10P Publishing

® CrossMark

RECEIVED
1 November 2019

REVISED
3 June 2020

ACCEPTED FOR PUBLICATION
9 June 2020

PUBLISHED
7 July 2020

Quantum Sci. Technol. 5 (2020) 044001 https://doi.org/10.1088/2058-9565/ab9acb

Quantum Science and Technology

PAPER

An open-source, industrial-strength optimizing compiler for
quantum programs

R S Smith"?@ | E C Peterson”’, M G Skilbeck’*® and E J Davis’

! HRL Laboratories, 3011 Malibu Canyon Rd #4797, Malibu, CA 90265, United States of America
2 Rigetti Computing, 775 Heinz Ave, Berkeley, CA 94710, United States of America
3 Author to whom any correspondence should be addressed.

E-mail: peterson.eric.c@gmail.com

Keywords: quantum compilation, quantum computing, circuit optimization, Common Lisp

Abstract

Quilc is an open-source, optimizing compiler for gate-based quantum programs written in Quil or
QASM, two popular quantum programming languages. The compiler was designed with attention
toward NISQ-era quantum computers, specifically recognizing that each quantum gate has a
non-negligible and often irrecoverable cost toward a program’s successful execution. Quilc’s
primary goal is to make authoring quantum software a simpler exercise by making architectural
details less burdensome to the author. Using Quilc allows one to write programs faster while usually
not compromising—and indeed sometimes improving—their execution fidelity on a given
hardware architecture. In this paper, we describe many of the principles behind Quilc’s design, and
demonstrate the compiler with various examples.

1. Introduction

Noisy intermediate-scale quantum (NISQ) computers are an active area of research. New quantum
computer architectures are sometimes the result of incremental improvements in the manufacturing
process, and at other times are paradigm-shifts in the qubit technologies themselves. While each new
architecture is universal in a computational sense, the impermanence of their designs challenges one’s
ability to write software for them. As has been the case with classical computers, the role of a compiler is to
attenuate this challenge. Software for a quantum computer is ideally written in the manner that is simplest
and most straightforward to the programmer, without necessarily requiring knowledge of the particulars of
the target architecture. It is then the job of the compiler to produce both an efficient and an appropriate
expression of this software which accounts for the details of the target architecture.

In this paper we present Quilc, an open-source” software application used to compile quantum programs
written in Quil [3, 24] into an optimized program that is expressed in the native operations of a target
quantum computer architecture. Quilc does not require—and indeed has no means to accept—instruction
from the user on a fine-grained compilation strategy. Instead, it consumes a simple description of the
architecture for which Quile must compile the user’s program. The architecture description language is
general enough to handle most’ manufactured gate-based computer architectures to date, and anticipates
new ones. For these reasons, we say Quilc is automatic and retargetable. Quilc is also more than a desk
calculator—a convenience to avoid doing manual, repetitive calculations—as it acts as a repository of
knowledge about the compilation of programs, and it is able to synthesize this information to discover
non-trivial expressions of a quantum program. We provide examples of this in section 5. It is also
production-grade, and is deployed as an essential component of Rigetti Computing’s software stack.

The structure of the paper is as follows. First, in section 2 we provide an overview of Quilc, including a
mathematical formulation of quantum architectures as they pertain to compilation. This formalism is used
in section 3 to describe how Quilc achieves retargetablity, a high-level overview of which is presented in

* The source code of Quilc is licensed under the Apache 2.0 license. The source code can be found at http://github.com/rigetti/quilc. This
document refers to Quilc version 1.12.1.
> Currently, architectures with particularly exotic gates acting on 3+ qubits are not well supported.
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Figure 1. Compilation of the program CNOT 0 4. The layout stage looks for an optimal initial mapping of logical qubits to
physical qubits: in this example, the compiler has opted to relabel qubit 0 as qubit 4, and qubit 4 as qubit 5, so that in the (here
unspecified) chip topology the two-qubit interaction can occur without introducing SWAP instructions. The nativization stage
converts any non-native gate into a native gate; in this example CNOT is first compiled to RY, Z, and CZ gates, and then finally
nativization compiles those RY and Z gates into native RX, RZ and CZ gates. The final optimization stage here rewrites several RX
or RZ instructions acting on the same target qubit into fewer instructions.

DECLARE beta REAL
DECLARE gamma REAL
DECLARE ro BIT[3]

HO RX(gamma) O
H1 RX(gamma) 1
H 2 RX(gamma) 2
CPHASE(beta) 0 1 MEASURE 0 ro[0]
CPHASE(beta) 0 2 MEASURE 1 rol[1]
CPHASE(beta) 1 2 MEASURE 2 ro[2]

Figure 2. A typical, small instance of a ‘QAOA’ quantum program. The instructions H, CPHASE, RX, and MEASURE respectively
put the qubit registers into superposition states, commingle the registers, attempt to ‘unmix’ them, and measure the residual
commingling.

figure 1. In section 4 we consider two compilation stages (the ‘addressing’ and ‘compression’ stages) in
more detail. We follow this in section 5 with a few non-trivial examples, which make use of many of the
features present in Quilc. In section 6 we investigate the performance of Quilc on a set of benchmarks. Finally,
in the appendix we consider some implementation details which may be of interest to compiler authors or
potential contributors to Quile, including examples of our ‘compilation subroutine’ domain-specific
language, additional features of Quilc, and a short history of the project’s development.

2. A quantum compiler target

The structure of Quilc is informed by the task at hand: it must conform to the features and constraints of
gate-based quantum computational devices (i.e., the shape of its output), and it must understand the
features and constraints of the quantum programming language, Quil (i.e., the shape of its input).
Gate-based quantum computational devices are made up of quantum resources (typically qubits) and
support operations which affect the state of a subsystem, commingle the states of two or more subsystems,
or collapse and copy the state of a subsystem for classical interpretation. The Quil language itself provides
support for all of these operations in an assembly-like format: the system’s resources are addressed by
‘quantum registers’, the individual assembly instructions correspond to the aforementioned operations, and
there are mechanisms for further specifying other classical requirements (e.g., memory to store user-defined
parameters) and their operation (figures 2 and 3).

To remain portable, the Quil language is also designed to be hardware-agnostic: it makes no particular
assumptions on the availability of resources or what particular operations they support. Instead, its
execution semantics are formally specified against a mathematical backend in such a way that makes it clear
how to abstractly simulate the effects of a Quil program. At the other extreme, physical devices do labor
under a host of severe constraints: there is a fixed (and typically small) number of resources, there are only a
few very particular instructions which the device can enact on those resources, operations are subject to
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DEFCIRCUIT RESET q scratch: DEFGATE U(%alpha, %beta):
MEASURE q scratch cis(2xpixjalpha), 0, 0, O
JUMP-UNLESS @done scratch 0, cis(-2*pix*jalpha), 0, O
X q 0, 0, cis(-2xpix)beta), O
LABEL @done 0, 0, O, cis(2xpixybeta)

Figure 3. On the left: a Quil snippet demonstrating the implementation of a RESET instruction as applied to a qubit g. The
instruction X is the quantum equivalent of a NOT instruction. On the right: a Quil snippet defining a custom instruction.
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Figure4. An example input program, its associated natural architecture, its native architecture after decomposing the CCNOT
into two-qubit interactions, and the effect of the addresser (cf section 3, only CZs displayed) when targeting a particular device
shaped like a square with two arms.

other requirements (e.g., spatial locality: distant qubits are typically unable to directly interact), and
operations may be error-prone.

