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a b s t r a c t

Using a previous classification result on symmetric additive 2-cocycles, we collect a
variety of facts about the Lubin–Tate cohomology of certain formal groups to produce
a presentation of the 2-primary component of the scheme of symmetric multiplicative
2-cocycles. This scheme classifies certain kinds of highly symmetric multiextensions,
generalizing those studied by Mumford or Breen. A low-order version of this computation
has previously found application in homotopy theory through the σ -orientation of Ando,
Hopkins, and Strickland, and the complete computation is reflective of certain structures
found in the homotopy type of connective K -theory.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In manifold geometry, there has been a history of marriages between certain structures on real vector bundles and
quantities in analytic geometry, indexed by cohomology theories. For ordinary cohomology, the structure one requires is an
orientation of the vector bundle in the classical sense; for real K -theory, one considers vector bundles with Spin structure,
and for elliptic cohomology, one considers String bundles. On the level of homotopy theory, a vector bundle V over M is
classified by a homotopy class M → BO, and fitting the bundle with these extra structures corresponds to providing lifts
M → BSO, M → BSpin, and M → BString respectively. The spaces BSO, BSpin, and BString appear as spaces in the real
connective K -theory Ω-spectrum kO, and by analogy one can tell a similar story for complex vector bundles by lifting a
classifying mapM → BU to spaces in the complex connective K -theory Ω-spectrum kU .

In order to produce characteristic classes for these bundles and to study ring spectra which are oriented against them,
the homology E∗kU2k and cohomology E∗kU2k become objects of interest. Ando et al. [2] have described the group schemes
Spec E∗kU2k in terms of certain schemes Ck(GE; Ĝm), a moduli of certain highly symmetric extensions of formal groups. For
each k they produce a map

Spec E∗kU2k → Ck(GE; Ĝm),

and they additionally demonstrate that this map is an isomorphism in the range 0 ≤ k ≤ 3. For k = 3, the scheme
C3(GE; Ĝm) classifies cubical structures, which connects back to the geometry of elliptic curves through theorems in
arithmetic geometry [3,11], and hence relays important information about elliptic cohomology.

Their proof relies on explicit calculation of the ring of functions on the affine scheme Ck(Ĝa; Ĝm), which at the time could
only be completed through this range of values of k up to 3. Themain theoremof this paper is to describeOCk(Ĝa; Ĝm)⊗Z(2)
for all k ∈ N. To do so requires some elementary number theory and combinatorics, and in the endwe arrive at the following.
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Theorem 1. Set the following notation.

1. Let φ(n, k) denote the greatest common factor of the multinomial coefficients
n
λ


where λ is a partition of n into k positive

integers.
2. Writing a natural number c as c = pad where p - d, set νpc = a, the number of times c is divisible by p.

3. Define Dn,k to be the coefficient of the generating function

∞

i=0(1− tx2
i
)−1 =


n,k Dn,kxntk. This counts the number of ways

n can be written as a sum of k many powers of 2.
4. Let σp(n) be the p-adic digital sum of the integer n, so that for example σ2(2) = σ2(102) = 1 and σ2(3) = σ2(112) = 2.

Then, let γp(n, k) be the integer defined by γp(n, k) = max{0,min{k− σp(n), νp(n)}}. The utility of this number is captured
by Fig. 3; it counts up until the preconditions of Theorem 7.1 are satisfied.

5. Let Γ [x] denote the divided power algebra on the generator x. This is defined by taking the module Z(2){x[0], x[1], . . .} with
algebra structure given by x[i] · x[j] =

i+j
i


x[i+j]. It comes with a power series expx(t) ∈ Γ [x]JtK given by


i x
[i]t i, satisfying

expx(s+ t) = expx(s) · expx(t).

Given this,

O(Spec Z(2) × Ck(Ĝa; Ĝm)) = Z(2)[zn | ν2φ(n, k) ≤ ν2n]
⊗Γ [bn,γ2(n,k) | ν2φ(n, k) > ν2n]

⊗Z(2)[bn,i | γ2(n, k) < i < Dn,k]/⟨2bn,i, b2n,i⟩.

