in red. There are also six regions which have cir-

cuit depth at most two, hence they do not contribute volume
and we suppress them from the picture.

we build a separable, locally invariant, additive cost
component by

C′′S(C) =
∑

XXx∈C

(mx+ b).

Remark 7.4. The reader who would like to account, in
the above framework, for the worst case cost of the in-
terleaved single-qubit operations can absorb that ex-
tra amount into the b parameter.
Example 7.5. Consider the gate set S = {XX π

4
,XXx}

with cost given by the additive affine error model with
parameters b ≈ 1.909×10−3 and π

4 ·m ≈ 5.76×10−3.
In Figure 9, we display how the expected infidelity
of synthesizing an S–circuit for a Haar-randomly cho-
sen unitary varies with the gate set parameter x. The
ends of this curve degenerate to the case of the smaller
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Figure 11: The expected infidelity of a Haar-random operator
decomposed exactly into Sx,y = {CX ,XXx,XXy}. Uses an
additive affine error model with offset b ≈ 1.909× 10−3 and
slope π

4 ·m ≈ 5.76× 10−3.

gate set {XX π
4
}. The precise location of the optimum

in the middle depends on the ratio m/b; for experi-
mentally realistic error models like the one depicted
here, it is located near π

8 , achieving an expected infi-
delity of 1.62× 10−2. We observe also that the basin
for this minimum is fairly wide, so that π

8 is a good
choice for inclusion in a native gate set even if the
error model varies somewhat over time or across a de-
vice.19 Finally, in Figure 10 we depict the optimal
synthesis regions within the Weyl alcove for the gate
set {XX π

4
,XX π

8
}.

Example 7.6. Consider next the gate set S =
{XX π

4
,XXx,XXy} with the same cost function. In

Figure 11, we display the expected infidelity of synthe-
sizing an S–circuit for a Haar-randomly chosen uni-
tary against both parameters x and y. The edges of
this triangular figure degenerate to the case discussed
in Example 7.5 along the lines x = π

4 , y = 0, and
x = y. As before, the precise location of the opti-
mum in the middle depends on the ratio m/b, but
for experimentally realistic error models like the one
depicted here, it is located near (x, y) = (π8 ,

π
12 ), this

time achieving an expected infidelity of 1.51 × 10−2.
Again, the basin is fairly wide and the minimum fairly
independent of the value of m/b, so that (π8 ,

π
12 ) are

good choices for inclusion in a native gate set even if
the observed error model exhibits mild variation over
time or across a device. In Figure 12 we depict the
optimal synthesis regions within the Weyl alcove for
the gate set {XX π

4
,XX π

8
,XX π

12
}.

Example 7.7. Taking these results for exact synthe-
sis as inspiration, we can also explore effects intro-
duced by approximate synthesis. Our results here
cannot be so clean, because we lose access to our

19Low-denominator rational multiples of π4 are also easier to
use in a randomized benchmarking scheme.
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Figure 12: An optimal set of S–circuit polytopes covering
AC2 for S = {XX π

4
,XX π

8
,XX π

12
}. The nineteen regions

are too many to name explicitly, but their hues indicate an in-
creasing cost from a minimum at I to a maximum at SWAP.
There are also ten regions which have circuit depth at most
two, hence they do not contribute volume and we suppress
them from the picture.

method for analytic calculation, but we can still per-
form Monte Carlo experiments to analyze the rela-
tionship between Sx = {CX ,XXx} and the expected
infidelity. The plot in Figure 13 shares many of the
same qualitative features as Figure 9 (e.g., the ap-
proximate position of the global minimum, and the
non-concave kink near x = π

2 · 1/3), with an overall
vertical shift coming from the approximation savings.
The global optimum for approximate synthesis into
Sx,y = {CX ,XXx,XXy} is again near to the global
optimum for exact synthesis, so we re-use the user-
friendly value of (x, y) = (π8 ,

π
12 ) and depict in Fig-

ure 14 the frequencies that these regions are used by
approximate synthesis of Haar-random operations.

Remark 7.8. In the limit where S contains all
XX interactions, the most efficient circuit for
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Figure 13: The expected infidelity of a Haar-random operator
decomposed approximately into Sx = {CX ,XXx}. Uses an
additive affine error model with offset b ≈ 1.909× 10−3 and
slope π

4 ·m ≈ 5.76× 10−3.