The role of a quantum compiler is to convert an abstract specification of such a quantum program into
machine-executable bytecode, interpretable by the classical electronics which manipulate the engineered
quantum system. The compilation process cleaves roughly into two parts: the conversion of the program’s
quantum aspects to a form that comports with the constraints of the engineered quantum system, followed
by the conversion of the classical aspects to a form that comports with the structure of the control
electronics. The quantum concerns are primarily those announced above, and while we will chiefly concern
ourselves with them, we also name some classical concerns for completeness: memory management, timing
and synchronization, classical communication, as well as a host of others. Quilc’s approach to the satisfaction
of the quantum constraints is to order them by severity:

(a) Any operations of large arity must be decomposed into an arity supported by the system.

(b) Any operations between non-interacting or indirectly interacting regions must be spatially rearranged
to accommodate the system’s preferred set of interactions.

(c) All operations must be written in terms of the set of operations (presumed universal) that the system
can perform.

(d) The program should be structured so as to avoid suffering performance penalties.

The first three requirements are all equally important, in the sense that the program cannot be executed
on a given physical device if any are not satisfied—but on a heterogeneous device, it is not possible to
discern what operations the system can perform without first resolving (b), which in turn requires resolving
(a), so that only then can (c) be redressed. Quilc leaves the resolution of (d) for last, since it can be satisfied
‘by degrees’: for instance, it is generally better for (d) to use fewer instructions, but there are also no clear
hard limits to either of the maximum count tolerable or the minimum count achievable.®

© The decision to resolve arity and addressing before circuit optimization does incur a loss of information. In particular, certain high-
level circuit identities may not be obvious after the program has been lowered to elementary operations. However, in many instances
such high-level circuit optimizations are most appropriately handled by library authors, in concert with the low-level optimizations of
the compiler. In this respect, programming a quantum computer does not differ so much from programming a classical one.
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{"1q": {
"o": {
"gates": [
{"operator": "RX", "parameters": [1.5707963267948966], "arguments": [0]},
{"operator": "RZ", "parameters": ["_"], "arguments": [0]}]},
e {
"gates": [

{"operator": "RX", "parameters": [1.5707963267948966], "arguments": [0]},

{"operator": "RZ", "parameters": ["_"], "arguments": [0]}]}},
"2Qll : {
"0_1" : {
"gates": [
{"operator": "CZ", "parameters": [], "arguments": [0, 11}]1}}}

Figure 5. A simple target architecture in serialized form. Note that 7/2 = 1.57 .. ..

There is a natural data structure which captures these constraints of the target architecture and which
forms the backbone of Quilc. To describe it, fix a set S of quantum resources. A target architecture amounts
to specifying the available interacting subsets ' C S, each indicating a collection of resources that are
permitted to interact—for instance, a pair of qubits on which one can perform a two-qubit gate. Let us
make the additional assumption that if §' is an interacting subset, then every further nonempty subset
§” C S is also an interacting subset. Under this assumption, such a collection of interacting subsets forms a
simplicial complex ¥ [25, section 3.1] with S as its set of vertices (or 0-simplices), interacting pairs as its
edges (or 1-simplices), interacting triplets as its 2-simplices, and so on. Additionally, we tag each simplex
with a set of instructions, each corresponding to a specific means by which the interacting set can evolve as
an ensemble. Finally, each such instruction is tagged with metadata, e.g., a matrix defining the associated
unitary transformation, the average fidelity of the device’s execution of the instruction compared to the
ideal, or the temporal duration of the instruction execution on the device.

We have arranged the description of the target architecture into these tiers because this reflects the kind
of information needed as input to the four compilation constraints:

(a) The limit on the arity of an instruction corresponds to the dimension of the largest simplex.

(b) The simplicial complex structure of interactions describes both the spatial constraints to which a
quantum program is subject, as well as the pathways by which information can be rerouted or
permuted in order to satisfy these constraints.

(c) The instruction tags indicate into which gateset the program’s components must be compiled.

(d) Metadata can be used to make decisions that boost overall program performance. For instance, fidelity
information might prefer one region of the device over another, or a particular instruction
decomposition over another.

As an example, we have included in figure 4 an example input program, an architecture 3 for which it is
tully native, and an example target architecture. As a further simple example, we include in figure 5 a
serialized such target architecture (without any extraneous metadata, like instruction fidelities).

3. The large-scale structure of Quilc

Let us now turn to our high-level overview of Quilc. Quilc segments the satisfaction of the above constraints
into the following stages:

Lexing/parsing. First, Quilc parses plain-text input into a syntax tree.

Control-flow graph construction. It then segments the input program into classical and non-classical
components, so that consideration of the effects of classical instructions can be deferred to the compiler
backend. The primary mechanism for ‘hiding’ these instructions (e.g., jumps) is to store them as labels in a
control flow graph.

Addressing. Quilc resolves constraints (a), (b), and (c) by walking the graph of quantum instructions,
ordered by resource dependence, in a breadth-first manner and tracking a mapping from logical quantum
resources (i.e., those specified in the user’s program) to physical quantum resources (i.e., those actually
available on the device).

Compression. Lastly, Quilc gives attention to (d) by finding sequences of instructions that act on
overlapping resources through a kind of depth-first walk and applying reduction techniques (e.g., a
peephole rewriter) to the paths appearing during the walk. See figure 6 for an example.
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Figure 6. An example graph-based rewriting rule, commuting an RZ past a CZ. The vertices are labeled by instructions, the
edges are labeled by the resource shared by the source and target, and the direction indicates which instruction precedes the other
in the program. The black region consists of vertices which are matched, destroyed, and recreated; the various colored regions are
detached from the old black vertices and reattached to the new black vertices as indicated.

There are two important points to note. First, the addressing and compression stages require intensive
computation to fully explore the graph: for example, deciding whether the addressing problem admits a
solution without the insertion of SWAP instructions is an instance of the (NP-complete) subgraph
isomorphism problem [21]. Instead, we employ heuristics, randomization, and approximate algorithms to
tame their computational complexity; see section 4 for more details, as well as figures 14(a) and (b) in
appendix A for some empirical analysis of these approximations. The second important point is that
although the addressing and compressing stages crawl the program in a highly different way, the actual
manipulation of quantum instructions is similar in each. This promotes the segmentation of these stages
into small, interruptible compilation subroutines which adopt a uniform interface. This API which we expect
compilation subroutines to provide consists of

o A literal subroutine, which consumes some fixed number of instructions and some data about the
state of the compiler, and which emits a sequence of instructions which may replace its input. The
subroutine is allowed to be partially defined: compilation subroutines can signal that they are not
applicable in a given situation by employing an interrupt which is handled appropriately by the caller.

o A description of the kinds of instructions that the subroutine can consume.

e A description of the kinds of instructions (and, ideally, their counts) that the routine can emit.

Equipped with this extra data, Quilc can decide whether a particular subroutine falls into one of two
privileged classes (or neither):

Nativizers. A compilation routine is relevant for nativization when it consumes a single instruction and
when its output belongs to the native interactions of ¥ (perhaps after further applications of other
nativizers).

Optimizers. A compilation routine is relevant for optimization when it both consumes and emits
instruction sequences which belong to the native interactions of X and its emitted sequences have better
execution properties than its inputs.

