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Abstract
Implementing algorithms on a fault-tolerant quantum computer will require fast decoding
throughput and latency times to prevent an exponential increase in buffer times between the
applications of gates. In this work we begin by quantifying these requirements. We then introduce
the construction of local neural network (NN) decoders using three-dimensional convolutions.
These local decoders are adapted to circuit-level noise and can be applied to surface code volumes
of arbitrary size. Their application removes errors arising from a certain number of faults, which
serves to substantially reduce the syndrome density. Remaining errors can then be corrected by a
global decoder, such as Blossom or union find, with their implementation significantly accelerated
due to the reduced syndrome density. However, in the circuit-level setting, the corrections applied
by the local decoder introduce many vertical pairs of highlighted vertices. To obtain a low
syndrome density in the presence of vertical pairs, we consider a strategy of performing a
syndrome collapse which removes many vertical pairs and reduces the size of the decoding graph
used by the global decoder. We also consider a strategy of performing a vertical cleanup, which
consists of removing all local vertical pairs prior to implementing the global decoder. By applying
our local NN decoder and the vertical cleanup strategy to a d= 17 surface code volume, we show a
106× speedup of the minimum-weight perfect matching decoder. Lastly, we estimate the cost of
implementing our local decoders on field programmable gate arrays.

1. Introduction

Quantum computers have the potential to implement certain families of algorithms with significant speedups
relative to classical computers [1–3]. However, one of the main challenges in building a quantum computer is
in mitigating the effects of noise, which can introduce errors during a computation corrupting the results.
Since the successful implementation of quantum algorithms require qubits, gates and measurements to fail
with very low probabilities, additional methods are required for detecting and correcting errors when they
occur. Universal fault-tolerant quantum computers are one such strategy, where the low desired failure rates
come at the cost of substantial extra qubit and gate overhead requirements [4–16].

The idea behind stabilizer based error correction (EC) is to encode logical qubits using a set of physical
data qubits. The qubits are encoded in a state which is a+1 eigenstate of all operators in a stabilizer group,
which is an Abelian group of Pauli operators [17]. Measuring operators in the stabilizer group, known as a
syndrom measurement, provides information on the possible errors afflicting the data qubits. The results of
the syndrome measurements are then fed to a classical decoding algorithm whose goal is to determine the
most likely errors afflicting the data qubits. In recent decades, a lot of effort has been made towards
improving the performance of error correcting codes and fault-tolerant quantum computing architectures in
order to reduce the large overhead requirements arising from EC. An equally important problem is in
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devising classical decoding algorithms which operate on the very fast time scales required to avoid
exponential backlogs during the implementation of a quantum algorithm [18].

Several decoders have been proposed with the potential of meeting the speed requirements imposed by
quantum algorithms. Cellular automata and renormalization group decoders are based on simple local
update rules and have the potential of achieving fast runtimes when using distributed hardware resources
[19–25]. However, such decoders have yet to demonstrate the low logical failure rates imposed by algorithms
in the circuit-level noise setting. Linear-time decoders such as union find (UF) [26] and a hierarchical
implementation of UF or minimum-weight-perfect-matching (MWPM) with local update rules [27, 28]
have been proposed. Even with the favorable decoding complexity, further work is needed to show how fast
such decoders can be implemented using distributed classical resources in the circuit-level noise regime at
the high physical error rates observed for quantum hardware. Lastly, many neural network (NN) decoders
have been introduced, with varying goals [29–45]. For NN decoders to be a viable candidate in universal
fault-tolerant quantum computing, they must be fast, scalable, and exhibit competitive performance in the
presence of circuit-level noise.

In this work, we introduce a scalable NN decoding algorithm adapted to work well with circuit-level
noise. Our construction is based on fully three-dimensional convolutions and is adapted to work with the
rotated surface code [46]. Our NN decoder works as a local decoder which is applied to all regions of the
spacetime volume. By local decoder, we mean that the decoder corrects errors arising from a constant
number of faults, with longer error chains left to be corrected by a global decoder. The goal is to reduce the
overall decoding time by having a fast implementation of our local decoder, which will remove a large
number of errors afflicting the data qubits. If done correctly, removing such errors will reduce the syndrome
density, resulting in a faster implementation of the global decoder4. We note that in the presence of
circuit-level noise, the corrections applied by our local NN decoders can result in the creation of vertical
pairs of highlighted syndrome vertices (also referred to as defects in the literature), which if not dealt with
could result in an increase in the error syndrome density rather than a reduction. To deal with this problem,
we consider two approaches. In the first approach, we introduce the notion of a syndrome collapse, which
removes a large subset of vertical pairs while also reducing the number of error syndromes used as input to
the global decoder. Our numerical results show that competitive logical error rates can be achieved when
performing a syndrome collapse after the application of the local NN decoders, followed by MWPM [47]
used as a global decoder. We achieve a threshold of approximately pth ≈ 5 × 10−3, which is less than the
threshold of pth ≈ 7 × 10−3 obtained by a pure MWPM decoder due to information loss when performing
the syndrome collapse. However, we observe a significant reduction in the average number of highlighted
vertices used by the global decoder. On the other hand, a syndrome collapse reduces the surface code’s
timelike distance and would thus not be performed during a lattice surgery protocol.

The second approach consists of directly removing all vertical pairs after the application of the local
decoder, but prior to the implementation of the global decoder. When removing vertical pairs, we observe a
threshold which is greater than 5 × 10−3 when MWPM is used as a global decoder. We also observe a
reduction in the error syndrome density by almost two orders of magnitude in some physical noise rate
regimes. This outperforms the reduction achieved by the syndrome collapse strategy, although the size of the
decoding graph remains unchanged. We conclude our work with a resource cost estimate of the
implementation of our NN decoders on field-programmable gate array (FPGA’s), and discuss room for
future improvements.

Our manuscript is structured as follows. In section 2 we give a brief review of the rotated surface code
and it is properties, and introduce some notation used throughout the manuscript. In section 3, we discuss
how buffer times during the implementation of algorithms depend on decoding throughput and latency, and
use such results to further motivate the need for fast decoders. Section 4 is devoted to the description of our
local NN decoder and numerical results. In section 4.1 we show how NN’s can be used as decoders for
quantum error correcting codes in the presence of circuit-level noise, and provide the details of our NN
architectures and training methodologies. We discuss how representing the data can significantly impact the
performance of our NN’s, with more details provided in appendices A and B. In section 4.2 we show how
local decoders can introduce vertical pairs of highlighted vertices in the presence of circuit-level noise
models, even when correcting all the data qubit errors resulting from such fault mechanisms. We then
describe how we perform a syndrome collapse to remove vertical pairs and reduce the number of syndromes
needed by the global decoder. In section 4.3 we provide an example correction from a local NN decoder,
which illustrates the creation of vertical pairs of highlighted vertices. We then describe the vertical cleanup

4 Although sparser syndromes results in faster implementations of global decoders such as MWPM and UF, we leave the problem of
optimizing such implementations using distributed resources for future work.
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scheme for removing vertical pairs. We conclude section 4 by providing numerical results of our decoding
protocols applied to the surface code in section 4.4. Lastly, in section 5, we discuss the resource costs of
implementing our local decoders on classical hardware.

2. Brief review of the surface code

In this work we consider the surface code as the code used to correct errors during a quantum computation.
An excellent introduction to the surface code is provided in [7]. In this section, we briefly review the
properties of the rotated surface code [46] and focus on the main features pertaining to the implementation
of our scalable NN decoder.

The surface code is a two-dimensional planar version of the toric code [48, 49]. The code parameters of
the surface code are [[dxdz,1,min(dx,dz)]], where dx and dz are the distances of minimum-weight
representatives of the logical X and Z operators of the code (which we refer to as the X and Z distance of the
code). The logical X̄ and Z̄ operators of the code form vertical and horizontal string-like excitations. The
surface code belongs to the family of Calderbank–Shor–Steane (CSS) codes [50, 51], with the X and Z-type
stabilizers in the bulk of the lattice corresponding to weight-four operators. There are additional weight-two
operators along the boundary of the lattice. An example of a dx = dz = 5 surface code is shown in figure 1.
The weight-four X and Z-type stabilizers correspond to the red and blue plaquettes in the figure, with the
weight-two stabilizers being represented by semi-circles. We also define the error syndromes for CSS codes as
follows:

Definition 2.1 (Error syndrome). Let SX = ⟨g(X)1 ,g(X)2 , · · · ,g(X)r1 ⟩ and SZ = ⟨g(Z)1 ,g(Z)2 , · · · ,g(Z)r2 ⟩ be the gener-
ating set of X and Z-type stabilizers of a CSS code C, and suppose the stabilizer measurements are repeated dm
times. We define sX(dm) to be a bit string (e

(1)
X e(2)X · · ·e(dm)X )where e(k)X is a bit string of length r2 with e

(k)
X ( j) = 1

iff g(Z)j is measured non-trivially in the kth syndromemeasurement round, and is zero otherwise. Similarly, we

define sZ(dm) to be a bit string (e
(1)
Z e(2)Z · · ·e(dm)Z ) where e(k)Z is a bit string of length r1 with e(k)Z ( j) = 1 iff g(X)j is

measured non-trivially in the kth syndrome measurement round, and is zero otherwise.

Note that the sX(dm) and sZ(dm) syndromes in definition 2.1 can have non-zero bits due to both the
presence of data qubit errors as well as measurement errors. We will also be particularly interested in
syndrome differences between consecutive rounds, which are defined as follows:

Definition 2.2 (Syndrome differences). Given the syndromes sX(dm) = (e(1)X e(2)X · · ·e(dm)X ) and

sZ(dm) = (e(1)Z e(2)Z · · ·e(dm)Z ) for the code C defined in definition 2.1, we set sdiffX (dm) = (e(1)X ẽ(2)X · · · ẽ(dm)X ), where

ẽ(k)X is a bit string of length r2 and ẽ(k)X ( j) = 1 iff the measurement outcome of g(Z)j in round k is different than

the measurement outcome of g(Z)j in round k− 1 (for k> 1). Similarly, we define sdiffZ (dm) = (e(1)Z ẽ(2)Z · · · ẽ(dm)Z ),

where ẽ(k)Z is a bit string of length r1 and ẽ
(k)
Z ( j) = 1 iff the measurement outcome of g(X)j in round k is different

than the measurement outcome of g(X)j in round k− 1 (for k> 1).

The standard decoding protocol used to correct errors with the surface code is by performing MWPM
using Edmonds Blossom algorithm [47]. In particular, a graph G is formed, with edges corresponding to the
data qubits (yellow vertices in figure 1) and vertices associated with the stabilizer measurement outcomes
(encoded in the grey vertices of figure 1). In order to distinguish measurement errors from data qubit errors,
the error syndrome (measurement of all stabilizers) is repeated r times (with r being large enough to ensure
fault-tolerance, see for instance the timelike error analysis in [16]). Letm(k)(gi) = 1 if the stabilizer gi in
round k is measured non-trivially and zero otherwise. Prior to implementing MWPM, a vertex v(k)(gi)
in G associated with a stabilizer gi in the kth syndrome measurement round is highlighted iff
m(k)(gi) ̸=m(k−1)(gi), i.e. the syndrome measurement outcome of gi changes between rounds k− 1 and k.
More generally, for any fault location lk in the circuits used to measure the stabilizers of the surface code (for
instance CNOT gates, idling locations, state-preparation and measurements), we consider all possible Pauli
errors Plk( j) at location lk (with k indexing through all possible Pauli’s) and propagate such Pauli’s. If
propagating the Pauli Plk( j) results in two highlighted vertices v(k1)(gj1) and v(k2)(gj2), an edge e incident to
v(k1)(gj1) and v(k2)(gj2) is added to the matching graph G5. For a distance dx = dz = d surface code with d
rounds of syndrome measurements, the worst-case decoding complexity of MWPM isO(n3) where n∝ d3

and corresponds to the number of highlighted vertices in G (see [47] and section 5.3 for more details). The
UF decoder, another graph based decoder, has decoding complexity ofO(αn) where α is the inverse of

5 For the surface code, a Pauli Y error can result in more than two highlighted vertices, thus requiring hyperedges. Such hyperedges can
then be mapped to edges associated with X and Z Pauli errors.
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Figure 1. Example of a dx = dz = 5 surface code. The distances dx and dz correspond the minimum-weights of logical X and Z
operators of the surface code. Minimum-weight representatives for the logical X̄ and Z̄ operators are shown in the figure, and
form vertical and horizontal string-like excitations. Data qubits correspond to the yellow vertices in the figure, and ancilla qubits
(which are used to store the stabilizer measurement outcomes) are represented by grey vertices. Red plaquettes correspond to
X-type stabilizers of the surface code, and blue plaquettes correspond to Z-type stabilizers. Numbers incident to CNOT gates used
to measure the stabilizers indicate the time steps in which such gates are applied.