CAN (a1, a2, a3) is given by a product

CAN (a1, a2, a3) =

CAN (a1) · CAN (0, a2) · CAN (0, 0, a3),

where each factor in the product is a Weyl reflection
of a single XX gate of the same parameter, and where
factors are dropped when the relevant parameter van-
ishes. Under the assumption of an additive affine error
model, this establishes a lower bound for how efficient
we can expect our circuits to possibly be, as they are
assembled from a more restrictive gate set.

Comparing Example 7.5 and Example 7.6, we ob-
serve that there are rapidly diminishing returns to en-
larging the native gate set. Specialized to the same er-
ror model as in the Examples, the performance lower
bound argued above is (3/2 · π4 ) ·m+ 3b, resulting in
the table in Figure 15.
Remark 7.9. For a two-qubit unitary U , its mirror
is the gate U · SWAP. The mirror of a canonical
gate CAN (a1, a2, a3) is again canonical, given by the
formula{

CAN
(
π
4 + a3,

π
4 − a2,

π
4 − a1

)
when a1 ≤ π

4 ,

CAN
(
π
4 − a3,

π
4 − a2, a1 − π

4
)

otherwise.

This formula shows that mirroring interchanges the
regions of AC2 with the most and least infidelity cost,
suggesting that our technique may be particularly
fruitful at reducing the cost of mirrorable gates. We
summarize the numerical results in Figure 17, and we
depict in Figure 16 the relative frequency of different
circuit templates when synthesizing up to mirroring.
The main points are that these two synthesis strate-
gies are “compatible”, in that mirroring can be used in
tandem with fractional synthesis to effect a combined
decrease in infidelity, and that the optimal choice of
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Figure 14: The distribution of circuit types encountered when
approximately synthesizing 31,800 Haar-random two-qubit
unitaries according to the additive affine error model with
offset b ≈ 1.909× 10−3 and slope π

4 ·m ≈ 5.76× 10−3.

finite gateset extension is somewhat different between
the two but not wildly so.
Example 7.10. We summarize the statistics on exact,
approximate, and mirrored synthesis for the gate sets
{XX π

4
}, {XX π

4
,XX π

8
}, and {XX π

4
,XX π

8
,XX π

12
} in

Figure 18. These fractional gates are chosen because
they are near to the unconstrained optima and be-
cause they are integer fractional iterates of CX , which
means they can be easily calibrated and benchmarked.
These are to be compared with the precise optima re-
ported in Figure 15 and Figure 17. The main point
is that using these fractional gates, rather than the
optimal choice of fractional exponents, comes at only
a modest cost in infidelity while greatly simplifying
engineering.
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{CX ,XXx} 0.52041 1.617× 10−2 (70.9%)
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offset b ≈ 1.909 × 10−3 and slope π

4 · m ≈ 5.76 × 10−3.
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Gateset S Approx.? argmin /π4 min〈CS〉 (%)
{CX} - 2.279× 10−2 (100%)
{CX} X - 1.895× 10−2 (83.2%)
{CX ,XXx} 0.49970 1.437× 10−2 (63.1%)
{CX ,XXx} X 0.46411 1.352× 10−2 (59.3%)

{CX ,XXx,XXy}
0.49904,
0.24991 1.350× 10−2 (59.2%)

{XXcts} - 1.304× 10−2 (57.2%)

{CX ,XXx,XXy} X
0.54244,
0.37083 1.300× 10−2 (57.0%)

{XXcts} X - 1.241× 10−2 (54.7%)

Figure 17: The expected infidelity of a Haar-random op-
erator or its mirror with optimal decomposition into opti-
mally chosen gate-sets of various sizes. Uses an additive
affine error model with offset b ≈ 1.909 × 10−3 and slope
π
4 ·m ≈ 5.76× 10−3. Note that {XXcts} may be physically
unrealistic.

Gateset S Approx.? Mirror? 〈CS〉 (%)
{CX ,XX π

8
} 1.619× 10−2 (71.0%)

" X 1.534× 10−2 (67.3%)
" X 1.437× 10−2 (63.1%)
" X X 1.374× 10−2 (60.3%)

{CX ,XX π
8
,XX π

12
} 1.564× 10−2 (68.6%)

" X 1.483× 10−2 (65.1%)
" X 1.352× 10−2 (59.3%)
" X X 1.304× 10−2 (57.2%)

Figure 18: The expected infidelity of a Haar-random operator
with various optimal synthesis methods into a fixed pair of
convenient gate sets. Uses an additive affine error model
with offset b ≈ 1.909 × 10−3 and slope π

4 · m ≈ 5.76 ×
10−3. Compare the expected fidelities with those advertised
in Figure 15 and Figure 17.
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A Case-work for the approximation
theorem
In this Appendix, we chase out the requisite case work
to prove Theorem 6.10. We begin with some reduc-
tions.