The addressing step employs the first class of compilation subroutines in order to convert the input
program’s non-native instructions to instructions that are native for >’s interactions. The compression step
makes use of both of these special classes: the optimizers are directly relevant to the compression of
instruction sequences, but it is also fruitful to destroy some of the structure of a sequence of instructions by
considering their holistic effect and to re-nativize that effect.

This kind of design lends itself to the support of a few features:

Planning. Verifying that a particular long sequence of reductions gives an optimal strategy (from the
perspective of constraint (d)) is computationally expensive, frequently remitted to heuristic, and costly to
guess incorrectly. It is less expensive to make analogous decisions about individual, simple reductions, and
so interruptibility permits the compiler a greater degree of flexibility in quickly planning its next best
move.

Internal reusability. Requiring that subroutines leave the overall compiler in a good intermediate state puts
dramatic limitations on the API to which they conform. From the perspective of Quile, this tends to make
such subroutines suitable for use at various stages of compilation. It also promotes a separation of concerns
between the code responsible for crawling the input program (as described above in, e.g., ‘addressing’ and
‘compression’) and these subroutines, so that the crawlers are written in such a generic way that their
specification does not directly depend on knowing the set of subroutines to be applied to the input
program.
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Ease of authorship. The same limitations on the API means that the author of quantum-specific
subroutines need not concern themselves with the precise implementation of the crawlers—or, in Quilc’s
case, even how to instruct the crawlers that they should make use of a new subroutine.

External reusability. It is possible to wrap routines provided by external compilation libraries via this API,
so that Quilc can make seamless use of their specialized routines without reimplementation or serious
diversion. One such example is tweedledum, a quantum circuit optimizing library which provides an
efficient routine for compilation of gates that can be represented as permutation

matrices [8].

4. A closer look at addressing and compression

Much of the ‘action’ of the compiler occurs in the addressing and compression stages. Indeed, these are the
most computationally intensive stages of compilation, and the techniques employed are critically
responsible for the quality of the output of the compiler (e.g., with respect to gate depth). In this section we
give brief summaries of the underlying techniques of these two compilation stages, along with points of
contact in the literature.

4.1. Addressing

In principle, the addressing stage may be resolved by any sequence of circuit transformations which preserve
the semantics of the source program and which result in an output program conforming to the constraints
of the hardware. However, the set of such possible transformations is immense. Here we constrain ourselves
to two classes of transformations: those which serve to translate gates into native constituents (e.g., the
aforementioned ‘nativization’ routines) and those which manage the assignment of logical to physical
qubits (known as ‘qubit allocation’ in the literature).

A number of general-purpose techniques for qubit allocation have been proposed; we briefly mention
some here. In [21], the authors consider four sorts of program transformations (‘virtual CNOTS’, reversals,
bridges, and swaps), formulating the problem precisely in these terms and presenting heuristics to
approximate the optimal sequence of transformations to solve the qubit allocation problem.

In [28], the authors first produce an initial decomposition of the source circuit (consisting of 1Q and 2Q
gates) into layers, then construct an initial qubit mapping, and then finally identify swap operations
between layers via A* search using a cost function which may incorporate look-ahead to successive layers.
The method of [5] uses a similar layered decomposition, but with different heuristics for constructing the
initial mapping and for selecting swaps between layers.

Alternative approaches have formulated the addressing problem in a form amenable to solution by
off-the-shelf solvers. For example, in [12], the authors formulate qubit allocation as a satisfiability modulo
theories (SMT) problem which may be solved by an SMT solver. Along similar lines, [27] proposes and
evaluates a formulation which is solvable by temporal planners.

Core to the approach taken by Quilc is a representation of the source program which expresses the
constraints, with respect to hardware usage, implicit in the linear source program. Here, the source
instructions are taken as the vertices of a directed, acyclic graph, with edges expressing resource conflicts
(whether classical or quantum) between logically successive operations. The addressing pass proceeds in a
greedy fashion, consuming the source program in topological order while maintaining a certain amount of
state, including a partial logical-to-physical qubit mapping, estimated swap costs between pairs of qubits,
and a buffer of emitted instructions operating on physical qubits.

In this scheme, gate applications involving a number of qubits exceeding the underlying arity of the
device (e.g., 3Q gates for Rigetti’s hardware) are first translated to an equivalent series of smaller-arity
operations by means of any number of nativization routines, as described in section 3. We note that the goal
here is not to find an ‘optimal’ sequence of native operations, but rather to quickly find a viable realization
of the gate in native terms. However, Quilc does attempt to select the translation so as to be in harmony with
the particular qubits’ native gate sets: for instance, I SWAP-based decompositions are preferred to
CNOT-based decompositions when the native gate sets includes the ISWAP gate and not CNOT.

As each low-arity operation (e.g., 1Q and 2Q gates on Rigetti’s hardware) is processed, the
logical-to-physical qubit mapping may be updated, either by assigning a logical qubit to a currently
unassigned physical qubit, or via the introduction of SWAP operations in order to satisfy addressing
constraints. At each such decision point, the ambition of Quilc is to select the action which minimizes the
total cost of the final scheduled program.

To this end, Quilc employs heuristics along two axes. The first are cost heuristics, which, given a logical
Quil program and a compilation target, determine a cost indicating the ‘badness’ of the program on the
underlying hardware. At present, there are two of these available: a duration-based heuristic, informed by
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the underlying gate times of the target architecture, and a fidelity-based heuristic, informed by the reported
gate fidelities of the target architecture. The second axis consists of search heuristics, which are used to select
from available swap operations in order to assign a logical gate to physical qubits in a cost-minimizing
fashion. These include both A* search as well as greedy search heuristics.

A challenge with such an approach is that SWAPs inserted cheaply at one point in a program may end
up being costly with respect to later operations. To account for this, both the duration-based and the
fidelity-based cost heuristics incorporate a look-ahead: here the cost associated with a Quil program
depends not just on the next instructions, but also more weakly on those following them (via an
exponential discounting factor). Here, the motivation is to dampen the miserliness of the (otherwise
greedy) addressing strategy.

4.2. Compression
During the compression stage, Quilc employs two kinds of rewriting strategies:

(a) Directly apply a peephole rewriter to an instruction sequence.

(b) Convert a (pure quantum) instruction sequence to a composite matrix, rewrite the matrix as native
instructions, and apply a peephole rewriter to the resulting sequence.

Both of these are best served by sequences with two properties:
Lengthiness. Long sequences provide more opportunities for the rewriter to act and give the bounded
nativization routines better odds of producing a shorter sequence.
Resource-sparsity. Sequences which act only on a few resources have correspondingly fewer false negatives
in the form of instructions which are nonadjacent in the sequence but which could be commuted next to
one another.

With this in mind, the compressor has been designed to produce contiguous sequences of instructions
with these properties.

The compressor first arranges the instructions in a program into a dependency graph by resource usage.
It then begins forming subgraphs, tagged by resource utilization, and peforms a topological walk of the
instruction graph while adhering to the following rules:

e If this instruction’s resources do not meet those of any subgraph and it does not contain a forbidden
resource, start a new subgraph containing this instruction, and restart consideration of the next
instruction in the walk.

e Otherwise, this instruction’s resources meet one or more existing subgraphs or are forbidden.
Compute the sum of their resource tags with this instruction’s resources.

o If the resource sum contains a forbidden resource collection or if the resource sum is larger than the
compressor’s limit, then do nothing with this instruction for now. Remove each met subgraph from
the overall graph. For each met subgraph:

* If the resource sum contains a prohibited resource collection, then mark this subgraph’s
resource tag as forbidden. If the resource sum is larger than the compressor’s limit, then mark
the sum as forbidden.