Ackermann’s function. Remarkably, UF is able to achieve near linear time decoding while maintaining good
performance relative to MWPM [52] (although one can implement MWPM in a way that exploits the
structure of graphs relevant to QEC and lowers the average-case complexity to be asymptotically competitive
with UF).

Although MWPM and UF have polynomial decoding time complexities, decoders will need to operator
on µs time scales for many practical quantum hardware architectures (see section 3). Achieving such fast
decoding times using MWPM and UF appears to be quite challenging [27, 53–55]. To this end, in section 4
we use scalable NN’s as local decoders that have an effective distance d

′
and which can thus correct errors E

of weight wt(E)⩽ (d ′ − 1)/2. MWPM and UF can then be used as a global decoder to correct any remaining
errors which were not corrected by the local decoder. The effect of the local decoder is to reduce the value of
n by removing many of the errors afflicting the data qubits. NN’s have already been used as local decoders in
the setting of code capacity noise (where only data qubits can fail, and error syndromes only have to be
measured once) and phenomenological noise (where measurements can fail in addition to data qubits) [44,
45]. However, the presence of circuit-level noise introduces significant new challenges which require new
methods to cope with the more complex fault patterns.

Throughout the remainder of this manuscript, we consider the following circuit-level depolarizing noise
for our numerical analyses:

1. Each single-qubit gate location is followed by a Pauli X,Y or Z error, each with probability p
3 .

2. With probability p, each two-qubit gate is followed by a two-qubit Pauli error drawn uniformly and inde-
pendently from {I,X,Y,Z}⊗2\{I⊗ I}.

3. With probability 2p
3 , the preparation of the |0⟩ state is replaced by |1⟩= X|0⟩. Similarly, with probability 2p

3 ,
the preparation of the |+⟩ state is replaced by |−⟩= Z|+⟩.

4. With probability 2p
3 , any single qubit measurement has its outcome flipped.

5. Lastly, with probability p, each idle gate location is followed by a Pauli error drawn uniformly and inde-
pendently from {X,Y,Z}.

This noise model is similar to the one used in [56, 57]. However, in this work, we treat each idle location
during measurement and reset times of the ancillas as a single idle location failing with probability p (instead
of two idling locations each failing with probability p).

3. The effects of throughput and latency on algorithm run-times

In this section we discuss how latency and decoding times affect the run-time of algorithms. In what follows,
we refer to inbound latency as the time it takes for the stabilizer measurement outcomes of an error

4



Quantum Sci. Technol. 8 (2023) 045011 C Chamberland et al

Figure 2. Sequence of T gates separated by buffers bj (black rectangles). The Pauli operators Pj indicate the Pauli frame
immediately prior to implementing the jth T gate. During the buffer time bj, repeated rounds of error correction are performed
until the Pauli frame immediately prior to the jth T gate is known.

Figure 3. Two equivalent circuits for implementing a T gate. In (a), we show the standard circuit for implementing a T gate using
the magic state |T⟩= 1√

2
(|0⟩+ eiπ/4|1⟩) as a resource state. In (b), we provide an equivalent circuit where the logical CNOT

gate is replaced by a Z⊗ Z Pauli measurement, which can be implemented via lattice surgery, as discussed for instance in [16].

correcting code to be known to the classical computer which implements the decoding task. By classical
computer, we mean the classical device which stores and processes syndrome information arising from
stabilizer measurements of an error correcting code in order to compute a correction. We specify ‘inbound’
to distinguish this quantity from the ‘outbound’ latency, or delay between the arrival of an error syndrome at
the decoder and its resolution. We also refer to throughput as the time it takes for the classical computer to
compute a correction based on the syndrome measurement outcome.

We denote the Clifford group as C which is generated by C = ⟨H,S,CNOT⟩, with the matrix

representation for the Hadamard and phase gates in the computational basis expressed as H= 1√
2

(
1 1
1 −1

)
and S= diag(1, i). The CNOT gate acts as CNOT|a⟩|b⟩= |a⟩|a⊕ b⟩.

Consider the sequence of non-parallel T= diag(1,eiπ/4) gates shown in figure 2. Note that T gates are
non-Clifford gates, and the set generated by ⟨H,S,CNOT,T⟩ forms the basis of a universal gate set. We also
consider a framework where we keep track of a Pauli frame [18, 58, 59] throughout the execution of the
quantum algorithm. The Pauli frame allows one to keep track of all conditional Pauli’s and Pauli corrections
arising from EC in classical software, thus avoiding the direct implementation in hardware of such gates,
which could add additional noise to the device. Since TPT† ∈ C, when propagating the Pauli frame through a
T gate, a Clifford correction may be required in order to restore the Pauli frame. Consequently, buffers are
added between the sequence of T gates where repeated rounds of EC are performed until the Pauli frame Pj

immediately before applying the jth T gate is known. The buffer immediately after the jth T gate is labeled as
bj. We now show how buffer times increase with circuit depth as a function of inbound latency and
throughput.

We start with a few definitions. Let Tbj denote the total waiting time during buffer bj, and Ts be the total
time it takes to perform one round of stabilizer measurements for a given quantum hardware architecture.
Let Tl be the time for the stabilizer measurements of one round of EC to be known to the classical computer.
An example circuit using the |T⟩= 1√

2
(|0⟩+ eiπ/4|1⟩)magic state is provided in figure 3. Lastly, we define

T(r)
DEC to be the time it takes the classical computer to compute a correction based on syndrome measurement

outcomes arising from r rounds of EC. As such, T(r)
DEC corresponds to the throughput for r rounds of EC.

The jth buffer time Tbj will depend on the particular implementation of the T gate. For many quantum
hardware architectures, arbitrary logical CNOT gates must be implemented by lattice surgery [11, 12, 16, 60,
61], which would be equivalent to using the circuit in figure 3(b). In such a case, Tbj will depend not only on
the processing of EC rounds during buffer bj−1, but also on the processing of the multiple rounds of EC for
the Z⊗Zmeasurement via lattice surgery since the measurement outcome is needed in order to restore the

5
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Figure 4. Plots showing the buffer times Tbj as a function of the buffer number bj. We set r1 + r2 = 33 and consider using the
surface code for performing EC. The surface code requires four time steps to implement all CNOT gates used to measure the
codes stabilizers, and we assume each CNOT gate takes 100 ns. We also assume a measurement plus reset time of the ancillas to be
1 µs, resulting in a total time Ts = 1.4 µs. In (a), we fix the inbound latency to be Tl = 20 µs, and assume a decoding time which

scales as T
(r)
DEC = cr µs. Using equation (3), we plot Tbj for different values of c. In (b), we fix T

(r)
DEC = r µs and vary the inbound

latency Tl.

Pauli frame. We note however that given access to an extra ancilla qubit, the conditional Clifford in
figure 3(b) can be replaced with a conditional Pauli (see figure 17(b) in [12], and for a generalization to CCZ
gates, figure 4 in [62]). For simplicity, we will use the circuit in figure 3(b) as using the circuit in [12] would
simply change the number of syndrome measurement rounds used in our analysis.

Now, consider the wait time Tb
1 of the first buffer. Since the Pauli frame P1 and the measurement

outcome of the Z⊗Zmeasurement must be known to restore the Pauli frame, we have that

Tb1 = T(r1+r2)
DEC +Tl, (1)

where we assume r1 rounds of EC are performed during the waiting time of buffer b0 and r2 rounds of EC are
needed for the Z⊗Zmeasurement (in what follows, we use r= r1 + r2 for simplicity). We also assume that
the syndrome measurement outcomes of each EC round have an inbound latency Tl, and that the decoder
used by the classical computer can begin processing the syndromes after receiving the outcome of the last
round. In appendix D we discuss how buffer times can be reduced for decoders implemented using sliding
windows. However in this section, we consider the case where the decoder takes as input all syndrome
measurement rounds until the last round when the data qubits are measured in some basis.

Now let n
(bj)
QEC denote the total number of QEC rounds needed during the buffer bj. For b1, we have that

n(b1)QEC = ⌈Tb1/Ts⌉, (2)

since each syndrome measurement round takes time Ts. Using equation (2), the buffer time Tb
2 is then

Tb2 = T
(n

(b1)
QEC )

DEC +Tl.
Applying the above arguments recursively, the jth buffer is then

Tbj = T
(n

(bj−1)

QEC )

DEC +Tl, (3)

with n
(bj)
QEC = ⌈Tbj/Ts⌉.

If we assume a linear decoding time of the form T(r)
DEC = cr (where the constant c is in microseconds),

solving equations (1)–(3) recursively results in

Tbj =
cjr

Tj−1
s

+Tl

[
T1−j
s (cj −Tj

s)

c−Ts

]
. (4)

Plots of equation (4) for different values of c and inbound latency times Tl are shown in figure 4. We
assume that the surface code is used to perform each round of EC, where the CNOT gates used to measure
the stabilizers take four time steps. Each CNOT is assumed to take 100 ns, and the measurement and reset
time of the ancillas take 1 µs, as is the case for instance in [63]. Therefore we set Ts = 1.4 µs. We also assume
that the number of syndrome measurement rounds during the buffer b0 and first lattice surgery

6
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measurement for Z⊗Z is r1 + r2 = 33, which could be the case for the implementation of medium to large
size algorithms with a d≈ 20 surface code.

As can be seen in figure 4(a), where the inbound latency term Tl = 20 µs, if c≲ Ts, then the buffer wait
times grow in a manageable way. However for larger values of c, there is a large exponential blow-up in the
buffer wait times. This can also be seen from the first term in equation (4), which grows linearly if c⩽ Ts. In
figure 4(b), we consider how changing the inbound latency Tl affects the buffer wait times when keeping c
fixed (which we set to c= 1 µs). As can be seen, increasing inbound latency does not result in an exponential
blow-up in buffer wait times. This can also be seen from the second term in equation (4) which only depends
linearly on Tl. As such, we conclude buffer wait times are much more sensitive to decoding throughput times,
and it will thus be very important to have fast EC decoders in order to implement quantum algorithms.

We conclude this section by remarking that increasing buffer times can also lead to an increase in the
code distances dx and dz to ensure that logical failure rates remain below the target set by the quantum
algorithm. In other words, if the code distance is fixed, buffer times cannot be arbitrarily large. For instance,
for a code with full effective code distance (and let dx = dz = d as is the case for a depolarizing noise model),
the logical X and Z error rates for dm syndrome measurement rounds scale as

pL(p) = uddm(bp)
(d+1)/2, (5)

for some constants u and b (see for instance [16]). We must also have pL(p)< δ where δ is the
maximum failure rate allowed for a particular algorithm. Hence for a fixed d, we must have that
dm < δ/(ud(bp)(d+1)/2). The parameters u and b depend on the details of the noise model and decoding
algorithm used, as discussed in section 4.4. The reader may be concerned that a large value of dm imposed by
long buffer wait times may require a large increase in the code distance. In appendix E we show that the code
distance d only grows logarithmically with dm.

4. Using NN’s as local decoders for circuit-level noise

In section 3 we motivated the need for fast decoders. In this section, we construct a hierarchical decoding
strategy for correcting errors afflicting data qubits encoded in the surface code. Our hierarchical decoder
consists of a local decoder which can correct errors of a certain size, and a global decoder which corrects any
remaining errors after implementing the local decoder. In this manuscript we use MWPM for the global
decoder, though our scheme can easily be adapted to work with other global decoders such as UF. We use
NN’s to train our local decoder arising from the circuit-level noise model described in section 2. Importantly,
the NN decoder is scalable and can be applied to arbitrary sized volumes (dx,dz,dm) where dx and dz are the
X and Z distances of the surface code, and dm is the number of syndrome measurement rounds.

Our local decoder will have an effective distance deff ⩽max(dx,dz) allowing it to remove errors arising
from at most (deff − 1)/2 faults. By removing such errors, the goal is to reduce the syndrome density, i.e. the
number of highlighted vertices in the matching graph G used to implement MWPM, thus resulting in a
much faster execution of MWPM. We note that hierarchical decoding strategies have previously been
considered in the literature [27, 44, 45]. In [27], a subset of highlighted vertices in the matching graph G
(which we refer to as syndrome density) are removed based on a set of local rules. However, the weight of
errors which can be removed by the local rules is limited, and the scheme (analyzed for code capacity noise)
requires low physical error rates to see a large reduction in decoding runtimes. The schemes in [44, 45] used
NN’s to train local decoders. In [45], a two-dimensional fully convolutional NN was used to correct errors
arising from code capacity noise. However the scheme does not generalize to phenomenological or
circuit-level noise, where repeated rounds of syndrome measurements must be performed. In [44], fully
connected layers were used to train a network based on patches of constant size, and the scheme was adapted
to also work with phenomonological noise. However, as will be shown in section 4.2, the presence of
circuit-level noise introduces fault patterns which are distinct from code capacity and phenomenological
noise. In particular, we find that for a certain subset of failures, the syndrome density is not reduced even if
the local decoder removes the errors afflicting the data qubits (vertical pairs of highlighted vertices arise after
the correction performed by the NN decoder). In fact, the use of NN’s as local decoders can increase the
syndrome density if no other operations are performed prior to implementing the global decoder. As such, in
section 4.2 we introduce the notion of syndrome collapse which not only reduces the syndrome density but
also reduces the size of the matching graph G, leading to a much faster implementation of MWPM. We also
introduce in section 4.3 the notion of a vertical cleanup which directly removes pairs of highlighted vertices
after the application of the local NN decoder, without reducing the size of the matching graph. We also point
out that larger NN’s are required to correct errors arising from the more complex fault-patterns of
circuit-level noise than what was previously considered in the literature. In particular, in section 4.1 we
describe how three-dimensional fully convolutional NN’s can be used to train our local decoder.