Lemma A.1. Let a = (a1, a2, a3) be a positive canon-
ical triple, and let P ⊆ AC2 be a polyhedron satisfying
the reflection-closure property

P =
{(π

2 − b1, b2, b3

)∣∣∣b ∈ P} .
The point b ∈ P nearest in infidelity distance to the
point a ∈ AC2 satisfies b1 ≤ π

4 if a1 ≤ π
4 and b1 ≥ π

4
if a1 ≥ π

4 .

Proof. In the expression∏
j

cos2(aj − bj) +
∏
j

sin2(aj − bj),

the bounds 0 ≤ a2, b2, a3, b3 ≤ π
4 entail that the first

summand is bounded from below by 1
4 cos2(a1 − b1)

and the second summand is bounded from above by
1
4 sin2(a1 − b1). Notice that replacing b with its re-
flection (π2 − b1, b2, b3) trades the positions in the ex-
pression of cos2(a1 − b1) and sin2(a1 − b1). Addition-
ally, notice that the expression is maximized when
cos2(a1 − b1) takes on the larger of the two values,
i.e., when cos2(a1 − b1) ≥ 1

2 . This then holds exactly
when the conclusion of the Lemma does.

Corollary A.2. We need only handle the case a1 ≤
π
4 .

Proof. Theorem 4.1 shows that XX–circuit polytopes
are reflection-invariant, so that we may apply the
Lemma. Furthermore, since average infidelity is in-
variant under replacing both coordinates by their re-
flections

(a1, a2, a3) 7→
(π

2 − a1, a2, a3

)
,

(b1, b2, b3) 7→
(π

2 − b1, b2, b3

)
.

we may reduce to one case of the Lemma, and we
choose the case indicated in the Corollary statement.

From here, we turn to the actual casework, walk-
ing first over the codimensions of the various facets
of some implicitly understood XX–circuit polytope
and then over their possible slopes (noting that in
each codimension there is a finite set of possibili-
ties). The codimension 0 and 3 (i.e., top- and bottom-
dimensional) cases are trivial:

Lemma A.3 (cf. Remark 6.5). The infidelity func-
tional I|a is extremized on the interior of a codimen-
sion 0 facet if and only if a is a member of that
facet.

Lemma A.4. The codimension 3 facets contribute
a finite set of points at which the restricted infidelity
function I|a may be extremized.

Lemma A.5. The infidelity functional I|a is extrem-
ized on the interior of codimension 1 facets coincident
with the outer walls of the Weyl alcove if and only if
a is a member of that facet.

Proof. We employ a strategy similar to Remark 4.5:
our choice to restriction attention the alcove AC2 is
artificial, and it is equivalent to optimize the function
minv,w∈W I(v · a,w · b) where W denotes the group
of Weyl reflections, where the domain of I is suitably
extended by reflection beyond AC2 , and where bw is
constrained to reside in

⋃
w∈W w ·P , the closure of P

under Weyl reflections. This closure is again a (pos-
sibly non-convex, possibly disconnected) polyhedron,
but now the points b ∈ P incident on the outer alcove
walls belong to the interior of a codimension 0 facet
of
⋃
w∈W w · P . Hence, the optimization condition

reduces to that of the codimension 0 facet case.

Lemma A.6. The infidelity functional I|a is extrem-
ized on the interior of the codimension 1 facets not
coincident with the outer walls of the Weyl alcove ex-
actly at the nearest point in Euclidean distance.

Proof. Each such facet has an associated Lagrange
multipliers problem, which we solve in turn. We use
the following abbreviations throughout:

∂jI := ∂I|a
∂bj

, δj := aj − bj .

The linear constraints on a, b ∈ AC2 describe the fol-
lowing constraints on δ:

δ1 ∈
[
−π2 ,

π

2

]
, δ2 ∈

[
−π4 ,

π

4

]
, δ3 ∈

[
−π4 ,

π

4

]
.