* Linearize the contents of the subgraph into a sequence, and pass that sequence to the peephole
rewriter.

* Re-walk the instructions emitted by the peephole rewriter (i.e., try to form subgraphs out of
them).

* Unmark any forbidden resources added in this step.

Write this instruction, as well as any instructions in any met subgraphs (which may be newly formed, as
in the above loop), out to the end results.

e Otherwise, merge the subgraphs which meet this instruction, add it to the newly formed subgraph,

tag the subgraph with the resource sum, and proceed to the next instruction in the walk.

This walk is similar in effect to the walk considered in Iten, Soetter, and Werner [9]. However, ours is
somewhat less thorough, since it separately walks the graph and applies template rewriting, and since it does
not perform backward matching. It partially makes up for these deficiencies in its output by its simplicity of
implementation.

In the course of the compressor’s graph-walking, a given instruction may be considered by the peephole
rewriter as many times as there are subresources which contain the instruction and which are contained by
the subgraph’s tag. By installing a limit to the size of subgraph tags which the compressor will consider, this
value becomes bounded. In practice, even a small such limit (e.g., less than four qubits) has good run time
properties without appreciable decline in output quality.




10P Publishing Quantum Sci. Technol. 5 (2020) 044001 R S Smith et al

(T
—{#}- T Her e}
Figure7. CCNOT on a fully-connected chip.
T “ H

@ -------------- rio—{sH

Figure 8. CCNOT with nearest-neighbor connectivity, placing an SWAP on the top two qubit lines. The entire highlighted
subcircuit may be translated to at most 3 CNOT gates.
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Figure 9. CCNOT with nearest-neighbor connectivity, placing an SWAP on the bottom two qubit lines. The entire highlighted
subcircuit may be translated to at most 3 CNOT gates.

5. Long-form examples

In this section, we demonstrate the above considerations via a few practical examples which highlight the
influence of target architecture and the ubiquitous role of compilation subroutines in the compilation
process. The first two subsections consider compilation of the Toffoli gate, a well studied example which has
been implemented on a variety of architectures and for which optimal decompositions are known [19]. Our
aim here is to demonstrate how various compilation routines may be combined to realize CCNOT across
several device architectures. In the third subsection, we consider state-aware compilation applied to an
example from computational chemistry.

5.1. SWAP recombination with different targets

One of the basic tasks of the ‘addressing’ stage of the compiler is to construct a mapping from logical
qubits, as expressed in the source program, to physical qubits, as realized in a specific architecture. A
guiding principle here is that constraints in physical qubit connectivity may be satisfied through the
addition of appropriate SWAP instructions. This introduction of SWAP gates comes at a price: namely, an
increase in the total number of logical operations performed. This is further complicated by the demands of
nativization, since for many architectures of interest SWAPs must be translated to native operations. Bounds
for the complexity of the resulting native instruction sequence have been considered in the literature. For
example, it is known that SWAP requires 3 CNOT gates [26]. On the other hand, an arbitrary two-qubit
unitary operator is equivalent, up to a global phase factor, to one expressed as a circuit with at most 3 CNOT
operations [20].

Thus, for many architectures of interest, the demand of nativization presents itself as an opportunity
when selecting SWAP targets, since the native gate cost of a single SWAP gate is the same as that of any
subcircuit consisting of the SWAP gate and adjacent gates, if these are on the swapped qubits. For example,
figure 7 shows one realization of a CCNOT gate on a fully-connected chip, which is optimal in the sense that
involves a total of 6 CNOT operations [19]. If nearest-neighbor connectivity is imposed, then there is a
natural decision of where an SWAP should be inserted. Considering that nativization can convert any
two-qubit unitary subcircuit into an equivalent one involving at most 3 CNOT gates, placing an SWAP on
the first two qubit lines (cf figure 8) is preferred to placing on the second two lines (cf figure 9), as this is
cheaper by a CNOT gate.
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(define-compiler CCNOT-to-CNOT (inst "CNOT" QO q0 q2)
((input ("CCNOT" () qO0 ql g2))) (inst "RZ"  '( pi/4) ql)
(inst "H" O q2) (inst "RZ"  '( pi/4) q2)
(inst "CNOT" Q) ql q2) (inst "CNOT" QO q0 q1)
(inst "RZ"  '(-pi/4) q2) (inst "H" O q2)
(inst "CNOT" QO q0 g2) (inst "RZ" "( pi/4) q0)
(inst "RZ"  '( pi/4) g2) (inst "RZ" '(-pi/4) ql)
(inst "CNOT" O ql q2) (inst "CNOT" O q0 q1))
(inst "RZ" ' (-pi/4) q2)
Figure 10. Compilation subroutine for implementing CCNOT via CNOT. See appendices A.1 and A.2 for a description of the
syntax.

Table 1. Two-qubit native gate complexity of CCNOT with linear nearest-neighbor connectivity. Gate counts are shown both with and
without the use of the CCNOT - to-CNOT compilation subroutine. Note the uniform improvement in gate count introduced by the
addition of the subroutine, whether or not CNOT appears in the target instruction set.

Native gates Gate count

Cz ISWAP CPHASE Without With
v 9 7
v 12 9
v 8
v v 7 6
v v 8 6
v v 10 9
v v v 7 6

The Quilc addresser makes use of this information, and more, when selecting SWAP placements. In
practice, we observe that this ‘SWAP recombination’ trick is compatible with additional optimizations. For
example, when compiling CCNOT 0 1 2 to a chip supporting only nearest-neighbor connectivity, Quilc is
able to produce native circuits containing only 7 CNOT gates, which is less than the 8 suggested by figure 8.

5.2. Native targets for CCNOT

One of the guiding philosophies of Quilc is that the burden of deciding whether a given compilation
subroutine should be preferred to another in some specific context need not be borne by the quantum
programmer. Instead, what is specified by the user is a set of hardware constraints.” Presented with this
information, Quilc performs the tasks of selecting those compilation subroutines suited to the problem at
hand. To demonstrate the flexibility afforded by this approach, we consider a simple experiment in
compiling CCNOT, and in particular consider the effect that the choice of native gateset and availability of
particular compilation subroutines has on the resulting gate complexity.

Recalling our previous example, we note that the circuit expressed in figure 7 is embodied in Quilc as a
compilation subroutine, CCNOT - to-CNOT (cf figure 10 and the discussion in appendix A). Strictly
speaking, specific subroutines such as this one are not needed, as Quilc supports fully generic techniques
such as the recursive ‘Quantum Shannon Decomposition’ of [18]. Nonetheless, specific compilation
subroutines may be preferred to general ones when they offer a reduction in final native gate counts.

In what follows, we consider a three qubit chip with linear connectivity, so that qubit 0 is connected to
1, and qubit 1 is connected to 2. Amongst the possible two-qubit operations, we restrict attention to CZ,
ISWAP, and CPHASE, and for each subset of these we consider a target architecture in which those
operations are native across connected qubits. With respect to compilation subroutines, Quilc has several
enabled by default, and we consider only the effect of including or excluding CCNOT - to-CNOT from this
set. In all instances, the compiler is able to translate CNOT gates to the native gate of choice and is able to
take advantage of ‘SWAP recombination’ as described earlier.