7
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Regarding the implementation of our three-dimensional convolutional NN’s, we introduce new encoding
strategies for representing the data that not only allows the NN to adapt to different boundaries of a surface
code lattice, but also significantly enhances its abilities to correct errors in the bulk.

Lastly, in section 4.4 we provide a numerical analysis of our decoding strategy applied to various surface
code volumes of size (dx,dz,dm), showing both the logical error rates and syndrome density reductions after
the implementation of our local decoder.

4.1. Using NN’s to train local decoders
Decoding can be considered a pattern recognition task: for each physical data qubit qj used in the encoding of
the surface code, given the syndrome measurements within some local volume (d ′

x,d
′
z ,d

′
m) of the lattice, a

classifier can predict whether or not there is an error afflicting qj.
In this work, we design a NN classifier that takes as input a local volume of size (d ′

x,d
′
z ,d

′
m), and train it to

correct data-qubit errors arising from at most (d ′ − 1)/2 faults, where d ′ =min(d ′
x,d

′
z). To ensure

scalability, our NN classifier must be designed in such a way that it corrects errors arising from at most
(deff − 1)/2 faults even when applied to larger surface code volumes (dx,dz,dm), where deff ⩽ d ′.

There are many choices for our network architecture. The simplest is a multi-layer perceptron (MLP)
with an input layer, hidden layer, and output layer, each of which is a ‘fully connected’ layer where all inputs
connect to each neuron in the layer. In this type of network, the (d ′

x,d
′
z ,d

′
m) local volume serves as inputs to a

set of N neurons in the input layer. The hidden layer takes those N neurons as inputs for a set of H neurons,
and finally the H hidden layer neuron outputs are inputs to the final layer neurons that produce the
prediction. We implement a network with two outputs, the occurrence of an X error, and the occurrence of a
Z error (with Y errors occurring if both X and Z errors are present).

For an efficient computation, we transform (and subsequently enhance) the MLP to be a
‘fully-convolutional’ network, where each layer consists of a set of convolution filters. Convolutions
efficiently implement a sliding-window computation6 to produce an output at each location of an input of
arbitrary size. For the case of a network with a (d ′

x,d
′
z ,d

′
m) local input volume, we use a 3-dimensional

convolution of the same size, and so the first layer is a set of N(d ′
x,d

′
z ,d

′
m) convolutional filters. This layer,

when applied to a local patch of size (d ′
x,d

′
z ,d

′
m), produces N outputs. The hidden layer, accepting these N

inputs for H outputs, can be viewed as a set of H1× 1× 1 convolutional filters. Likewise, the final output
layer accepts these H inputs to produce 2 outputs, and can be represented as two 1 × 1 × 1 conv3d filters.

The fully-convolutional network produces a prediction for the data qubit at the center of the local
volume it analyzes, as it sweeps through the entire lattice. To allow the network to make predictions right up
to the boundary of the lattice, the conv layers are chosen to produce a ‘same’ output, whereby the input is
automatically zero-padded beyond the boundary of the lattice. For example, for a convolution of size 9 to
produce an output right at the boundary, the boundary is padded with an additional 4 values. Figure 5
illustrates the NN applied throughout the lattice volume, including computing a prediction right at the
border of the lattice, in which case some of it is input field lies outside of the lattice volume and receives zero
padded values.

To improve the representational power of the network, we can replace the first layer of convolutional
filters with multiple layers, taking care to preserve the overall receptive field of the network. For example, if
the first layer had filters of size (9,9,9), 4 layers with filters of size (3,3,3) will also have an effective filter size of
(9,9,9), since each additional layer increases the effective filter width by 2 from the first layer’s width of 3. If
each layer were linear, the resulting N outputs in the fourth layer would be mathematically equivalent to a
single 9 × 9 × 9 layer with N outputs. However, since each layer is non-linear, with a nonlinear activation
function (ReLu in our case), the two networks are no longer equivalent, and the network with
4 layers of (3,3,3) filters has more representational power, learning nonlinear combinations of
features-of-features-of-features. Similarly, we can expand the hidden layer with (1,1,1) filters to become
multiple layers of (1,1,1) filters to increase the network’s learning capacity.

In this work we consider two network architectures illustrated in figure 6. The network in figure 6(a) has
6 layers, with the first 4 layers having filters of size (3,3,3). The remaining 2 layers have filters of size (1,1,1).
In figure 6(b), the network has 11 layers, with the first 4 layers having filters of size (3,3,3) and the remaining
7 layers have filters of size (1,1,1). The networks in figures 6(a) and (b) have a total of 221 600 and 352 210
parameters, respectively, with the goal that such networks can learn the complex fault patterns arising from
circuit-level noise. Another goal is for the networks to correct errors on timescales similar to those discussed

6 In this context, the sliding-window computation should not be confused with the sliding window approach of [49], where MWPM is
performed in ‘chuncks’ of sizeO(d) for a distance d code, with the temporal corrections from the previous window used as input into the
MWPM decoder applied to the next window. In our case, the NN takes the entire volume as its input, and performs corrections on each
qubit in the volume using only local information.
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Figure 5. Illustration of a convolution trained on size (d ′
x ,d

′
z ,d

′
m) applied to a larger surface code volume of size (dx,dz,dm). The

network can correct error strings of size at most (max(d ′
x ,d

′
z )− 1)/2 by effectively ‘sweeping’ through the larger (dx,dz,dm)

volume.

Figure 6. NN architectures used to train our local decoders. In (a), we consider a network with 6 layers. The first 4 layers have 50
filters of dimension (3,3,3) and serve as feature extractors with a total receptive field of 9 × 9 × 9. The last two layers have
filters of dimension (1,1,1), with 200 filters used in the second last layer. The last layer has 2 filters, to predict the X and Z error
outputs. The network has a total of 221 660 parameters. In (b) we use a network with 11 layers. The first 4 layers have 50 filters of
dimension 3 × 3 × 3, whereas the next 6 layers have 100 filters of dimension (1,1,1). The last layers use 2 filters of size (1,1,1).
The network has a total of 352 210 parameters. We also use skip connections which becomes more relevant as the number of
layers in the network becomes large to avoid exploding/vanishing gradients [64, 65]. For both networks, we perform batch
normalization after each layer. All layers use the ReLu activation function except for the last layer, where we use a sigmoid
activation function, to generate predictions for physical qubit errors throughout the lattice. We also use the binary cross-entropy
loss function to train our networks. In (c), we provide the details of the implementation of the skip connections. For clarity, we
also illustrate the batch normalization step and the implementation of the ReLu activation function.
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in section 3 using appropriate hardware. More details on the implementation of these networks on FPGA’s
are discussed in section 5.

To obtain the data used to train the fully convolutional NN’s, we perform N train Monte Carlo simulations
using the circuit-level noise model described in section 2, with the surface code circuit being used to
compute the error syndrome. The training data is then stored using the following format. The input to the
network, which we label as trainX, is a tensor of shape (Ntrain,dx,dz,dm,5) for a surface code with X and Z
distances dx and dz, with dm syndrome measurement rounds. Following definition 2.2, the first two inputs to
trainX contain the syndrome differences sdiffX (dm) and sdiffZ (dm) obtained for dm − 1 rounds of noisy
syndrome measurements, followed by one round of perfect EC. Tracking changes in syndrome measurement
outcomes between consecutive rounds ensures that the average syndrome density remains constant across
different syndrome measurement rounds. The next two inputs of trainX contain spatial information used
to enable the network to associate syndrome measurement outcomes with data qubits in both the bulk and
along boundaries that can influence the observed outcome. The data is represented as dx by dz binary
matrices labelled enc(X) and enc(Z), where 1 values are inserted following a particular mapping between
the position of the ancillas (grey vertices in figure 1) and data qubits (yellow vertices in figure 1) which
interact with the ancillas. The details of our mapping is described in appendix A. We note that the matrices
enc(X) and enc(Z) are provided for each syndrome measurement round, and are identical in each round
unless the lattice changes shape between consecutive syndrome measurement rounds, as would be the case
during a lattice surgery protocol [11, 12, 16, 60, 61]. Further, the syndrome differences stored in the first two
inputs of trainX also follow the same mapping used in enc(X) and enc(Z) between stabilizers and entries
in the matrix representations, except that a 1 is only inserted for non-zero values of sdiffX (dm) and sdiffZ (dm)
(more details are provided in appendix A). Finally, the fifth input of trainX contains the temporal
boundaries, which specify the first and last syndrome measurement round. Since the last syndrome
measurement round is a round of perfect EC7, the syndrome measurement outcome will always be
compatible with the errors afflicting the data qubits arising from the second last round. As such, since the last
syndrome measurement round behaves differently than the other rounds, it is important to specify its
location (as well as the location of the first round) in trainX so that the trained network can generalize to
volumes with arbitrary dm values. More details for how the data is represented in trainX and the mappings
discussed in this paragraph are provided in appendix A.

Next, the output targets that the NN will attempt to predict (i.e. the locations of X and Z data qubit
errors) are stored in a tensor trainY of shape (Ntrain,dx,dz,dm,2). In particular, trainY contains the X and
Z data errors afflicting the data qubits for syndrome measurement rounds 1 to dm. In order for the data
stored in trainY to be compatible with trainX, we only track changes in data qubit errors between
consecutive syndrome measurement rounds, since trainX tracks changes in syndrome measurement
outcomes between consecutive rounds. Tracking changes in data qubit errors also ensures that the average
error densities are independent of the number of syndrome measurement rounds. Otherwise, one would
need to train the network over a very large number of syndrome measurement rounds in order for the
networks to generalize well to arbitratry values of dm. An illustration showing the increase in the average data
qubit error densities with the number of syndrome measurement rounds is shown in figure 7.

When performing the Monte Carlo simulations to collect the training data, there are many cases where
two errors E1 and E2 can have the same syndrome (s(E1) = s(E2)) with E1E2 = g where g is in the stabilizer
group of the surface code. We say that such errors are homologically equivalent. In training the NN’s, we
found that choosing a particular convention for representing homologically equivalent errors in trainY
leads to significant performance improvements, as was also remarked in [45]. A detailed description for how
we represent homologically equivalent errors in trainY is provided in appendix B.

We conclude this section by remarking that the performance of the networks not only depend on the
network architecture and how data is represented in trainX and trainY, but also on the depolarizing error
rate p used to generate the training data, and the size of the input volume (d ′

x,d
′
z ,d

′
m). For instance, since the

local receptive field of the networks in figures 6(a) and (b) is 9× 9× 9, we used input volumes of size
(13,13,18) to allow the network to see spatial and temporal data located purely in the bulk of the volume
(i.e. without being influenced by boundary effects). We also trained our networks at error rates p= 0.005 and
p= 0.001, and found that training networks at higher physical error rates did not always lead to superior
performance relative to networks trained at low physical error rates. More details are provided in section 4.4.
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Figure 7. Average number of X errors afflicting data qubits of a dx = dz = 9 rotated surface code lattice as a function of the
number of syndrome measurement rounds and the circuit-level noise model described in section 2. Results are shown for the
depolarizing noise parameter p set to p= 0.001 and p= 0.005. For small noise rates, hundreds of syndrome measurement rounds
are required to saturate the average X error density of 50%.

Figure 8. (a) CNOT failure (shown in red) resulting in a X data qubit error in the jth syndrome measurement round (we only
show CNOT gates which are part of the stabilizers used in this example). Due to the time steps in which the CNOT gates are
implemented, only a single Z-type stabilizer detects the error in round j, with two stabilizers detecting the error in round j + 1.
(b) Subset of the matching graph G associated with the dx = dz = 5 surface code shown in (a). The vertices in G are highlighted
(shown in yellow) when changes in syndrome measurement outcomes are detected between consecutive syndrome measurement
rounds. (c) Transformation of G after the local decoder applies a correction removing the X error. Even though the local decoder
removes the error, the correction creates a vertical pair of highlighted vertices.