Referring to Theorem 4.1, we break into cases based
on the normal vector of the facet:

(0, 0, 1): The Lagrange multiplier constraints are
∂1I = 0 and ∂2I = 0, which amount to the
trigonometric conditions

(c2δ2 + c2δ3)s2δ1 = 0, (c2δ1 + c2δ3)s2δ2 = 0.

Taking into account the domain constraints on δ,
we see that the first equation’s is satisfied either
when a and b both represent the identity unitary
or when δ1 = 0. Taking into account the deduced
constraint δ1 = 0, the second clause is then satis-
fied only when δ2 = 0. Finally, b3 is determined
by being constrained to the frustrum plane.20

20A special case of this was previously investigated by Cross
et al. [8, Equation B8f] when finding the best approximant
using a pair of CX gates.
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(1, 1, 1): The Lagrange multiplier constraints are
∂1I = ∂2I and ∂2I = ∂3I, which amount to the
trigonometric conditions

(cδ1−δ2 + cδ1+δ2c2δ3)sδ1−δ2 = 0,
(cδ2−δ3 + cδ2+δ3c2δ1)sδ2−δ3 = 0.

These equalities are analyzed similarly to as in
the previous case. The first equation is satisfied
either when both a and b represent the identity
unitary or when δ1 = δ2, and the second equality
is similarly dispatched to give δ2 = δ3.

(−1, 1, 1): The Lagrange multiplier constraints are
−∂1I = ∂2I and −∂1 = ∂3I, which amount to
the trigonometric conditions

(cδ1+δ2 + cδ1−δ2c2δ3)sδ1+δ2 = 0,
(cδ1+δ3 + cδ1−δ3c2δ2)sδ1+δ3 = 0.

Reasoning identically about the domains, we con-
clude that −δ1 = δ2 and −δ1 = δ3.

In each case, the critical points are seen to lie at the
Euclidean projections onto the relevant planes.

Lemma A.7. The infidelity functional I|a is extrem-
ized on the interior of the codimension 2 facets not
coincident with the outer walls of the Weyl alcove ex-
actly at the nearest point in Euclidean distance.

Proof. Again, we are tasked with solving a family of
constrained optimization problems. This time, each
nondegenerate pair of inner walls intersect at a line
with tangent vector v, and we are looking to solve
along the line for the condition ∇I|a · v = 0. To
parameterize the line, we select a vertex b ∈ AC2 on
it and set

`(t) = v · t+ b.

We break v (i.e., the choice of plane pair) into cases.

(−1,−1, 0): This tangent vector v arises from the in-
tersection of planes with normal vectors (0, 0, 1)
and (−1, 1, 1). Expanding (∇I|a1,a2,a3 · v) yields

(cδ1−δ2+2δ3+cδ1−δ2−2δ3+2cδ1+δ2+2t)sδ1+δ2+2t = 0,

where t is constrained to

b1 −
π

4 ≤ t ≤ b2 − b3.

(1,−1, 0): This tangent vector v arises from the in-
tersection of planes with normal vectors (0, 0, 1)
and (1, 1, 1). Expanding (∇I|a1,a2,a3 · v) yields

(cδ1+δ2+2δ3+cδ1+δ2−2δ3+2cδ1−δ2−2t)sδ1−δ2−2t = 0,

where t is constrained to
1
2(b2 − b1) ≤ t ≤ min

{
b2 − b3,

π

4 − b1

}
.

(0, 1,−1): This tangent vector v arises from the inter-
section of planes of normal vectors (1, 1, 1) and
(−1, 1, 1). Expanding (∇I|a1,a2,a3 · v) yields
(c2δ1+δ2+δ3+c2δ1−δ2−δ3+2cδ2−δ3−2t)sδ2−δ3−2t = 0,
where t is constrained to

1
2(b3 − b2) ≤ t ≤ min {b1 − b2, b3} .

In each case, the first clause is not satisfiable on the
indicated interval, and the second clause contributes
at most only the Euclidean critical point.