In table 1 we show the complexity of CCNOT in terms of native two-qubit gate counts. In all instances, it
is always advantageous to incorporate the special information provided by CCNOT - to-CNOT. The best
results occur for a device supporting CZ along with one of {ISWAP, CPHASE}, which results in a circuit
using only 6 two-qubit gates.

7 Users do have the option of providing hints to the compiler about properties it might exploit, e.g., via command line arguments to
quilc executable, or in Quil programs via PRAGMA directives.
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Figure 11. UCCSD ansatz for H; in the STO-3G basis.

Figure 12. UCCSD ansatz for H, in the STO-3G basis, naively compiled to Rigetti’s native gates, requiring 6 CZ instructions.

Figure 13. UCCSD ansatz for H, in the STO-3G basis, compiled to native gates with state-aware optimizations enabled,
requiring only 3 CZ instructions.

5.3. State-aware compilation

Many compilation routines express simple circuit equivalencies, which depend only on the syntactic
structure of some instruction or block of instructions. However, Quilc is capable of providing more
information to those routines which might benefit from this context. When state-aware compilation is
enabled, Quilc performs a partial simulation of addressed Quil instructions during the compression stage,
until such a simulation is obstructed. Typical such obstructions include:

(a) The state becomes highly entangled. The time and space costs of tracking a quantum state scales
exponentially with the number of entangled qubits. Since the gains in output quality do not also scale
exponentially, Quilc limits this cost by discarding components of state information with entanglement
beyond some fixed limit—Dby default, three qubits.

(b) A run-time data dependency is encountered. This makes compile-time optimization impossible, since
such an optimization involves data unavailable at that point.

The results of this simulation are made available to additional compilation routines. Those routines
which make use of this additional information are called state-aware.

As an example, note that in general a compilation subroutine translates a gate application or sequence of
gate applications to some ‘equivalent’ sequence. Under most circumstances, the notion of equivalence here
is that the corresponding unitary transformations, represented by the instructions, should be equal, perhaps
up to some discretization error. However, when the quantum state is known prior to the execution of an
instruction or block of instructions, the requirement of unitary equivalence may be relaxed. Indeed, given
full information about the initial state, a sufficient notion of equivalence is that the resulting states be equal.
The corresponding task, of preparing a target state given an initial state, is known as state preparation. Many
instruction sequences which are not unitarily equivalent may be equivalent in this sense, and this increase in
flexibility allows for additional synthesis techniques [16], [18, section 4].

10
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Table2. QASM benchmarks from [28] targeting the IBM qx5 architecture, performed in the same environment as figure 14(b).
Compare with [28, table 1] and [5, table 4]. Columns labeled with an asterisk “” hold data for circuits which were produced with the
additional hypothesis that the quantum device begins in the ground state. The percentage in parentheses column indicates the rounded
percentage reduction in 2Q depth by taking this assumption into account. Quilc is instructed to give up on applying state-aware methods
to any component of the quantum state in which more than 3 qubits are entangled. Wall time is the elapsed real time of compilation
from start to finish.

Filename SWAPs added Wall time (s) 2Q depth Wall timex (s) 2Q depthx (%)
0410184_169 101 8.767 235 9.802 55 (77%)
3_17_13 11 0.485 28 0.79 23 (18%)
4_49_16 66 7.271 230 10.738 109 (53%)
4gt10-v1_81 44 5.311 143 8.771 86 (40%)
4gt11_82 5 1.705 28 1.387 7 (75%)
4gt11_83 4 0.809 22 0.837 0 (100%)
4gt11_84 3 0.436 15 0.544 13 (13%)
4gt12-v0_86 76 9.364 241 13.11 117 (51%)
4gt12-v0_87 73 10.018 231 12.33 116 (50%)
4gt12-v0_88 52 6.11 176 8.015 87 (51%)
4gt12-v1_89 67 7.353 234 9.621 91 (61%)
4gt13-v1_93 16 1.878 60 3.257 31 (48%)
4gt13_90 28 3.111 102 5.355 47 (54%)
4gt13_91 27 2.92 97 4.105 30 (69%)
4gt13_92 19 1.195 57 1.913 23 (60%)
4gt4-v0_72 66 7.307 218 12.685 88 (60%)
4gt4-v0_73 108 12.503 371 20.436 183 (51%)
4gt4-v0_78 67 7.194 233 10.774 77 (67%)
4gt4-v0_79 66 6.69 225 10.17 91 (60%)
4gt4-v0_80 57 5.896 185 9.777 87 (53%)
4gtd-v1_74 78 7.352 260 15.558 184 (29%)
4gt5_75 24 3.108 88 4.995 38 (57%)
4gt5_76 27 3.235 83 6.879 45 (46%)
4gt5_77 37 3.547 119 7.457 84 (29%)
4mod5-bdd_287 19 1.75 75 3.04 25 (67%)
4mod5-v0_18 20 1.23 69 1.781 46 (33%)
4mod5-v0_19 9 0.694 35 1.103 21 (40%)
4mod5-v0_20 6 0.875 21 1.956 14 (33%)
4mod5-vl_22 4 0.354 18 0.512 14 (22%)
4mod5-v1_23 19 2.024 68 2.855 37 (46%)
4mod5-vl_24 8 1.474 32 2.435 19 (41%)
4mod7-v0_94 51 4.291 155 6.248 89 (43%)
4mod7-vl_96 50 5.16 172 6.595 62 (64%)
C17_204 138 14.616 436 20.53 268 (39%)
aj-ell_165 49 5.232 144 7.957 59 (59%)
alu-bdd_288 22 1.382 78 1.721 39 (50%)
alu-v0_26 2 3.405 88 6.048 51 (42%)
alu-v0_27 8 1.239 30 2.459 15 (50%)
alu-vl_28 8 1.083 33 1.765 14 (58%)
alu-vl_29 7 1.098 33 1.683 17 (48%)
alu-v2_30 140 14.819 471 22.585 228 (52%)
alu-v2_31 146 15.981 428 21.86 182 (57%)
alu-v2_32 57 6.641 160 11.628 82 (49%)
alu-v2_33 8 0.965 28 1.637 16 (43%)
alu-v3_34 12 1.629 50 2.34 22 (56%)
alu-v3_35 11 1.1 36 1.86 28 (22%)
alu-v4_36 29 2.242 97 3.456 53 (45%)
alu-v4_37 8 1.247 31 2.318 16 (48%)
cnt3-5_179 63 6.172 139 6.467 45 (68%)
cnt3-5_180 139 9.593 385 16.345 183 (52%)
decod24-bdd_294 22 1.497 73 2.423 51 (30%)
decod24-enable_126 122 11.186 364 18.681 158 (57%)
decod24-v0_38 10 0.745 43 5.446 31 (28%)
decod24-v1_41 25 1.319 76 2.143 34 (55%)
decod24-v2_43 15 1.181 53 1.686 10 (81%)
decod24-v3_45 41 2.715 130 4.79 70 (46%)
ex-1_166 6 0.314 15 0.563 11 (27%)
ex1_226 1 0.564 6 0.786 0 (100%)
ex2_227 179 21.328 612 27.749 268 (56%)
ex3_229 100 9.691 367 18.069 223 (39%)
graycode6_47 0 0.638 5 0.774 0 (100%)
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Table 2. Continued.