4.2. Performing a syndrome collapse by sheets
Consider a CNOT failure during a Z-type stabilizer measurement resulting in an X⊗ I error in the jth
syndrome measurement round, as shown in figure 8(a). The failure results in an X error on a data qubit.

7 A round of perfect error correction is a syndrome measurement round where no new errors are introduced, and arises when the data
qubits are measured directly in some basis at the end of the computation. A measurement error which occurs when the data qubits are
measured directly is equivalent to an error on such data qubits in the prior round. See for instance appendix I in [15].
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However, given the ordering of the CNOT gates, only a single Z-type stabilizer detects the error in round j,
with two stabilizers detecting the error in round j + 1. We refer to such failure mechanisms as space-time
correlated errors. In figure 8(b) we illustrate the resulting highlighted vertices in a subset of the matching
graph G which is used to implement MWPM. As explained in section 2, a vertex in G associated with the
stabilizer gk is highlighted in round j if the measurement outcome of gk changes from rounds j − 1 to j. Now,
suppose a local decoder correctly identifies the observed fault pattern, and removes the X error on the
afflicted data qubit. Figure 8(c) shows how G transforms after applying the correction. Importantly, even
though the error is removed, a vertical pair of highlighted vertices is created in G. We also note that the
creation of vertical pairs arising from a correction performed by the local decoder due to a two-qubit gate
failure is intrinsic to circuit-level noise and would not be observed for code capacity or phenomenological
noise models. In fact, we observe numerically that the average number of highlighted vertices in G after the
corrections applied by the local decoder will increase rather than decrease. However, as the example of
figure 8 illustrates, many of the highlighted vertices in G will be due to the creation of vertical pairs induced
by the corrections arising from the local decoder (see also figure 10 in section 4.3).

One way to reduce the number of vertical pairs after the correction is applied by the local decoder is to
perform what we call a syndrome collapse by sheets. More specifically, consider the syndrome difference

sdiffX (dm) = (e(1)X ẽ(2)X · · · ẽ(dm)X ) as defined in definition 2.2 and let us assume for simplicity that dm = γd ′
m for

some integer γ. We can partition sdiffX (dm) as

sdiffX (dm) = (e(1)X ẽ(2)X · · · ẽ(d
′
m)

X |̃e(d
′
m+1)

X · · · ẽ(2d
′
m)

X | · · · |

ẽ
(dm−d ′

m+1)
X · · · ẽ(dm)X ). (6)

A syndrome collapse by sheets of size d ′
m transforms sdiffX (dm) as

sdiffX (dm) = (e(1)X e(2)X · · ·e(γ)X ), (7)

where

e( j)X =

d ′
m⊕

i=1

ẽ
(( j−1)d ′

m+i)
X , (8)

with the sum being performed modulo 2 (if j= 1, the first term in equation (8) is e(1)X , without the tilde). Note
that if dm is not a multiple of d ′

m, there will be ⌈dm/d ′
m⌉ sheets with the last sheet having size dm −βd ′

m where
β = ⌊dm/d ′

m⌋. The above steps can also be performed analogously for syndromes corresponding to Z errors.
Performing a syndrome collapse by sheets reduces the size of the original matching graph G since G

contained dm sheets prior to performing the collapse. We label Gsc as the graph resulting from performing
the syndrome collapse on the original graph G. An illustration of how the syndrome collapse removes
vertical pairs is shown in figure 9(a). Note that without the presence of a local decoder, one would not
perform a syndrome collapse using a MWPM decoder since such an operation would remove the decoders
ability to correct errors which are temporally separated. An example is shown in figure 9(b). However by
performing a syndrome collapse on a surface code of distance d after the application of the local decoder with
d ′
m =O(deff) where deff is the effective distance of the local decoder (which depends on the local receptive
field and size of the volume the network was trained on), we expect such an operation to result in a global
effective distance which is equal or close to d. The reason is that errors contained within each sheet arising
from less than or equal to (deff − 1)/2 faults should be removed by the local decoder. We say ‘should’ because
local NN decoders are not necessarily guaranteed to correct any error arising from (deff − 1)/2 faults. Since
NN decoders offer no fault-tolerance guarantees, we cannot provide a proof giving the effective distance of
the surface code decoded using the local NN, followed by a syndrome collapse and application of a global
decoder. However, we observed numerically that using larger networks (i.e. a network with more layers and
filters per layers) resulted in increased slopes of the logical error rate curves. In section 4.4 we present
numerical results showing the effective distances of various surface code lattices when performing a
syndrome collapse after the application of local decoders implemented by NN’s.

We now give an important remark regarding performing a syndrome collapse during a parity
measurement implemented via lattice surgery. As discussed in detail in [16], when performing a parity
measurement via lattice surgery, there is a third code distance related to timelike failures, where the wrong
parity measurement would be obtained. The timelike distance is given by the number of syndrome
measurement rounds which are performed when the surface code patches are merged. If a syndrome collapse
were to be performed in the region of the merged surface code patch (see for instance figure 7 in [16]), the
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Figure 9. (a) On the left is a two-dimensional slice of a subset of the surface code matching graph for 5 rounds of stabilizer
measurements. Horizontal edges correspond to data qubits, vertices correspond to stabilizer measurement outcomes, and the blue
squares are boundary vertices connected by blue edges of zero weight. The graph has two vertical pairs of highlighted vertices. On
the right of the figure is the graph obtained after performing the syndrome collapse. Both vertical pairs vanish after performing
the syndrome collapse. (b) On the left of the figure is a sequence of X data qubit errors which are temporally separated, i.e. they
occur in different syndrome measurement rounds. The thick green edges show the minimum-weight path which pairs all
highlighted vertices (we assume all edges in the graph have unit weight) effectively correcting the errors. On the right of the figure
is the graph obtained after performing the syndrome collapse, along with the minimum-weight path pairing the highlighted
vertices. The correction thus results in a logical X error.

timelike distance would be reduced and would result in timelike failures which would be too large. As such, a
syndrome collapse should not be implemented when performing a parity measurement via lattice surgery
unless additional syndrome measurement rounds are performed on the merged surface code patches to
compensate for the loss in timelike distance. However, the timelike distance can still potentially be made
small using a temporal encoding of lattice surgery protocol (TELS) as described in [16]. Alternatively, the
vertical cleanup protocol described below in section 4.3 (which can also significantly reduce the syndrome
density) could be used (see also appendix F regarding the required number of syndrome measurement
rounds to maintain the timelike distance).

Lastly, we conclude by remarking that a NN architecture that performs a correction by identifying edges
in the matching and flipping the vertices incident to such edges could potentially avoid creating vertical pairs
after performing its corrections. In such settings, a syndrome collapse or a vertical cleanup as described in
section 4.3 may not be required.

4.3. Performing a vertical cleanup
In figure 10 we show an example of the application of the 11-layer NN decoder (trained on an (13,13,18)
input volume at p= 0.005) to test set data of size (9,9,9) generated at p= 0.005. In the figure, each row
containing a series of plots corresponds to a syndrome measurement round. For a given row, the first plot
labelled Xerrors shows changes in X data qubit errors from the previous round, and the second plot
labelled syn diff shows changes in observed syndromes from the previous round (see appendix A for how
changes in syndrome measurement outcomes are represented as dx × dz binary matrices). The third plot
labelled pred gives the correction applied by the NN decoder, and the fourth plot labelled syn pred
corresponds to the syndrome compatible with the applied correction. The fifth plot labelled syn dif aft
cor shows the remaining syndromes after the correction has been applied, and the sixth plot labelled left
errors gives any remaining X data qubit errors after the correction has been applied. The last plot labelled
vert clean shows the remaining syndromes after all vertical pairs of highlighted vertices have been
removed. Vertical pairs are formed when the vertex associated with the measurement of a stabilizer gi is
highlighted in two consecutive syndrome measurement rounds.

Comparing the fifth and seventh plot in any given row, it can be seen that the vast majority of remaining
syndromes after the NN decoder has been applied consists of vertical pairs, since removing vertical pairs
eliminates nearly all highlighted vertices. In section 4.2 we described our protocol for performing a
syndrome collapse by sheets, which removes any vertical pairs of highlighted vertices within a given sheet,
but not vertical pairs between sheets. As the plots in the last column of figure 10 suggest, another strategy
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Figure 10. Illustration of X-type Pauli errors occurring in a dx = dz = 9 surface code in consecutive syndrome measurement
rounds (where we only track changes in errors between consecutive rounds) along with the syndrome differences observed in each
round. Note that syndrome differences are mapped to a d × d grid following the mapping described in appendix A. We also show
the correction applied by the local NN decoder, and resulting homologically equivalent errors in the column left. errors (see
appendix B) and syndrome differences after the correction is applied. The plots in the last column labelled vert clean shows
the remaining syndrome differences after all pairs of vertical highlighted vertices have been removed. As can be seen, the vast
majority of highlighted vertices after the application of the local NN decoder results in vertical pairs. Further, since the NN sees
syndrome differences in both the future and the past given the size of its receptive field, in some cases it performs a correction on
a data qubit in a round before the error actually occurs, leading to the creation of a vertical pair of highlighted vertices.

which can significantly reduce the density of highlighted vertices is to remove all vertical pairs of highlighted
vertices which are present after the local NN decoder has been applied. More specifically, for the syndrome

difference sdiffX (dm) = (e(1)X ẽ(2)X · · · ẽ(dm)X ), we start with the syndrome in the first round e(1)X . If e(1)X ( j) = 1 and

ẽ(2)X ( j) = 1 for some j ∈ {1, · · · , r2}, we set e(1)X ( j) = ẽ(2)X ( j) = 0. Such a process is repeated by comparing

ẽ(m)
X ( j) and ẽ(m+1)

X ( j) form ∈ {2, · · · ,dm} and for all j ∈ {1, · · · , r2}, and setting them to zero if

ẽ(m)
X ( j) = ẽ(m+1)

X ( j) = 1. An identical step is performed for the syndrome differences sdiffZ (dm). Note that
when performing parity measurements via lattice surgery, there is a preferred direction in which a vertical
cleanup should be performed (i.e. starting from the first round and moving upwards to the last vs starting
from last round and moving downwards to the first). The particular direction depends on the syndrome
densities above and below some reference point, and is used to maintain a higher effective distance for
protecting against temporal errors. More details are provided in appendix F.

We remark that performing a vertical cleanup without an accompanying local decoder can result in a
correctable error no longer being correctable by the global decoder. In figure 11, we show two X-type errors
which are temporally separated by one syndrome measurement round, along with the corresponding
highlighted vertices in a two-dimensional strip of a d= 5 surface code decoding graph GX, with the subscript
X indicating it is a graph for correcting X errors. We assume that all black edges in GX have unit weight. In
figure 11(a), the green shaded edges correspond to the minimum-weight correction which removes the X
errors. In figure 11(b), we show the resulting highlighted vertices in GX after performing a vertical cleanup.
In this case, one possible minimum-weight correction results in a logical fault as shown by the green shaded
edges.
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Figure 11. (a) Two X-type errors temporally separated by one syndrome measurement round, along with the highlighted
vertices in a two-dimensional strip of a subset of a d= 5 surface code decoding graph GX used to correct X-type Pauli errors.
All black edges are taken to have unit weight. The green shaded edges correspond to the minimum-weight correction, which
correctly removes the errors. (b) Resulting graph after performing the vertical cleanup. The green shaded edges correspond to
a minimum-weight correction, which results in a logical fault.

If a local NN decoder with effective distance deff = 5 was applied prior to performing a vertical cleanup,
such X-type errors would be removed and no logical failures would occur. However, we generally caution
that a vertical cleanup could in fact reduce the effective code distance of the surface code if the local NN
decoder has an effective distance smaller than the volume to which it is applied. Nonetheless, as shown in
section 4.4 below, low logical error rates and near optimal effective code distance are indeed achievable with
our local NN decoders and vertical cleanup.

Lastly, at the end of section 4.2, we explained how a syndrome collapse reduces the timelike distance of a
lattice surgery protocol. Performing a vertical cleanup does not have the same effect on the timelike distance,
and can be applied during a lattice surgery protocol. More details are provided in appendix F.

4.4. Numerical results
In this section, we show the logical error rates and syndrome density reductions achieved by the 6 and
11-layer NN’s described in section 4.1 (see figure 6). We obtain our numerical results by first applying the
trained NN decoder to the input volume (dx,dz,dm), followed by either performing a syndrome collapse (as
described in section 4.2) or a vertical cleanup (as described in section 4.3). After the syndrome collapse or
vertical cleanup, any remaining errors are removed by performing MWPM on the resulting graph. We set
edges to have unit weights since the error distributions change after applying the local NN decoder.