Lemma A.8. The infidelity functional I|a is extrem-
ized on the interior of the codimension 2 facets coin-
cident with the outer walls of the Weyl alcove exactly
at the nearest point in Euclidean distance.
Proof. As in Lemma A.7, we intend to split over the
slopes of the plane-plane intersections. Two of these
cases are familiar: since the outer alcove wall b3 ≥ 0
shares a normal with the frustrum inequality of Theo-
rem 4.1, the tangent vectors (−1,−1, 0) and (1,−1, 0)
both reappear, and we have already dispatched them
in the proof of Lemma A.7. The frustrum inequal-
ity contributes one codimension 2 facet not covered
by the above: its intersection with the wall a2 ≥ a3
yields a line with tangent vector (1, 0, 0), and the as-
sociated optimization problem is

(c2δ2 + c2δ3)s2(δ1−t) = 0.
The sine factor contributes the Euclidean critical
point, and the cosine factor is independent of t.

The remaining cases correspond to “inner creases”
in the Weyl-closed solid ∪w∈Ww · P , and they are
treated quite differently. In each case, the strategy is
to show that the facet is irrelevant (i.e., has no criti-
cal points) unless the outer alcove inequality is tight
for the point a, then to use that tightness to simplify
the expression further. Our strategy for showing ir-
relevance is to show that, when a is not a member of
an outer facet, ∇I|a has a nonnegative inner product
with the inward-facing normal of the codimension 2
facet considered as part of the boundary of the inner
codimension 1 facet. Taking this as given, we would
learn that the extremum then would always lie on
the codimension 1 facet, so that we could avoid con-
sidering the codimension 2 facet. In fact, this strat-
egy gives us a bit more: even without the assumption
that a lies off of the outer wall, continuity would show
that this conclusion still holds for extrema, since the
assumption is only violated at limit points of open re-
gions.21 Thus, we can avoid investigating even the

21Importantly, we are not arguing about critical points but
about extrema. Critical points can manifest on a boundary via
a sequence of points on the bulk which themselves are merely
approximately critical points, without exactly being critical
points. However, any such critical point cannot yield a more
extreme value than the value achieved by the function on a
sequence of values in the bulk which are extrema for the func-
tional constrained to planes parallel to the outer facet.
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aforementioned simplified expressions, leaving open
only the task of exhibiting a positive inner product
with the inward-facing normal.

(−2, 1, 1): This tangent vector v arises from the inter-
section of the inner wall with normal ni = (1, 1, 1)
and outer wall with normal no = (0, 1,−1). As-
suming a2 > a3, we would like to show that the
following quantity is positive:

∇I|a·ni = (ca2−a3 +ca2+a3−2tc2(a1−b1+2t))sa2−a3 ,

where (b1, 0, 0) lies on the line and t satisfies 0 ≤
t ≤ 1

3b1.

(1, 1,−2): This tangent vector v arises from the inter-
section of the inner wall with normal ni = (1, 1, 1)
and outer wall with normal no = (1,−1, 0). As-
suming a1 > a2, we would like to show that the
following quantity is positive:

∇I|a·ni = (ca1−a2+c2(a3+2t)ca1+a2−2b1−2t)sa1−a2 ,

where (b1, b1, 0) lies on the line and t satisfies
− 1

3b1 ≤ t ≤ 0.

(−2,−1,−1): This tangent vector v arises from the
intersection of the inner wall with normal ni =
(−1, 1, 1) and outer wall with normal no =
(0, 1,−1). Assuming a2 > a3, we would like to
show that the following quantity is positive

∇I|a · ni =

(ca2−a3 + ca2+a3−2b1+2tc2(a1−b1+2t))sa2−a3 ,

where (b1, 0, 0) lies on the line and t satisfies 1
2b1−

π
8 ≤ t ≤ 0.

In each case, the domain restrictions cause the ar-
guments to sine and cosine to lie in the positive
range.

B Inclusion-exclusion and incidence
degeneracy
In uncovering our main results, it was invaluable to
be able to calculate the volume of a nonconvex poly-
tope. Not only did volume calculations play an out-
sized role in Section 7, they also underlie primitive op-
erations. For instance, while containment of a poly-
tope P within a convex polytope Q can be checked
on vertices, this is not true of two generic polytopes;
instead, assuming that P is of constant dimension,
P ⊆ Q if and only if vol(P ) = vol(P ∩ Q). For this
reason, we found it imperative to have a robust and
efficient method for volume calculation.