Filename SWAPs added ‘Wall time (s) 2Q depth ‘Wall times (s) 2Q depthx (%)
ham3_102 6 0.355 15 0.454 13 (13%)
ham7_104 72 9.683 307 15.797 149 (51%)
hwb4_49 74 6.803 227 11.394 119 (48%)
ising_model_10 0 1.665 20 2.31 19 (5%)
ising_model 13 0 2.862 20 4.738 19 (5%)
ising_model_16 0 3.748 20 6.182 19 (5%)
miller_11 12 0.55 47 0.384 0 (100%)
mini-alu_167 94 9.481 272 16.332 125 (54%)
mini_alu_305 62 4.388 173 7.373 39 (77%)
mod10_171 69 4.293 216 6.471 78 (64%)
modl10_176 41 5.314 164 8.637 81 (51%)
mod5adder_127 164 15.054 498 24.652 286 (43%)
mod5d1_63 6 0.591 25 0.804 11 (56%)
mod5d2_64 21 2.52 70 3.943 34 (51%)
mod5mils_65 10 1.489 34 2.825 20 (41%)
mod8-10_177 127 13.593 412 22.071 195 (53%)
mod8-10_178 85 8.877 310 13.051 146 (53%)
one-two-three-v0_97 90 6.717 263 12.593 167 (37%)
one-two-three-v0_98 48 4.321 148 7.224 73 (51%)
one-two-three-vl_99 36 4.06 128 6.711 61 (52%)
one-two-three-v2_100 21 2.998 69 4.28 26 (62%)
one-two-three-v3_101 19 1.656 72 2.529 36 (50%)
qft_10 28 2.805 44 3.491 0 (100%)
qft_16 86 7.495 111 9.063 6 (95%)
rd32-v0_66 8 0.495 26 0.877 21 (19%)
rd32-v1_68 8 0.501 26 0.865 21 (19%)
rd32_270 20 2.985 81 4.421 31 (62%)
rd53_131 130 15.426 439 24.783 186 (58%)
rd53_135 94 10.164 312 17.044 178 (43%)
rd53_138 38 4.54 122 5.982 48 (61%)
rd53_311 98 9.199 258 14.522 119 (54%)
rd73_140 68 7.166 211 10.845 104 (51%)
rd84_142 110 7.454 227 9.077 110 (52%)
st 274 204 16.251 691 28.094 458 (34%)
sym6_316 98 7.566 269 14.242 99 (63%)
sym9_146 91 8.76 257 15.803 126 (51%)
sys6-v0_111 67 6.076 158 9.943 60 (62%)

Quilc incorporates a number of methods for state preparation, ranging from special purpose compilation
subroutines (for example, in the case of one-qubit, two-qubit, or four-qubit systems), to generic
subroutines which may recurse to one of these special cases. State preparation is fully compatible with the
optimizations available through other compilation subroutines, although it is only applicable in
circumstances in which the initial state may be effectively computed.

We demonstrate this by way of an example. In figure 11, we have a short program which expresses the
unitary coupled cluster ansatz for deuterium, truncated to single and double excitation levels [11,
section 7.1]. This program may be used as part of a hybrid classical/quantum variational algorithm such as
described in [14]. In such hybrid algorithms, it is typical that a single parametric program ‘template’ is
executed for a variety of numerical parameter values.®

On near term devices, numerical accuracy of variational methods reflects a trade-off between the
sophistication of the ansatz and the resulting depth or complexity of the circuit. When compiled to native
hardware without state preparation routines, the resulting program involves 6 two-qubit operations as in
figure 12. When state preparation routines are allowed, knowledge that the program begins in the zero state
|0000) is exploited to reduce this number to 3, as in figure 13.

In this example, one can see the practical effect of state-aware compilation is to reduce the initial
portion of the circuit up until a point at which the state is no longer feasible to track. Here we remark that
the presence of run-time parameters obstructs the partial-state simulation, and hence the reduction in gate
count is primarily due to optimizations in the first half of the circuit. Additional details of state-aware
compilation are discussed in appendix A.

8 Quilc supports parametric compilation, in which a program may be compiled once and then executed with parameter values
determined at run-time. This method of compilation can be used to greatly improve hybrid computation [10].
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Figure 14. Run time performance measurements of Quilc. (a) Performance characteristics for compilation of QFT circuits of
varying sizes to an Aspen-type device () and a fully connected device (). The left plot depicts the run time of Quilc, and the right
plot depicts the minimum required heap size of Quilc (to within 2 MB). Quilc was compiled with Steel Bank Common Lisp
(SBCL) version 1.5.8 and run on a 2018 MacBook Pro. (b) Performance characteristics for compilation of random 3-valent
QAOA-type problems of varying sizes to a 128-qubit Aspen-type device, with and without commutation information (left and
right respectively). Both plots depict the run time of Quilc, and both are best fit by a quadratic with small leading coefficient. Quilc
was compiled with Steel Bank Common Lisp (SBCL) version 1.5.5 and run on a 2016 MacBook Pro. See figure 2 for an example
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Figure 15. Comparison between the abilities of t|ket) 0.5.5 and Quilc 1.17.0 at enabling success probability: the population
percentage successfully transferred from the ground state to the program’s target state (cf [12]), so that a perfectly executing
device would earn a score of 1.0. Each program family was run on Rigetti’s Aspen-8 device. No other noise mitigation
mechanisms were used—indeed, readout error accounts for all of the observed failures in the QFT and Toffoli programs
compiled using state-aware methods. For substantially larger programs, the gains from state-aware methods lessen but do not

6. Performance

There are two meanings to the word ‘performance’ when it comes to compilers: its effectiveness at
compiling a quantum program, and how many resources it consumes to perform that task.

To measure compilation effectiveness, we use the benchmarks from [28]—a suite of QASM files—that
test Quilc holistically in two ways: with state-aware compilation disabled (i.e., the input and output of the
compiler are equivalent unitaries), and with state-aware compilation enabled (i.e., the input and output of
the compiler are only guaranteed to act identically on the ground state). Table 2 contains the benchmarks.
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To date, Quilc has not been optimized for run time or space performance (i.e., how long it takes to
compile and how much memory is required), and with an appropriate combination of engineering tricks,
those metrics could be improved. At present, some competing compilers significantly outperform Quilc in
terms of run time: t|ket) reliably ran 100-200x faster than Quilc in a variety of comparison tests. Still, even
in the absence of these optimizations, the run time statistics presented in figures 14(a) and (b) demonstrate
the scaling laws associated with our approximate solvers deployed during the addressing and compressing
stages. Wall clock performance is also included in table 2.

The results presented in table 2 may be compared with those presented in [5, 28]. In many cases our
reported 2Q depth shows an improvement, and our use of state-aware compilation further improves that
metric. State aware-compilation generally comes at the expense of a longer compilation run time. In a
number of cases state-aware compilation was able to reduce the program to the null-program consisting of
no instructions. Figure 15 illustrates how these metrics translate into improved program performance on a
live quantum device.

In general we see competitive performance metrics when compared with contemporary tools. Our
state-aware compilation capabilities are at the time of writing not present in other tools and can thus be
considered a first-in-class.
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Appendix A. Implementation details

A.1. Implementation language
Quilc is written in ANSI Common Lisp, and can be extended with code written in languages with C ABI
compatibility. Common Lisp was chosen because it provides a highly-performant substrate for both
dynamic, interactive work as well as batch-mode computation, and offers convenient abstractions for
implementing embedded domain-specific languages (DSLs), which are useful for many of the tasks of
program analysis and manipulation. Quilc is also compatible with Rigetti’s open-source quantum computer
simulator, the quantum virtual machine [2].