In what follows, we define G to be the matching graph with highlighted vertices prior to applying the
local NN decoder. Since we consider a symmetric noise model, we focus only on correcting X-type Pauli
errors, as Z-type errors are corrected analogously using the same network. To optimize speed, the global
decoder uses separate graphs GX and GZ for correcting X and Z-type Pauli errors. However since we focus on
results for X-type Paulis, to simplify the discussion we set G= GX. The graph obtained after the application
of the NN decoder is labelled G(N) (which will in general have different highlighted vertices than G), and the

reduced graph obtained by performing the syndrome collapse on G(N) is labelled G(N)
sc . Lastly, the graph

obtained after applying the local NN decoder followed by a vertical cleanup is labeled G(N)
vc .

We trained the 6 and 11-layer networks on data consisting of input volumes of size (13,13,18). The data
was generated for physical depolarizing error rates of p= 10−3, p= 2.5 × 10−3 and p= 5 × 10−3,
resulting in a total of six models. For each of the physical error rates mentioned above, we generated 107

training examples by performing Monte Carlo simulations using the noise model described in section 2.
Both the 6 and 11-layer networks were trained for 40 epochs when p= 10−3, and for 80 epochs when
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Table 1. Table showing the error rates at which the 6 and 11-layer NN were trained to give the lowest total logical X+Z error rate when
applied to test set data of volume (dx,dz,dm) and physical error rate p. The first column gives the input volume of the test set data.
Subsequent columns give the error rates used to train the best performing NN model when applied to the physical error rates used to
generate the test set data given in the top row.

best ptrain ∈ {1.0 × 10−3,2.5 × 10−3,5.0 × 10−3}

Layers dx dz dm at p= 1.0 × 10−3 1.5 × 10−3 2.0 × 10−3 2.5 × 10−3 3.0 × 10−3 4.0 × 10−3 5.0 × 10−3

6 9 9 9 1.0 × 10−3 1.0 × 10−3 1.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

11 11 11 1.0 × 10−3 1.0 × 10−3 1.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

13 13 13 1.0 × 10−3 1.0 × 10−3 1.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

15 15 15 1.0 × 10−3 1.0 × 10−3 1.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

17 17 17 1.0 × 10−3 1.0 × 10−3 1.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

11 9 9 9 2.5 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

11 11 11 2.5 × 10−3 2.5 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

13 13 13 2.5 × 10−3 2.5 × 10−3 2.5 × 10−3 2.5 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

15 15 15 2.5 × 10−3 2.5 × 10−3 2.5 × 10−3 2.5 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

17 17 17 2.5 × 10−3 2.5 × 10−3 2.5 × 10−3 2.5 × 10−3 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

Figure 12. Logical X error rates for surface code volumes ranging between (9,9,9) and (17,17,17) after the application of the
local NN decoder, followed by a syndrome collapse (with the input volumes partitioned into sheets of temporal height d ′

m = 6)
and MWPM to correct any remaining errors. In (a) the results are for the 6-layer network whereas in (b) the results are for the
11-layer network.

p= 2.5 × 10−3 and p= 5 × 10−3. The networks were then applied to test set data generated at physical
error rates in the range 10−3 ⩽ p⩽ 5 × 10−3 (see table 1 which describes which models gave the best results
for a given physical error rate used in the test set data). The networks described in figure 6 have a receptive
field of size 9 × 9 × 9, and thus have a maximal effective local distance of deff ⩽ 9. Recall that in the last
layer we use a sigmoid activation function (instead of ReLu) to ensure that the two output tensors describing
X and Z data qubit corrections in each of the dm syndrome measurement rounds consists of numbers
between zero and one. If this output is greater than 0.5 we apply a correction to a given qubit, otherwise we
do nothing. We found numerically that a decision threshold of 0.5 gave the best results. In other words, the
outputs consist of dm matrices of size dx × dz for X corrections, and dm matrices of size dx × dz for Z
corrections. If the (i, j) coordinate of the matrix for X (Z) Pauli corrections in round k is greater than 0.5, we
apply an X (Z) Pauli correction on the data qubit at the (i, j) coordinate of the surface code lattice in the kth
syndrome measurement round.

4.4.1. Numerical analysis when performing a syndrome collapse
When performing a syndrome collapse, we considered sheets of size d ′

m ∈ {4,5,6}. We found numerically
that using sheets of size d ′

m = 4 resulted in worse performance compared to sheets of size d ′
m = 5 and d ′

m = 6.
Using sheets of size d ′

m = 5 and d ′
m = 6 resulted in nearly identical performance. However since sheets of size

d ′
m = 6 results in a smaller graph G(N)

sc compared to using sheets of size d ′
m = 5, in what follows we give

numerical results using sheets of size d ′
m = 6.

The logical X error rate curves for the 6 and 11-layer networks are shown in figures 12(a) and (b). As a
first remark, we point out that networks trained at high physical error rates do not necessarily perform better
when applied to test set data obtained at lower error rates (which is in contrast to what was observed in
previous works such as [34]). In table 1 it can be seen that the 6-layer network trained at p= 0.005
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Figure 13. After applying corrections from the local NN decoder, we plot the ratio r
(sc)
a (see the main text) between the average

number of highlighted vertices in the matching graph G
(N)
sc where a syndrome collapse has been performed (using sheets of size

d ′
m = 6) to the average number of highlighted vertices in the original matching graph G prior to the application of the local NN
decoder followed by a syndrome collapse. In (a), the results are shown for the 6-layer network whereas in (b) the results are shown

for the 11-layer network. the relationship of r
(sc)
a as a function of the code distance is less intuitive here compared to the results

obtained in figure 15 for the vertical cleanup. The reason is that the number of two-dimensional sheets in the matching graph
depend on the surface code distance, and there can be a jump of one sheet when the distances increase, as is the case for example
with the d= 11 and d= 13 graphs.

outperforms the model trained at p= 0.0025 and p= 0.001 when applied to test set data generated at
p⩾ 0.0025. However, for test set data generated in the range 0.001⩽ p⩽ 0.002, the model trained at
p= 0.001 achieves lower total logical error rates. For the 11-layer network, the model trained at p= 0.0025
always outperforms the model trained at p= 0.001 for all the sampled physical error rates. The window of
out-performance also depends on the surface code volume. For instance, the 11-layer network trained at
p= 0.005 outperforms the model trained at p= 0.0025 for p> 0.001 when applied to a (9,9,9) surface code
volume. However, when applied to a (17,17,17) surface code volume, the model trained at p= 0.0025
outperforms the model trained at p= 0.005 for p⩽ 0.0025. More details comparing models trained at
different physical error rates are discussed in appendix C and figure 21.

Note that to achieve better results, one can train a network for each physical error rate used in the test set
data. However, in generating our results, one goal was to see how well a network trained at a particular error
rate would perform when applied to data generated at a different physical error rate. In realistic settings, it is
often difficult to fully characterize the noise model, and circuit-level failure rates can also fluctuate across
different regions of the hardware. As such, it is important that our networks trained at a particular value of p
perform well when applied to other values of p. An alternative to using models trained at different values of p
would be to train a single network with data generated at different values of p. However, doing so might
reduce the network’s accuracy at any particular error rate. Since in practice one would have some estimate of
the error rate, it would be more favorable to train the network near such error rates.

In general, we expect the logical X error rate polynomial as a function of the code distance and physical
error rate p to scale as (assuming dx = dz = d)

p(X)L (p) = uddm(bp)
(cd+w), (9)

for some parameters u, b, c and w, and where dm is the number of syndrome measurement rounds. Using the
data from figure 12(b), we find that the 11-layer network has a logical X error rate polynomial

p(X;sc)L;11l (p) = 0.000 260d2(143.084p)(d−1)/2, (10)

and the 6-layer network has a logical error rate polynomial

p(X;sc)L;7l (p) = 0.000 436d2(145.277p)(d−1)/2, (11)

where dm = d for all of our simulations. As such, for a distance dx = dz = d surface code, applying both the 6
and 11-layer local NN decoder followed by a syndrome collapse with each sheet having height d ′

m = 6 results
in an effective code distance deff ≈ d− 2. The plots in figure 12 also show a threshold of pth ≈ 5× 10−3. Note
that in equations (10) and (11) we added labels to distinguish the polynomials arising from the 11 and
6-layer networks, and to indicate that the results are obtained from performing a syndrome collapse.

In figure 13, we give the ratio r(sc)a = Asyn(G
(N)
sc )/Asyn(G) where Asyn(G) corresponds to the average

number of ‘raw’ syndrome differences appearing in a given spacetime volume and Asyn(G
(N)
sc ) corresponds to

the average number syndrome differences after the application of the local NN decoder and syndrome
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Figure 14. Logical X error rates for surface code volumes ranging between (9,9,9) and (17,17,17) after the application of the
local NN decoder, followed by a vertical cleanup and MWPM to correct any remaining errors. In (a) the results are for the 6-layer
network whereas in (b) the results are for the 11-layer network.

collapse. As a side note, we remark that due to the possible creation of vertical pairs of highlighted vertices
after the NN has been applied, Asyn(G(N)) (i.e. the average number of syndrome differences after the
application of the NN decoder but before performing a syndrome collapse) may have more highlighted
vertices than what would be obtained if no local corrections were performed.

A small r(sc)a ratio indicates that a large number of highlighted vertices vanish after applying the local NN
decoder and performing a syndrome collapse, and results in a faster implementation of MWPM or UF. More

details on how the ratio r(sc)a affects the throughput performance of a decoder are discussed in section 5.3.
The reader may remark that there are discontinuities in the plots of figures 13(a) and (b), as well as the

logical error rate plots in figure 12. There are two reasons contributing to the discontinuities. The first is
because the models were trained at different physical error rates; at each error rate p, we choose the model
that performs best as outlined table 1. However, upon careful inspection the discontinuities are more
pronounced for surface code volumes of size (9,9,9) and (11,11,11). This is because the NN models were
trained on a (13,13,18) volume in order for the network to see data which is purely in the bulk (since the
local receptive field of our models is 9× 9× 9). We do not expect a model trained on a volume where the
receptive field sees data purely in the bulk to generalize well to smaller surface code volumes given the
network’s local receptive field will always see data containing boundaries in these scenarios. As such, to
achieve better performance on volumes with dx = dz < 13, one should train a network on a volume of that
size.

4.4.2. Numerical analysis when performing a vertical cleanup
The logical X error rates when performing a vertical cleanup after applying the 6 and 11-layer local NN
decoders are shown in figures 14(a) and (b). The models trained at p= 0.001, p= 0.0025 and p= 0.005 were
applied to the test set data following table 1. The discontinuities in the logical error rate curves occur for the
same reasons as outlined above for the syndrome collapse protocol, and are particularly apparent for the
6-layer network applied to test set data generated on a (9,9,9) volume as shown in figure 14(a). Comparing
the logical X error rate curves in figures 14(a) and (b) also shows the performance improvement that is
gained by using a larger network (however for d⩾ 13, only a small performance gain is observed from using
the 11-layer network). The logical error rate polynomial for the 11-layer network is

p(X;vc)L;11l (p) = 0.0008 198d2(107.803p)(d−1)/2, (12)

and for the 6-layer network is

p(X;vc)L;7l (p) = 0.001 022d2(105.752p)(d−1)/2. (13)

As with the syndrome collapse, applying the local NN decoders followed by a vertical cleanup results in an
effective distance deff ≈ d− 2. It can also be observed that at p= 0.005, the logical error rate decreases when
increasing the code distance d, indicating a threshold pth > 0.005 when applying the local NN decoder
followed by a vertical cleanup. Note that we did not generate data for p> 0.005 since we are primarily
concerned with the error rate regime where low logical error rates can be achieved while simultaneously
being able to implement our decoders on the fast time scales required by quantum algorithms.
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Figure 15. After applying corrections from the local NN decoder, we plot the ratio r
(vc)
a (see the main text) between the average

number of highlighted vertices in the matching graph G
(N)
vc where a vertical cleanup has been performed to the average number of

highlighted vertices in the original matching graph G prior to the application of the local NN decoder followed by a vertical
cleanup. In (a), the results are shown for the 6-layer network whereas in (b) the results are shown for the 11-layer network.

In figures 15(a) and (b) we show the ratio’s r(vc)a = Asyn(G
(N)
vc )/Asyn(G) which is identical to r(sc)a , but

where a vertical cleanup is performed instead of a syndrome collapse. For p= 0.001 and the distance d= 17
surface code, we see a reduction in the average number of highlighted vertices by nearly two orders of

magnitude. Further, comparing with the ratio’s r(sc)a obtained in figure 13, we see that performing a vertical
cleanup results in fewer highlighted vertices compared to performing a syndrome collapse by sheets. Such a
result is primarily due to the fact that vertical pairs of highlighted vertices between sheets do not vanish after
performing a syndrome collapse. Lastly we observe an interesting phenomena for the 11-layer networks
trained at p= 0.001 and p= 0.0025 when applied to test set data generate near p= 0.001. Although the
11-layer trained at p= 0.0025 achieves a lower total logical failure rate (see table 1), the network trained at

p= 0.001 results in smaller ratio r(vc)a . This can be seen for instance by comparing the results in figures 15(a)

and (b), where although the 6-layer network is outperformed by the 11-layer network, a smaller r(vc)a is
achieved at p= 0.001 since the 6-layer network trained at p= 0.001 was applied to the test set data, compared
to the 11-layer network which was trained at p= 0.0025.