The process of volume calculation cleaves into two
parts: reducing to the convex case, and computing
the volume of convex components. Both steps ad-
mit several approaches: for instance, the former can
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Figure 19: Volume computations made during an example
gate set exploration exercise. The vertical coordinate shows
the number of convex volume computations required with a
naive application of the inclusion-exclusion formula, displayed
on a logarithmic scale. The horizontal coordinate shows the
number of convex volume computations actually performed
when using the method described in Appendix B. Points near
the top-left indicate “false complexity” in the convex poly-
tope arrangement, and points near the bottom-right indicate
“true complexity”.

be accomplished by (joint) triangulation, and the lat-
ter can be accomplished by determinant methods.
However, it is difficult to come by implementations
of these techniques which are open-source, permis-
sively licensed, accurate / exact, and which operate
in high dimension.22 In our setting, we can often
get away with the following: for the second step, use
the (somewhat computationally expensive) ability of
a computer algebra system, such as lrs, to calculate
the volume of a single convex polytope; and for the
first step, use a variant of inclusion-exclusion.

The naive application of inclusion-exclusion is de-
scribed by

vol

⋃
j∈J

Pj

 = −
∑
I⊆J

(−1)|I| vol
(⋂
i∈I

Pi

)

=: −
∑
I⊆J

(−1)|I| vol (PI) .

The terms on the right-hand side are all volumes of
convex bodies, hence are individually approachable,
but there are 2|J| such summands. These summands
can be culled in two ways:

1. Terms with vanishing volume are downward-
closed : If volPI = 0, then volPI′∪I = 0 for any
I ′.

2. Containment is downward-closed : If volPI =
volPj∪I , then volPI′∪I = volPI′∪j∪I for any I ′.

22See [23] for a notable exception.
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For j 6∈ I ∪ I ′, these pairs of values appear with
opposite sign in the larger sum and cancel each
other out.

It is simple to cull summands with the first observa-
tion: whenever we encounter a summand with van-
ishing volume, we can skip all of its descendants. The
second observation is trickier: after encountering two
pairs (j1, I1) and (j2, I2) which fit the hypothesis, it
is possible to double-count a term as belonging to two
canceling pairs.

The following procedure accounts for this wrinkle.
We will maintain two “skip lists” of indices to ignore:

1. A skip of Type 1 corresponds to an intersection
which vanishes exactly, and it is recorded by a
single bitmask of the entries which populate I.

2. A skip of Type 2 corresponds to an intersection
which cancels with one of its immediate descen-
dants, and it is recorded by a bitmask of the en-
tries which populate I as well as the index j of
the descendant (which does not belong to I).

We traverse the possible depths of intersections, and
at each depth we traverse the possible intersections
at that depth. For each intersection, if it match ei-
ther skip list, we ignore it and continue to the next
intersection at this depth. Otherwise, we compute
the volume of this intersection. If the volume van-
ishes, we add this index to the Type 1 skip list, then
continue as if we have done no work at this step. If
the volume is equal to one of our immediate prede-
cessors, we add to the Type 2 skip list its index and
the extra intersection factor j which witnesses us as
its child, then continue as if we have done no work at
this step. Otherwise, we add the nonzero contribution
to the running alternating sum with the appropriate

sign. When we exhaust the possible intersections at
this depth, if we have performed no work, we termi-
nate the iteration altogether; otherwise, we proceed
to the next depth.

Now, we double back to reintroduce the summands
which we previously double-counted, which we for-
mulate in a way to also avoid double-counting the
double-countings. Traversing the Type 2 skip list in
the order in which it was created, let us consider the
tth mask and toggle (It, jt), as well as some interme-
diate sth mask and toggle (Is, js) with s < t and with
jt ∈ Is. Double-counting occurs for this pair at an
intersection I when the following are met:

1. The tth mask matches It ≤ I.

2. The tth toggle is disabled: jt 6∈ I.

3. The sth mask matches after the toggle is enabled:
Is ≤ I ∪ {jt}.

4. For all earlier s′ < s, the s′th mask does not
include the tth toggle and additionally does not
match I.

5. For all later s < t′ < t, the t′th mask does not
match the toggle-on form I ∪ {jt}.

Whenever these constraints are met, we reintroduce
the summand at I to the running alternating sum.
After iterating over all possible values of s and t, the
running sum is the true alternating sum.