One reason Common Lisp is particularly suitable for implementing DSLs is its syntax. Common Lisp
has very regular syntax, most of which follows just a single syntactic construction:

((operator) (operand), --- (operand),).

That is, operators precede their operands and are surrounded by a pair of parentheses; see table Al for a
sample of syntax. Parentheses do not indicate precedence, but instead play double duty: as prefix-notation
for the language, but also as syntax for (sometimes nested) lists. Since the syntax can be viewed as both
notation and a data structure, Lisp code is ripe for both automatic generation and manipulation. For this
reason, we call Lisp a homoiconic language. Interested readers can find lengthy discussions of these ideas at
different levels in the literature [1, 13]. In the subsections to follow, excerpts from Quilc’s source code will
make use of this syntax.

The Quilc source code is separated into an application domain and a library domain. The application can
be used to consume textual input as a UNIX command-line tool, or it can be used to provide a persistent
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Table A.1. A comparison between usual algebraic syntax as found in
mathematics and many programming languages and the syntax of
Common Lisp.

Algebraic syntax Lisp’s syntax

20— n) (x 2 (- 1mn))

foog)x+ ) fx (@E@y (+xy))
ks K (e A k) (lambda (k) (expt k 3))

letz = /5 in ¢(2/2) (let ((z (sqrt 5)))
(zeta (/ z 2)))

server front-end. The library domain includes all of the routines for interpreting and manipulating Quil
code, as well as some features that benefit from that availability but which do not directly participate in the
compilation pipeline (e.g., generation and manipulation of Clifford group elements).

A.2. Compiler subroutine DSL
Quilc implements a domain-specific language (DSL) for writing compilation subroutines. This makes it easy
to specify algebraic relationships which Quilc can use as a part of its automatic process of program
decomposition and optimization.

The basic method of definition is def ine-compiler, whose basic syntax is given by the following

defun mimic:
(define-compiler name ([binding-with-options ...]

[global-option ...])
[body-form ...])

This defines a compiler which consumes an instruction argument for each binding, evaluates the body
forms in order, and returns the collection of instructions that they aggregate. Each binding is specified by a
variable in which the input gate is stored, as well as an optional destructuring pattern to capture its operator
name, parameter list, and argument list. This can be further manipulated by specifying options, which
might install a further matching predicate on the destructured information. Altogether, these take the
following form:

binding-with-options := (name (operator parameter-list argument-list)
[local-option ...])
| (name [local-option ...])
| name
parameter-list := ([parameter ...])
argument-list := [argument ...]
local-option  := :where PREDICATE |
operator := SYMBOL | WILDCARD | STRING
parameter := SYMBOL | DECIMAL-LITERAL
argument := SYMBOL | INDEX-LITERAL

The forms describing the body of the compiler are largely identical to forms elsewhere in Lisp, but there
are a few special-use forms available as well. The inst and instx* operators send an instruction to the
output queue, which gets emptied for use as the return value at the conclusion of the compiler body.
Alternatively, finish-compiler and give-up-compilation can be used to manually signal the
end of the compiler body, additionally providing optional manual control over what is used for the return
value.
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body-form := (inst INSTRUCTION)
| (inst operator parameter-list argument-list)
| (inst operator matrix argument-list)
| (inst* operator parameter-list argument-list
(argument-1list))
| (inst* operator matrix argument-list
(argument-1list))
| (finish-compiler [return-form])
| (give-up-compilation)
| FORM

We now demonstrate the construction of compilation routines of increasing levels of complexity. We
remark that these examples are taken to be didactic; Quilc houses roughly a hundred distinct compilation
routines, ranging from algebraic rewriting rules specialized on gates which are common targets for
implementation on current and near term hardware (e.g. RZ, CNOT, CZ) to general purpose recursive
routines applicable to arbitrary unitary operations.

Example 1. Linearity of certain gates allows the compiler to collapse sequences of applications of a single
gate. The optimizer agglutinate-RZs below rests on the linearity property

RZ(0) - RZ(¢) = RZ(0 + ¢).

It matches against two RZ instructions (bound to the variables x and y) acting on a particular common
qubit g, and it binds their parameter values to the variables theta and phi respectively. The compiler
then emits a single instruction RZ (6 + ¢) that replaces the two input instructions.

(define-compiler agglutinate-RZs
((x ("RZ" (theta) q))
(y ("RZ" (phi) @))
(inst "RZ" " (, (param-+ theta phi)) q))

We note that on Rigetti’s current hardware, the RZ gate is the primary target for parametric
compilation, and the above routine is capable of acting both on numeric and symbolic values of # and ¢ in
a manner in which numeric routines (e.g. depending on the underlying gate matrix) would not be.

Example 2. Parametric gates for some parameter values will be equivalent to the identity operation (NOP).
This is easily seen for those gates that impart a rotation upon a qubit’s state about some axis: a rotation of
27 is equivalent to not having rotated at all.” The eliminate-full-CPHASE optimizer implements this
reduction for the instruction CPHASE. The compiler matches against a CPHASE instruction, binds the
parameter value to theta, and via the: where guard restricts input instructions to those whose
parameter values are integer multiples of 27r. The optimizer emits no instructions, thereby reducing the
instruction stream by one.

(define-compiler eliminate-full-CPHASE
((x ("CPHASE" (theta) _ _)
:where (and (typep theta 'double-float)
(double= 0d0 (mod theta (* 2 pi))))))
nil)

Example 3. If the compiler can find no compilation routines that specifically match against a given input
instruction, then it will look for less specific routines. The nativizer euler-zyz-compiler below only
requires that it match against a single-qubit instruction, without specifying the name of the instruction or
its parameters.'’ Since any single-qubit instruction is equivalent to a rotation about some axis, it can be

? The compiler here takes the idealist’s view: that rotations are perfect and without noise. If we were to consider noise, then it might not
be the case that RX (27) is the identity.

10 Note that in this routine, explicit numeric values are expected for the gate entries in order to compute the CSD composition. With
respect to parametric compilation, such routines are inapplicable at sites where symbolic parameters are present.
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decomposed into three rotations about the Y and Z axes. This compilation routine is unlike the previous
examples in that it emits more instructions than it consumes.'’

(define-compiler euler-zyz-compiler ((instr (_ _ q)))
;5 Cosine-sine decomposition (CSD) of a unitary matriz U is
;; described as U = (up ®uy)D(vg ®vy) with
NN * Ug, U1, Vo, V1 unitary;
;2 * Do = Dy = diag{cos8 : 0 € angles}; and
;3 * Dy = —Dgy = diag{sinf : 6 € angles}.
(multiple-value-bind (u0 ul vO vl angles)

(magicl:lapack-csd (gate-matrix instr) 1 1)

(let ((alpha (- (phase (magicl:ref vi 0 0)) ; (magicl:ref M i j) = M;;
(phase (magicl:ref vO 0 0))))
(beta (first angles))
(gamma (- (phase (magicl:ref ul 0 0))
(phase (magicl:ref u0 0 0)))))
(inst "RZ" (list alpha) q)
(inst "RY" (list beta) q)
(inst "RZ" (list gamma) q)))))

Example 4. Given the preceding routines, we give an example trace of the compiler for a simple Quil
program. The ordering of steps below is automatically determined by Quilc, and changes with target
architecture and other factors. In particular, with respect to the taxonomy of section 3,
agglutinate-RZs and eliminate-full-CPHASE are optimizing compilation routines, whereas
euler-zyz-compiler is a nativizing routine.