Lastly, we note that the numerical analysis performed in this section was constrained to physical error
rates in the range 10−3 ⩽ p⩽ 10−5. Such a range was motivated based on current hardware efforts, where
achieving two-qubit gate and measurement error rates below p= 10−3 appears to be quite challenging. As
such, our goal was to demonstrate a large syndrome density reduction for circuit-level noise models with
error rate regimes which have the potential of being achieved in near term hardware.

5. Hardware implementation of our NN’s

Let us now consider possible suitable embodiment’s of NN decoders on classical hardware. One of the
appealing features of NN evaluation is that it involves very little conditional logic. In theory, this greatly helps
in lowering NN evaluation strategies to specialized hardware, where one can discard the bulk of a
programmable processor as irrelevant and one can make maximal use of pipelined data pathways. In
practice, such lowering comes with significant costs, among them slow design iteration, custom
manufacturing, bounded size, and a great many concerns around integration with existing electronics. In this
section we consider some candidate technologies which occupy compromise positions among these costs.

5.1. FPGA implementation performance
One option for specialized hardware is a FPGA. A typical FPGA consists of a fixed set of components,
including flip-flops, look-up tables (LUTs), block RAM, configurable logic blocks, and digital signal
processing (DSP) slices, all of whose inputs can be selectively routed into one another to perform elaborate
computations ranging from fixed high-performance arithmetic circuits to entire programmable processors.
FPGAs have been used for NN evaluation in a variety of real-time applications; one use case particularly
close to ours is the recognition of nontrivial events at the Large Hadron Collider. That working group has
produced an associated software package hls4ml [66] which produces a high-level synthesis description of an
evaluation scheme for a given initialized NN, and one can then compile that description into a
high-throughput and low-latency FPGA embodiment. The tool hls4ml itself has several tunable parameters
which trade between resource occupation on the target FPGA and performance in throughput and latency,
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Figure 16. FPGA resource costs for an hls4ml embodiment of a NN composed of 2D convolutional layers, each with 3 × 3 kernels
and 60 output channels, taking an initial 32 × 32 trichannel image, for a total of 360 180 trainable parameters and a per-layer
maximum of 32 580 trainable parameters. This model is chosen so as to limit ourselves to the functionality provided in hls4ml,
while maintaining structural similarity to the models of direct interest given in section 4.1. Relative percentages reported are taken
against the resources available on a Virtex Ultrascale+ FPGA (XCU250-FIGD2104-2 L-E). Note that our strong quantization
settings often caused hls4ml to trade DSPs for LUTs to use as multipliers.

e.g.: re-use of DSP slices to perform serial multiply-and-add operations rather than parallel operations;
‘quantization’ of intermediate results to a specified bit width; and so on.

At the time of this writing, hls4ml does not support 3D convolutional layers. Rather than surmount this
ourselves, we explored the realization through hls4ml of 1D and 2D convolutional networks of a similar
overall structure and parameter count to the models considered in section 4.1 under the assumption that the
generalization to 3D will not wildly change the inferred requirements8. We report one such experiment in
figure 16, which includes both the details of the analogous model and the resulting FPGA resource usage;
other networks and other hls4ml settings are broadly similar.

One way to improve model throughput is by inter-layer pipelining, i.e. deploying its individual layers to
different hardware components and connecting those components along communication channels which
mimic the structure of the original network. Whereas the throughput of a conventional system is reciprocal
to the total time between when input arrives and when output is produced (i.e. the computation latency), the
throughput of a pipelined system is reciprocal only to the computation latency of its slowest constituent
component. Accordingly, we also report the FPGA resource usage for the largest layer in the network, so as to
calculate pipelined throughput.

Out of the synthesis details, we highlight the re-use parameter R: the set of available such parameter
values is discrete and increasingly sparse for large R; latency scales linearly with choice of large values of R
and synthesis will not converge for small values of R; and the size of our model necessitated choosing the
rather large re-use parameter R= 540 to achieve synthesis. In fact, even just synthesizing one layer required
the same setting of R= 540, which results in rather meager throughput savings achieved by pipelining
FPGAs, one per layer. Unfortunately, we conclude these models are nontrivial to realize within the
constraints of contemporary FPGA hardware.

A promising avenue to close this gap may be networks that reduce computational cost by encoding
parameters in at most a few bits, while incurring some small loss in accuracy. For instance, authors in [68]
used an optimized Binary Convolution NN on a Xilinx KCU1500 FPGA with order 100 µs inference latencies
on networks with millions of parameters (e.g. AlexNeT, VGGNet, and ResNet).

5.2. Application-specific integrated circuit (ASIC) performance and Groq
The programmability of FPGAs makes them popular for a wide variety of tasks, and hence they appear as
components on a wide variety of commodity hardware. However, flexibility is double-edged: FPGAs’ general
utility means they are likely to be under-optimized for any specific task. ASICs form an alternative class of
devices which are further tailored to a specific application domain, typically at the cost of general
programmability. Groq [69] is an example of a programmable ASIC which is also a strong candidate target: it
is tailored toward low-latency, high-throughput evaluation of NN’s, but without prescribing at
manufacturing time a specific NN to be evaluated.

We applied Groq’s public software tooling to synthesize binaries suitable for execution on their devices.
In figure 17, we report the synthesis statistics for the 11-layer network of section 4.1 and for the single largest
layer of the network, both as embodied on a single Groq chip. Otherwise, we left all synthesis settings at their
defaults, without exploring optimizations. Even without tuning, the reported throughput when performing

8 As evidence, we verified that 1D and 2D convolutional networks of similar shape and size occupy similar FPGA resources under hls4ml.
See also the argument in section 2.2 of [67].
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Figure 17. Resource costs for single Groq chip embodiments of the 11-layer NN model given in section 4.1.

per-layer pipelining is 10× better than the tuned FPGA model and within 6× of the target
value of

round

1.4 µs
× window

17 rounds
≈ 42 kHz.

We believe that with modest tuning, perhaps entirely at the software level, we could close this gap, amounting
to one path to hardware feasibility. Such tunable features include pruning near-zero weights, quantizing the
intermediate arithmetic to some lossier format, intra-layer distributed evaluation (i.e. evaluating the outputs
of a given convolutional layer in parallel over several chips), instruction timing patterns, and so on.

5.3. Effect on global decoders
In figures 13 and 15, we reported a multiplicative relationship between the number of ‘raw’ syndromes

Asyn(G) appearing in a given spacetime volume to the number of syndromes Asyn(G
(N)
sc ) remaining after the

application of the local NN decoder and syndrome collapse Asyn(G
(N)
sc ) = r(sc)a ·Asyn(G) or the application of

the local NN decoder followed by a vertical cleanup Asyn(G
(N)
vc ) = r(vc)a ·Asyn(G), where r

(sc)
a , r(vc)a < 1. In what

follows, the reader is to interpret ra to mean either r(sc)a or r(vc)a , according to whether they are applying
syndrome collapse or vertical clean-up respectively.

This value ra has significant implications for the hardware performance requirements of global decoders,
which arise from the same need described in section 3 to meet overall throughput. For example, the UF
decoder is a serial algorithm whose runtime is nearly linear in its inbound syndrome count (see section 2),
from which it follows that preceding a UF decoder by a NN preprocessing relaxes its performance
requirements by the same factor ra needed meet the same throughput deadline. One can make a similar
argument for more elaborate distributed decoders, such as the Blossom variant proposed by Fowler [53]: if
the rate at which a given worker encounters highlighted syndromes is reduced by a factor of ra, then the
amount of time it can spend processing a given syndrome is scaled up by a factor of 1/ra, so that minimum
performance requirements in turn are scaled up by 1/ra.

In fact, for the syndrome collapse protocol, these improvements are quite pessimistic. A decoder could

take advantage of the simpler edge structure of G(N)
sc relative to G given that the syndrome collapse shrinks

the size of the graph. In particular, the number of vertices and edges in G is reduced by a factor of at least d ′
m,

with d ′
m being the size of the sheets in a syndrome collapse. For instance, the complete implementation of a

serial MWPM decoder can be decomposed into two steps. The first is the construction of the syndrome
graph using Dijkstra’s algorithm which finds the shortest path between a source highlighted vertex and all
other highlighted vertices. The second is the implementation of the serial Blossom algorithm on such graphs.
Following [70], the syndrome graph using Dijkstra’s algorithm has time complexityO(h(N log(N)+M))

where h is the number of highlighted vertices in the matching graph (in our case G(N)
sc for the syndrome

collapse protocol) with N vertices andM edges. The application of the local NN decoder followed by a
syndrome collapse with sheets of size d ′

m reduces h by a factor of ra and N by a factor of d ′
m.M is reduced by a

factor greater than d ′
m because not only are there edges incident to vertices for a given syndrome

measurement rounds, but there are also vertical and space-time correlated edges incident to vertices in
consecutive syndrome measurement rounds. A serial Blossom algorithm when applied to a matching graph
with h highlighted vertices has complexityO(h3 logh). As such, the runtime of the serial blossom algorithm
is reduced by a factor ofO(1/(r3a)).

These improvements in speed come algorithmically cheap: the procedures of syndrome collapse and
vertical cleanup are both trivially spatially parallelizable, adding O(d ′

m) operations of preprocessing before
applying the global decoder.
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6. Conclusion

In this work we developed local NN decoders using fully three-dimensional convolutions, and which can be
applied to arbitrary sized (dx,dz,dm) surface code volumes. We discussed more efficient ways of representing
the training data for our networks adapted to circuit-level noise, and discussed how vertical pairs of
highlighted vertices are created when applying local NN decoders. We showed how applying our local NN
decoders paired with a syndrome collapse or vertical cleanup can significantly reduce the average number of
highlighted vertices seen by a global decoder, thus allowing for a much faster implementation of such
decoders. Performing a syndrome collapse also reduces the size of the matching graph used by the global NN
decoder, providing even further runtime improvements. For some code distances and physical error rates, the
syndrome densities were reduced by almost two orders of magnitude, and we expect even larger reductions
when applying our methods to larger code distances than what was considered in this work. Further, our
numerical results showed competitive logical error rates and a threshold of pth ≈ 5 × 10−3 for the syndrome
collapse scheme and pth > 5 × 10−3 for the vertical cleanup scheme. A trade-off between throughput and
performance may be required in order to run algorithms with reasonable hardware overheads while still
having fast enough decoders to avoid exponential backlogs during the implementation of algorithms.
Although a more direct implementation of our local NN decoders on FPGA’s appears challenging, encoding
the NN parameters using fewer bits may satisfy the throughput requirements discussed in section 3. Using
ASICs may also allow the implementation of our NN’s on time scales sufficient for running algorithms.

There are several avenues of future work. Firstly, adapting our NN decoding protocol to be compatible
with sliding windows may lead to improved throughput times, as shown in appendix D. A broader NN
architecture search may lead to networks with fewer parameters that still achieve low logical failure rates with
modest hardware resource overhead requirements. For instance, graph-based convolutional NN’s [71] appear
to be promising in this regard. We can also design a network architecture which flips edges from the matching
graph as part of its correction, rather than applying a data qubit correction followed by an error syndrome
updated based on the correction. Such an architecture could make the syndrome collapse or vertical cleanup
step unnecessary since for instance vertices incident to diagonal edges arising from space-time correlated
errors would be flipped. By not performing a syndrome collapse or vertical cleanup, we anticipate that such
networks could achieve lower logical error rates. Another important avenue would be to show how local NN
architectures can be adapted to lattice surgery settings, where surface code patches change shape through
time, and where new fault patterns which are unique to lattice surgery settings can occur [61].

Given the size of the NN’s, we only considered performing one pass of the NN prior to implementing
MWPM. However, performing additional passes may lead to sparser syndromes, which could be a
worthwhile trade-off depending on how quickly the NN’s can be implemented in classical hardware.

The training data also has a large asymmetry between the number of ones and zeros for the error
syndromes and data qubit errors, with zeros being much more prevalent than ones. It may be possible to
exploit such asymmetries by asymmetrically weighting the two cases.