For any s < t, the constraints on I described above
are quite strong (and often even contradictory), so
that iterating over the possible ways to satisfy these
constraints, rather than iterating over I and checking
satisfaction, frequently results in loops with few to no
iterations. In one instance “in the wild”, this strategy
reduced a calculation from 214 − 1 ≈ 16, 000 convex
volume computations to a mere 27 volume computa-
tions.
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b–coord’s unreflected,
af = b3,

slant inequality on ah
:


α+ + β ≥ b1 + b2 + b3,

α+ − 2α′ + β ≥ −b1 + b2 + b3,
α+ − β ≥ −b1 + b2 + b3,
α+ − α′ ≥ b3,

α+ − α′ − α′′ + β ≥ b2.

b–coord’s reflected,
af = b3,

strength inequality on ah
:


π
2 + α+ − 2α′ + β ≥ b1 + b2 + b3,
−π2 + α+ + β ≥ −b1 + b2 + b3,

α+ − β ≥ b1 + b2 + b3,
α+ − α′ ≥ b3,

α+ − α′ − α′′ + β ≥ b2.

b–coord’s unreflected,
af = b1,

slant inequality on af
:



α+ +−2α′ + β ≥ −b1 + b2 + b3,
α+ + β ≥ b1 + b2 + b3,
π
2 − β ≥ b1 − b2 + b3,

α+ +−2α′ − β ≥ −b1 − b2 + b3,
α+ − β ≥ b1 − b2 + b3,

α+ − α′ − α′′ + β ≥ b3.

b–coord’s reflected,
af = b1,

strength inequality on af
:



−π2 + α+ + β ≥ −b1 + b2 + b3,
π
2 + α+ +−2α′ + β ≥ b1 + b2 + b3,

π
2 − β ≥ b1 − b2 + b3,

−π2 + α+ − β ≥ −b1 − b2 + b3,
π
2 + α+ +−2α′ − β ≥ b1 − b2 + b3,
α+ − α′ − α′′ + β ≥ b3.

Figure 20: Four tables of inequalities describing the four regions of b–coordinates from Remark 5.6. See also Figure 21.

Accepted in Quantum 2022-04-05, click title to verify. Published under CC-BY 4.0. 24



b–coord’s unreflected,
af = b3,

slant inequality on ah
:



−b3 + α+ ≥ ah + a`,
−b3 + α+ − 2α′ ≥ −ah + a`,
α+ − α′ − α′′ ≥ a`,
b1 + b2 + β ≥ ah + a`,

π − b1 − b2 − β ≥ ah + a`,
−b1 − b2 + β ≥ −ah − a`,
b1 − b2 + β ≥ ah − a`,
−b1 + b2 + β ≥ −ah + a`,
b1 − b2 − β ≥ −ah + a`.

b–coord’s reflected,
af = b3,

strength inequality on ah
:



π
2 − b3 + α+ − 2α′ ≥ ah + a`,
−π2 − b3 + α+ ≥ −ah + a`,
α+ − α′ − α′′ ≥ a`,
b1 + b2 + β ≥ ah + a`,

π − b1 − b2 − β ≥ ah + a`,
−b1 − b2 + β ≥ −ah − a`,
b1 − b2 + β ≥ ah − a`,
−b1 + b2 + β ≥ −ah + a`,
b1 − b2 − β ≥ −ah + a`.

b–coord’s unreflected,
af = b1,

slant inequality on af
:



−b1 + α+ ≥ ah + a`,
b1 + α+ +−2α′ ≥ ah + a`,
α+ − α′ − α′′ ≥ a`,
b2 + b3 + β ≥ ah + a`,

π − b2 − b3 − β ≥ ah + a`,
−b2 − b3 + β ≥ −ah − a`,
b2 − b3 + β ≥ ah − a`,
−b2 + b3 + β ≥ −ah + a`,
b2 − b3 − β ≥ −ah + a`.

b–coord’s reflected,
af = b1,

strength inequality on af
:



π
2 − b1 + α+ +−2α′ ≥ ah + a`,

−π2 + b1 + α+ ≥ ah + a`,
α+ − α′ − α′′ ≥ a`,
b2 + b3 + β ≥ ah + a`,

π − b2 − b3 − β ≥ ah + a`,
−b2 − b3 + β ≥ −ah − a`,
b2 − b3 + β ≥ ah − a`,
−b2 + b3 + β ≥ −ah + a`,
b2 − b3 − β ≥ −ah + a`.

Figure 21: Four tables of inequalities describing the relationship between the a–coordinates and the b–coordinates in the four
regions of Remark 5.6. See also Figure 20.
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