In this sample trace, we consider a hypothetical two-qubit device which supports RZ, RY, and CPHASE
natively, but for which H is not a native gate. We start with the following program:

RZ(-pi) 0
CPHASE(2*pi) 1 0
H 0

During the addressing phase, the non-native Hadamard gate will be translated to native gates by means of
euler-zyz-compiler,yielding:

RZ(-pi) 0
CPHASE(2*pi) 1 0
RZ(pi) 0
RY (pi/2) 0
RZ(0) 0

At this point, the ‘logical’ qubits 0 and 1 have been assigned to ‘physical’ qubits 0 and 1, without the need
for any SWAP operations. During the compression stage, Quilc scans the program and will first apply
eliminate-full-CPHASE to the spurious gate, yielding:

RZ(-pi) O
RZ(pi) O
RY(pi/2) O
RZ(0) O

Finally, it applies agglutinate-RZs to the first pair of Z-rotations to produce:

RZ(0) O
RY(pi/2) O
RZ(0) O

If we were to additionally tell Quilc that RZ(0) is the identity:

(define-compiler ((instr ("RZ" (040) _)))
nil)

' This subroutine makes use of magic1, a Common Lisp library for numerical linear algebra.
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then Quilc will strike the outer instructions, leaving just:

RY(pi/2) 0

One can explore Quilc’s treatment of an input program with the - - verbose option at the command
line.

A.3. Other features of quilc
We have described the backbone of Quilc’s operation but have not described exhaustively all of Quilc’s
features. We mention a few additional salient features here.

Details of state-aware compilation. Quilc includes a minimalistic Quil interpreter which is optionally used
for various optimizations. If the user indicates that the state of the quantum system is initialized to |0), as is
defined by Quil, then Quilc will attempt to partially simulate the program up to a certain entanglement limit.
The partially simulated state is then supplied to compilers defined with define-compiler, where it can
be optionally used. For instance, we can detect if the state is an eigenvector of an instruction and
consequently eliminate it:

(define-compiler elide-applications-on-eigenvectors
((instr :acting-on (psi qubit-indices)
;5 (collinearp u v) returns true iff v = ey for some 0.
:where (collinearp
psi
(nondestructively-apply-instr-to-wf instr psi qubit-indices))))
nil)

More generally, if U represents our original partial program and [¢)) = U|0) represents the partially
simulated state, then Quilc can find an alternative V such that |¢)) = V|0) which compiles to fewer
instructions than U does. These features are enabled at the command line
with--enable-state-prep-reductions.

Permutation matrices and contributed modules. Quilc does not have native support for compiling certain
special kinds of unitary matrices, such as permutation matrices or diagonal matrices. This, in turn, makes
Quilc particularly poorly suited for compilation of classical reversible logic. However, due to its flexible
mechanism for extension and automatic selection of compilers, and due to easy integration of libraries
written in C or C++, Quilc makes use of a library called Tweedledum [8]. Tweedledum has specialized
routines for synthesizing such circuits and can be employed automatically by

Quilc.
Approximate compilation. Quilc is able to profitably make use of gate fidelities to produce programs which
have better overall fidelity. The fundamental observation is as follows. If a program U = U, ..., U, is

expressed as m native gates, then the program as executed on a quantum computer will be some other

U =U,..., U, where the difference or uncertainty of U; and U, is reflected in the native gates’ fidelity.
We might deliberately compile U as some non-equivalent sequence of native gates V=V, ..., V,V; such
that, when run on a quantum computer with initial state |1),) and realized as V' =V, ..., V, V], the
average fidelity is increased:

/|<¢|U*U’\w>\2dw</\<¢\U*V’|¢>|2dw.

The existence of such alternative circuits is discussed in [6, 15].
Parametric compilation. Quilc is capable of dealing with symbolic parameters in a variety of cases beyond
the modest use in section 5. As a small example, Quilc reduces the following snippet

DECLARE a REAL
RZ(a) 0
RZ(0.5%a) 0
RZ(0.2) O

to the single instruction RZ (0.241.5%a) 0. Asa more complicated example, the instruction
CPHASE (t/3) 0 1 compilesto
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RZ(-pi/2) 1
RX(pi/2) 1

CZ 10

RX(-pi/2) 1
RZ(-t/6) 1
RX(pi/2) 1

CZ 10

RZ(t/6) 0
RX(-pi/2) 1
RZ(pi/2 + t/6) 1

on a CZ-based architecture.

Hamiltonians consisting of Pauli sums. Sums of Pauli operators occur frequently, especially in
Hamiltonians used to describe qubit—qubit interactions. For instance, for qubits a and b, the ‘XY’
interaction is defined by the Hamiltonian

Hxy:=X, @ Xp + Y, @ Y,
or simply XX + YY when context is clear. The interaction itself is described by the unitary operation
Uxy(0) := exp(i@Hxy).
Quil is able to specify such unitary operators with the DEFGATE (see figure 2) construct:

DEFGATE Uxy (%theta) a b AS PAULI-SUM:
XX(%theta) a b
YY(%theta) a b

Quilc is able to compile operators defined in such a way, even in some cases for undetermined parameters
via parametric compilation of the last section. For instance, consider the program:

DECLARE t REAL
Uxy(t) 0 1

Providing this Quilc will emit the following 12-gate program

RZ(-pi/2)
RX(pi)
RX(pi/2)
CZ

RZ(pi)
RX(pi)

RX (pi/2)
RZ(pi - 2%t)
RX(pi/2)
CZ
RZ(-pi/2)
RX(-pi/2)

P OO Fr,r P P O OORKr OO

for a CZ-based architecture.

Clifford manipulation. Quilc’s source code includes a comprehensive library for manipulating the Clifford
group, including subroutines suitable for randomized benchmarking and stabilizer simulation of Clifford
gates of arbitrary dimension. Implementation details of the routines included in Quilc for randomized
benchmarking can be found in [23].

Appendix B. A chronology of Quilc

Quilc originated as a ‘compilation framework’ for Quil in the summer of 2016. Much of the early work was
on the the ‘front-end’ scaffolding common to most classical compilers (e.g. control-flow graphs, resource
parallelization, and nano-pass concepts [17]).
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Core work on the modern architecture of this paper began in the summer of 2017 with an
implementation of the recursive cosine—sine decomposition of [22]. By fall of 2017, the broad structure of
the compiler, including the division into separate addressing and compression stages, had been worked out.
At this point, duration-based heuristics (with look-ahead) were adopted as the default for SWAP selection,
and a number of additional compilation routines (including the optimal 2Q implementation of [20] as well
as the recursive quantum Shannon decomposition of [18]) had been implemented.

In spring of 2018, both parametric compilation and state-aware compilation were introduced. Over the
following summer, a number of enhancements to the addressing stage were implemented, including the
introduction of additional heuristics (such as A* search for SWAP selection) as well as the adoption of
partial logical-to-physical qubit mappings.

On January 30, 2019 Quilc was released as an open source project [4]. A number of contributions have
been made since then. Of relevance to this paper, we mention that work on fidelity-based addressing
heuristics continued into fall of 2019, and the compiler front-end was extended to support QASM [7]
programs in December of that year.
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