Lastly, other classical hardware approaches for implementing local NN decoders, such as ASICs, should
be considered.
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Appendix A. Data representation for training the NN’s

In this appendix we describe how we represent the data used to train our convolutional NN’s. In what follows,
we refer to trainX as the input data to the NN used during training and trainY as the output targets.
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Figure 18. (a) Mapping of the Z-type stabilizer measurement outcomes for a d= 5 surface code lattice to the matrixMsynX . For

each stabilizer, which we label from 1 to (d2 − 1)/2 going from left to right, top to bottom, the corresponding bit b
(X)
k ∈ {0,1}

where 1 ⩽ k ⩽ (d2 − 1)/2 (which is one if the stabilizer is measured non-trivially and zero otherwise) is mapped to a data qubit
located at the top left corner of the square if the stabilizer is weight-4, or if it is a weight-2 stabilizer along the right boundary of
the lattice. For weight-2 stabilizers along the left boundary of the lattice, the bit is mapped to the top right data qubit. The final
binary matrixMsynX has d rows and d columns, with ones at the circled regions in red if the corresponding stabilizer is measured
non-trivially, otherwise the entry is zero. We also label each stabilizer numerically, starting at 1 and increasing by 1 left to right,
top to bottom. The corresponding entries inMsynX are given the same label. (b) Similar to (a), but for Z error syndromes. The

X-type red stabilizers map b
(Z)
k to the top-left data qubit, except for weight-2 stabilizers on the top boundary of the lattice, which

map b
(Z)
k to the bottom-left data qubit.

As mentioned in section 4.1, trainX is a tensor of shape (Ntrain,dx,dz,dm,5), where N train is the number
of training examples, dx and dz correspond to the size of the vertical and horizontal boundaries of the lattice,
and dm corresponds to the number of syndrome measurement rounds, with the last round being a round of
perfect EC where the data qubits are measured in some basis. We also set dx = dz = d.

The first two input channels to trainX correspond to the syndrome difference history sdiffX (dm) and
sdiffZ (dm) defined in definition 2.2 where we only track changes in syndromes between consecutive rounds.
Further, in order to make it easier for the NN to associate syndrome measurement outcomes with the
corresponding data qubit errors resulting in that measured syndrome, syndrome measurement outcomes for
the jth round are converted to two-dimensional d × d binary matrices labelledMsynX( j) andMsynZ( j)
following the rules shown in figure 18. Note however that the rules described in figure 18 show how to
construct theMsynX( j) andMsynZ( j)matrices based on the measurement outcomes of each stabilizer of the
surface code in round j. To get the final representation for sdiffX (dm) and sdiffZ (dm), we compute the
matrices M̃synX( j) =MsynX( j)⊕MsynX( j− 1) and M̃synZ( j) =MsynZ( j)⊕MsynZ( j− 1) for j ⩾ 2, with

M̃synX(1) =MsynX(1) and M̃synZ(1) =MsynZ(1).
As discussed in section 4.1, the next two channels to trainX correspond to the matrices enc(X) and

enc(Z) which are identical in each syndrome measurement round unless the surface code lattice changes
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Figure 19. (a) Boundary X qubits, highlighted in green, are located along the horizontal top and bottom boundaries of the lattice.
(b) Boundary Z qubits, highlighted in purple, are located along the vertical left and right boundaries of the lattice.

shape, as would be the case when performing a parity measurement via lattice surgery. The matrices enc(X)
and enc(Z) are encoded using the same rules as the encoding of the matricesMsynX andMsynZ , except that a 1
is always inserted regardless of whether a stabilizer is measured non-trivially or not. For instance, for a d= 5
surface code, the matrices enc(X) and enc(Z) (of shape 5× 5) would have 1’s at all red circular regions in
figure 18 and 0 for all other positions. So, assuming a surface code patch which does not change shape
through time, for this d= 5 example we have

enc(X)j =


1 1 0 1 0
1 0 1 0 1
1 1 0 1 0
1 0 1 0 1
0 0 0 0 0

 , (A1)

enc(Z)j =


1 1 1 1 0
0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 0

 , (A2)

where j ∈ {1, · · · ,dm}.
When the NN is in the bulk of the lattice, it can be seen from figure 18 that syndromes associated with a

particular data qubit changes shape depending on which data qubit is observed. For instance, on the second
row of the lattice in figure 18(a), compare the vertices in red surrounding the qubit in the second column
versus those surrounding the qubit in the third column. Since the matrices enc(X) and enc(Z) encode this
information, providing such inputs to trainX helps the network distinguish between the different types of
data qubits when the network’s receptive field only sees qubits in the bulk. Similarly, enc(X) and enc(Z)
allow the network to identify data qubits along the boundaries of the lattice. At the boundary, the pattern of
1’s and 0’s in enc(X) and enc(Z) is different than in the bulk. By using the encoding described by enc(X)
and enc(Z), we observed significant performance improvements compared to an encoding which only
specifies the location of the boundary X and Z data qubits, which are shown in figures 19(a) and (b) for the
d= 5 surface code. By boundary X (Z) qubits, we refer to data qubits that result in a single non-trivial
stabilizer measurement outcome when afflicted by an X (Z) error.

Lastly, since the last round of EC is a round of perfect EC where the data qubits are measured in some
basis, it is also important to specify the temporal boundaries of the lattice. Specifying temporal boundaries
allows the network to generalize to arbitrary syndrome measurement rounds. As such, the last channel of
trainX contains the temporal boundaries, represented using dx × dz binary matrices for each syndrome
measurement round. We choose an encoding where the matrices are filled with ones for rounds 1 and dm,
and filled with zeros for all other rounds.
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Figure 20. Homological equivalence convention as shown on a d= 5 surface code lattice. (a) X error configurations which are
invariant under the transformations of the functions weightReductionX and fixEquivalenceX. (b) Z error configurations
which are invariant under the transformations of the functions weightReductionZ and fixEquivalenceZ.

Appendix B. Homological equivalence convention for representing data qubit errors

Let E1 and E2 be two data qubit errors. We say that E1 and E2 are homologically equivalent for a code C if
s(E1) = s(E2), and E1E2 ∈ S where S is the stabilizer group of C. In other words, E1 and E2 are homologically
equivalent for a code C if they have the same error syndrome, and are identical up to products of stabilizers.

In [45], it was shown that training a NN where the data qubit errors were represented using a fixed choice
of homological equivalence resulted in better decoding performance. In this appendix, we describe our
choice of homological equivalence for representing the data qubit errors in trainY which resulted in
improved decoding performance.

Recall that trainY is a tensor of shape (Ntrain,dx,dz,dm,2) where N train is the number of training

examples. For a given training example, the first channel consists of dm binary d× dmatricesM
(X(α,β))
e ( j),

with 1⩽ j ⩽ dm being the label for a particular syndrome measurement round, and α,β ∈ {1,2, · · · ,d}
labelling the data qubit coordinates in the surface code lattice. Since trainY tracks changes in data qubit

errors between consecutive syndrome measurement rounds,M
(X(α,β))
e ( j) = 1 if the data qubit at coordinate

(α,β) has a change in an X or Y error between rounds j− 1 and j, and is zero otherwise. Similarly, the second

channel of trainY consists of dm binary d× dmatricesM
(Z(α,β))
e ( j) which tracks changes of Z or Y data

qubit errors between consecutive syndrome measurement rounds.

Now, consider a weight-4 X-type stabilizer g(X)k represented by a red plaquette in figure 20(with

1⩽ k⩽ (d2 − 1)/2), and let (α,β) be the data qubit coordinate at the top left corner of g(X)k . Any weight-3 X

error, with support on g(X)k can be reduced to a weight-one error by multiplying the error by g(X)k . Similarly, a

weight-4 X error with support on g(X)k is equal to g(X)k and can thus be removed entirely. We define the
function weightReductionX which applies the weight-reduction transformations described above to each
stabilizer. Similarly, weightReductionX also removes weight-2 X errors at weight-2 X-type stabilizers along
the top and bottom boundaries of the lattice.

Let Ex be a weight-2 X error with support on a weight-4 stabilizer g(X)k , where the top left qubit has
coordinates (α,β). We define the function fixEquivalenceX as follows:

1. Suppose Ex has support at the coordinates (α+ 1,β) and (α+ 1,β+ 1). Then fixEquivalenceX maps Ex
to a weight-2 error at coordinates (α,β) and (α,β+ 1). Thus horizontal X errors at the bottom of g(X)k are

mapped to horizontal X errors at the top of g(X)k .
2. Suppose Ex has support at the coordinates (α,β) and (α+ 1,β). Then fixEquivalenceX maps Ex to a

weight-2 error at coordinates (α,β+ 1) and (α+ 1,β+ 1). Thus vertical X errors at the left of g(X)k are

mapped to vertical X errors at the right of g(X)k .
3. Suppose Ex has support at the coordinates (α,β) and (α+ 1,β+ 1). Then fixEquivalenceX maps Ex to a

weight-2 error at coordinates (α,β+ 1) and (α+ 1,β). Thus diagonal X errors from the top left to bottom

right of g(X)k are mapped to diagonal X errors at the top right to bottom left of g(X)k .
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Next, let g(X)k be a weight-2 X-type stabilizer along the top of the surface code lattice, with the left-most qubit
in its support having coordinates (α,β). If Ex is a weight-1 error at coordinates (α,β+ 1),

fixEquivalenceX maps Ex to a weight-1 error at coordinates (α,β). On the other hand, if g(X)k is a weight-2
X-type stabilizer along the bottom of the surface code lattice with the left-most qubit in its support having
coordinates (α,β), and Ex is a weight-1 error at coordinates (α,β), fixEquivalenceX maps Ex to a
weight-1 error at coordinates (α,β+ 1).

Next let simplifyX be a function which applies weightReductionX and fixEquivalenceX to all
X-type stabilizers of the surface code lattice in each syndrome measurement round (with
weightReductionX being applied first), with Ex errors in round 1⩽ j ⩽ dm described by the binary matrix

M
(X(α,β))
e ( j) for all (α,β) data-qubit coordinates. Thus simplifyX maps matricesM

(X(α,β))
e ( j) to

homologically equivalent matrices M̃
(X(α,β))
e ( j) using the transformations described above. Our homological

equivalence convention for X data qubit errors is implemented by repeatedly calling the function simplifyX
until all matricesM

(X(α,β))
e ( j) satisfy the condition simplifyX(M(X(α,β))

e ( j)) =M
(X(α,β))
e ( j) for all syndrome

measurement rounds j and data qubit coordinates (α,β).
For Z-type data qubit errors, we similarly have a weightReductionZ function which reduces the

weights of Z errors at each Z-type stabilizer. The function fixEquivalenceZ is chosen to be rotationally
symmetric to the function fixEquivalenceX under a 90◦ rotation of the surface code lattice. We then
define a simplifyZ function in an identical way as simplifyX, but which calls the functions
weightReductionZ and fixEquivalenceZ. Errors which are invariant under the transformations
simplifyX and simplifyZ are shown in figure 20.

Appendix C. Comparing models trained at different error rates

In this appendix we discuss in more detail the effects of applying a network trained at different physical error
rates to the test set data.

In figure 21, we show the logical X error rate curves of the 6-layer network in figure 6 trained at p= 0.005
and p= 0.001 on training data of size (13,13,18) when applied to test set data generated with a volume of
size (13,13,13). The application of the local NN decoder is followed by a syndrome collapse with sheets of
size d ′

m = 6 and MWPM to correct any remaining errors. As can be seen in the plot, for p⩾ 0.0025, the
network trained at p= 0.005 outperforms the network trained at p= 0.001. However, when we apply the
network trained at p= 0.005 to test set data generated for p⩽ 0.002, not only does the model under-perform
the one trained at p= 0.001, but the logical failure rate increases with decreasing p. Such a result suggests that
the model trained at p= 0.005 is over-fitting to the data generated at higher physical error rates which has
denser syndromes. Consequently, the model does not generalize well to data containing sparser syndromes
observed at lower physical error rates.

The above results show the importance of training models at different physical error rates when applying
such models to the test set data.

Appendix D. Effects on buffer times using sliding windows

In this appendix we show how the buffer times, as described in section 3, can be improved by decoding using
sliding windows instead of decoding over all syndrome measurement rounds of the full syndrome
measurement volume. In particular, we focus on showing how the expression for Tb

1 in equation (1) is
modified in the when using sliding windows.

Suppose we perform r syndrome measurement rounds. We divide all syndrome measurement rounds
into nw windows {w1,w2, · · · ,wnw} with window wj containing rj syndrome measurement rounds. In our
analysis we consider two cases. The ‘slow’ case is when decoding rj rounds takes longer than performing rj

syndrome measurement rounds as shown in figure 22(a). In this case we have rjTs < T
(rj)
DEC. The ‘fast’ case is

the opposite where decoding rj rounds takes a shorter amount of time than performing rj syndrome

measurement rounds, so that rjTs > T
(rj)
DEC. An illustration of the fast case is shown in figure 22(b). In what

follows, we define T(wj) as the time it takes to perform all rj syndrome measurement rounds and decode them
for the window wj. Thus we have that

Tb1 =

nw∑
j=1

T(wj). (D1)

We also assume that Tl < rjTs for all 1⩽ j ⩽ nw.
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Figure 21. Comparison of the logical X error rate of the 6-layer model trained at p= 0.001 (orange squares) and p= 0.005 (blue
circles) applied to all physical error rates of the test data generated with a volume of size (13,13,13). After the application of the
local NN decoder, we perform a syndrome collapse with sheets of size d ′

m = 6 followed by MWPM to correct any remaining errors.

Figure 22. Dividing the number of syndrome measurement rounds into windows, with the jth window containing rj rounds. In
(a), we consider the ‘slow’ case where decoding rj rounds takes longer than performing rj syndrome measurement rounds so that

rjTs < T
(rj)
DEC. In (b), we consider the ‘fast’ case where rjTs > T

(rj)
DEC. Here the Q axis indicates operations performed on the

quantum computer, and the C axis are operations performed on the classical computer, with Tl being the latency time.

For both the fast and slow cases, we have that T(w1) = Tl +T(r1)
DEC since the classical computer must wait

for a time Tl from the last syndrome measurement round in the first window before it can begin decoding the

r1 syndrome measurement rounds, which takes time T(r1)
DEC. For the second window, if r2Ts < T(r1)

DEC, then the
signal from the last syndrome measurement round in the second window will arrive to the classical computer

while it is still decoding syndromes from the first window, so that T(w2) = T(r2)
DEC. On the other hand, if

r2Ts > T(r1)
DEC, then decoding errors in the first window will complete before the syndrome information from

the second window is available to the classical computer. As such, the total time to process syndrome in the

second window will be T(w2) = g1 +T(r2)
DEC where g1 is the time it takes for the syndrome information from the

second window to be made available to the classical computer after decoding syndromes from the first

window. From figure 22(b) we see that g1 = r2Ts −T(r1)
DEC. Summarizing, we have that

T(w2) =

{
T(r2)
DEC r2Ts < T(r1)

DEC

T(r2)
DEC + r2Ts −T(r1)

DEC r2Ts > T(r1)
DEC

. (D2)

Implementing the above steps recursively, we find that

Tb1 =

{
Tl +

∑nw
i=1T

(ri)
DEC riTs < T(ri−1)

DEC

Tl +
∑nw

i=2 riTs riTs > T(ri−1)
DEC .

(D3)

We see that if riTs < T(ri−1)
DEC for all i ∈ {1, · · · ,nw.}, then the analysis leading to equation (D3) shows that the

buffer times will satisfy equation (4) in the case where T
(rj)
DEC = crj for all j. However for decoding times

expressed as a polynomial of degree greater than or equal to 2, summing the terms in equation (D3) over
smaller window sizes can lead to much smaller buffer times.

Note that in figure 22(b), we assumed that Tl < rjTs. In the large latency regime, where Tl > rjTs > T
(rj−1)
DEC

for all j, a quick calculation shows that Tb1 = Tl +
∑nw

i=2 riTs and so the result is unchanged.
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Figure 23. Plot of the surface code distance d as a function of dm using the logical error rate polynomial p
(X;vc)
L;11l (p) given in

equation (12). We set p= 10−3 and plot for different values of δ with the requirement that p
(X;vc)
L;11l (p)< δ.

Appendix E. Dependence of the surface code distance on dm

In section 3 we showed how the buffer times Tbj can increase with the number of consecutive non-Clifford
gates in a quantum algorithm. One may be concerned that a large increase in buffer times could result in a
much larger surface code distance in order to maintain a target logical failure rate δ set by a particular
quantum algorithm. In this appendix we show that the code distance increase logarithmically with increasing
buffer times.

Recall that the logical X error rate polynomial for a surface of distance (dx,dz) is given by

p(X)L = udmdz(bp)
(cdx+k), (E1)

for some constants u, b, c and k and where we assume that dm syndrome measurement rounds were
performed. A quantum algorithm will have some target logical error rate δ with the requirement that

p(X)L < δ. Setting dx = dz = d and solving for d results in

d=
ProductLog((c(bp)−kδ logbp)/(udm))

c log(bp)
, (E2)

where ProductLog(x) gives the principle solution for w in the equation x= wew.
In figure 23 we show a plot of d as a function of dm for various values of δ and fix p to be p= 10−3. We

used the logical X error rate polynomial p(X;vc)L;11l (p) given in equation (12) obtained by applying the 11-layer
local NN decoder followed by a vertical cleanup and MWPM. As can be seen in figure 23, a large increase in
dm results in a very modest increase in d, showing that increasing buffer times will not have a large effect on
the surface code distance.

Appendix F. Effects of performing a vertical cleanup during a parity measurement
implemented via lattice surgery

In this appendix we review the effects of performing a vertical cleanup when implementing a multi-qubit
Pauli measurement via lattice surgery. For full details on the derivation of the matching graph, and the effects
of timelike failures, the reader is referred to [16].

We consider the simple case of performing an X⊗Xmulti-qubit Pauli measurement using two surface
code patches. When performing the X⊗Xmeasurement, the two surface code patches are merged into one
patch by preparing qubits in the routing region in the |0⟩ state, and performing a gauge fixing step where the
X-type operators are measured [72]. A two-dimensional slice of the matching graph used to correct Z-type
errors during the lattice surgery protocol is shown in figure 24. In particular, in the first round of the merge,
the X-type measurements performed in routing space region are random, but the product of all such
measurements encode the parity of the logical X⊗X operator being measured. However, measurement
errors can result in the wrong parity being measured. More generally, any fault mechanism resulting in an
error which anticommutes with the X⊗X operator being measured will cause the wrong parity to be
measured, and is referred to as a timelike failure. As such, repeated rounds of syndrome measurements are
performed on the merged surface code patches, with the timelike distance given by the number of syndrome
measurement rounds.
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Figure 24. Illustration of a slice of a matching graph used to correct errors during an X⊗Xmulti-qubit Pauli measurement
performed via lattice surgery. Highlighted vertices are shown in red, and we include temporal edges (shown in pink and purple)
incident to vertices in the routing region. (a) Series of Z errors and measurement errors occurring in the routing space region.
The measurement error flips the parity of the multi-qubit Pauli measurement. The corrections are shown by the edges highlighted
by thick green lines. The Z errors are removed by performing MWPM, and the parity of X⊗X is flipped to the correct value.
(b) Same as (a) but where we perform a vertical cleanup. In this case, MWPM can perform a string of Z corrections to a Z
boundary, resulting in a logical Z error on one of the surface code patches. Another option is to match to the top temporal
boundary, which results in a timelike failure. In both (a) and (b), a local NN decoder is not applied, in order to illustrate the
effects of performing a vertical cleanup during a lattice surgery protocol.

When performing a vertical cleanup however, timelike failures which were correctable if no vertical
cleanup were performed may no longer be correctable, with an example given in figure 24. In particular,
strings of measurement errors starting from the first round of the merge patch would be unaffected by the
implementation of a vertical cleanup, since a single vertex at the end of the measurement error string would
be highlighted. The problematic cases arise when such error strings are combined with data qubit errors
resulting in vertical pairs (as shown in figure 24(a)).

We now show that there is preference in the ordering in which a vertical cleanup is performed which
depends on the syndrome density either below or above some mid-point round. We also show the minimum
temporal distance required to deal with a set of malignant failures, and discuss modifications to the vertical
cleanup protocol to mitigate such effects. Note that in what follows, we do not remove vertical pairs between
a highlighted vertex and a highlighted temporal boundary vertex.

Suppose we perform dm syndrome measurement rounds when merging surface code patches to perform
a multi-qubit Pauli measurement via lattice surgery. Consider the following sequence of measurement errors
which occur when measuring some stabilizer gi. In the first syndrome measurement round, a measurement
error occurs resulting in the wrong parity of the multi-qubit Pauli measurement. Afterwords, a measurement
error occurs every two syndrome measurement rounds, until there are a total of (dm − 3)/2 measurement
errors. An example of such a sequence of faults is given in the third column of figure 25(a). Performing a
vertical cleanup starting from the first syndrome measurement round would result in a single highlighted
vertex separated to the top temporal boundary by 4 vertical edges. Clearly for large dm and assuming all
vertical edges have unit weight, MWPM would choose a path matching to the top temporal boundary
resulting in timelike failure. However, if we performed a vertical cleanup starting from the last syndrome
measurement round and moving downwards (i.e. towards the first syndrome measurement round), then the
remaining highlighted vertex would be separated to the bottom temporal boundary by a single edge of unit
weight. In this case, MWPM would correctly identify the parity measurement error. More generally, suppose
dm syndrome measurement rounds are performed (with dm being odd) on a merged surface code patch part
of parity measurement implemented via lattice surgery. We define the mid-point round to be the round
(dm + 1)/2. As can be seen in figure 25(a), for a given vertex of the syndrome measurement graph
corresponding to particular stabilizer, if such a vertex is highlighted a larger number of times below the
mid-point than above, a vertical cleanup on that vertex should be performed from top to bottom
(i.e. starting from the round where the data qubits in the routing space are measured, and moving towards
the round where they are initialized). On the other hand, if the density above the mid-point is greater than
below, a vertical cleanup is performed in the opposite direction. Various configurations of measurement
errors are illustrated in figure 25(a) showing that choosing the ordering for the vertical cleanup scheme as
describe above avoids logical timelike failures.

Despite the above, there is still a sequence of measurement errors where regardless of the direction in
which a vertical cleanup is performed, a timelike failure will occur. Consider a sequence of measurement
errors occurring in two consecutive rounds (where the first round is after the surface code patch has been
merged), followed bym− 4 measurement errors every two rounds, and terminating with two consecutive
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Figure 25. (a) Figure showing various configurations of measurement errors (labelledm) of 11 syndrome measurement rounds
on the same stabilizer during a multi-qubit parity measurement implemented via lattice surgery. Each column of vertices
corresponds to a different configuration of measurement errors for a given ancilla qubit. Time flows from the bottom of the figure
to the top, and we illustrate temporal edges connecting to the boundary vertices following the same convention as in figure 24.
Vertices in the first syndrome measurement round are shown in white since the measurement outcomes are random, thus such
vertices are never highlighted. Pairs of highlighted vertices circled in green are removed when performing a vertical cleanup, and
edges covered by thick green lines indicate the path chosen by a MWPM decoder after performing a vertical cleanup. For dm
syndrome measurement rounds (with dm odd), the round labelled mid-point is the (dm + 1)/2 round. The goal of the figure is to
illustrate that if the syndrome density above the mid-point is greater than the one below the mid-point, the vertical cleanup is
done from bottom to top. On the other hand, if the syndrome density below the mid-point is greater than above, the vertical
cleanup is performed from top to bottom. If they are the same, then a direction for the vertical cleanup is chosen at random.
(b) Sequence of measurement errors for 13 syndrome measurement rounds where after performing a vertical cleanup, the
minimum-weight correction matches to the temporal boundary thus incorrectly flipping the parity.

measurement errors again, so that the total number of measurement errors ism. An example is shown in
figure 25(b). After performing a vertical cleanup, there will be two remaining highlighted vertices, associated
with the first and last rounds of the sequence of measurement errors. The number of vertical edges
connecting the two vertices which do not go through temporal boundary vertices is nv = 2m− 3, and the
number of vertical edges connecting the two vertices which go through the temporal boundary is
ncv = dm − 2m+ 2. As such, to ensure that MWPM does not map to a temporal boundary, thus incorrectly
flipping the parity of the multi-qubit Pauli measurement, we must choose a large enough value of dm such
that ncv > nv resulting in dm > 4m− 5. Such an increase in dm has the effect of roughly doubling the runtime
of a quantum algorithm. This increase in dm should be expected since performing a vertical cleanup is
equivalent to adding additional measurement errors to the system ‘by hand’, thus requiring a doubling in the
code distance to have the same protection compared to a scheme which does not perform a vertical cleanup.

Two variations of the vertical cleanup protocol during a lattice surgery merge may maintain the full
timelike distance and thus require fewer syndrome measurement rounds. The first variation would consist of
identifying vertical pairs prior to applying the local NN decoder, and only removing new vertical pairs which
are created after the local NN decoder is applied. In this case, vertical pairs due to measurement errors would
not be removed, although this comes at the cost of a higher syndrome density. Another approach would be to
re-weight vertical edges incident to highlighted vertices which were removed from a vertical cleanup
protocol, so that MWPM would give preferences to paths which go through such vertices. Lastly, using a
TELS protocol described in [16] would allow larger timelike failure rates and thus could be used to avoid
having to use a large value of dm when performing a vertical cleanup. We leave the numerical analysis of such
protocols, along with using TELS alongside a vertical cleanup strategy, to future work.
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