The universal cocycle over this scheme is given by a product


i fi ·


j gj ·


ℓ hℓ, corresponding to the three tensor factors. In this
presentation, zi corepresents the leading nonconstant coefficient of fi, defined by the Artin–Hasse exponential in Theorem 7.1; see
also [2, Corollary 3.22]. The element b[1]n,γ2(n,k)

corepresents the leading nonconstant coefficient of the divided power exponential
expbn,γ2(n,k)

(ζ n
k) for a certain polynomial ζ n

k given in Definition 4.7. Finally, bn,i corepresents the leading coefficient of the series
hℓ = 1+ bn,i · h′ℓ, where h′ℓ can be taken to be a certain symmetric monomial.

1.1. Outline of the paper

The R-valued points u of Ck(Ĝa; Ĝm) can be viewed as a power series satisfying certain criteria. In the previous paper [6],
we produced a description of another scheme Ck(Ĝa; Ĝa), whose R-valued points describe the leading nonconstant parts of
such u. Thus, the main challenge of this paper is to investigate which of those polynomials can be viewed as ‘‘belonging to’’
some power series u, a question we approach by setting up an obstruction theory.

In Section 2 and Section 3, we recall various key definitions from algebraic geometry, including that of formal schemes,
Lubin–Tate cohomology of formal Lie groups, multiextensions, and higher order cubical structures. Then, in Section 4, we
compute the tangent spaces to formal Lie group cohomology T1H∗(F;G) and the symmetric cocycle scheme T1C∗(F;G) for
the formal Lie groups F = Ĝa and G = Ĝm; this first calculation is done in the style of Hopkins and the second is the content
of our previous paper. The cohomological calculation is then used as input to a ‘‘tangent spectral sequence’’

T1H∗(F;G)⇒ H∗(F;G),

described in Section 5, where we produce a family of nonvanishing differentials on certain key classes. In Section 6, we
recall some geometry related to Weil forms, which is certainly known to experts, but does not appear to be available in the
literature. The important result for us is the existence of a certain asymmetric (k − 1)-variate cocycle e, which we call the
half-Weil pairing, associated to any k-variate cocycle u. Together, e and u satisfy the two relations

δ1e = u, e =
p−1
i=1

u(ix1, x1, . . . , xn−1).

Section 7 is dedicated to proving the main theorem, which is a blend of everything that came before.

Proof (Sketch). Suppose we start with such a 2-cocycle u over an F2-algebra. We then construct a point [e+] in the tangent
space T1Hk(Ĝa; Ĝm), which belongs to the sources of our family of differentials. Hence, [e+] is obstructed from lifting
to e, which in turn is obstructed from satisfying u = δ1e, unless certain conditions are met so that the differentials
disappear. In the interesting case, this means that the leading coefficient must square to zero. With this in hand, we are
then able to read off which classes in T1Ck(Ĝa; Ĝm) lift unobstructed and which become obstructed, giving the description
of O(Spec F2 × Ck(Ĝa; Ĝm)). This immediately yields a description of O(Spec Z(2) × Ck(Ĝa; Ĝm)) as a consequence of the
previous calculation of Spec Z(2) × Ck(Ĝa; Ĝa). �

These techniques also produce partial data at odd primes, and we discuss this and several other phenomena in Section 8.
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2. Formal groups

Definition 2.1. Fix a commutative ring R with unit, and consider the category AdicAlgebras/R of augmented R-algebras,
complete and separated in the adic topology induced by powers of their augmentation ideal, with continuous, unity-
preserving algebra homomorphisms. The category of ‘‘formal schemes over Spec R’’ is defined as the full subcategory of
objects which are ind-representable in the following category of presheaves:

FormalSchemes/Spf R ⊆ Hom (AdicAlgebras/R,Sets).

The Yoneda embedding A → AdicAlgebrascts/R(A,−) is denoted by Spf A.

Remark 2.2. Throughout, we will endeavor to be careful to distinguish actual formal schemes from presheaves that fail to
satisfy ind-representability. Without ambiguity, we will refer to such objects simply as presheaves.

Lemma 2.3. This categories satisfies the properties below.

1. This category is cocomplete.

2. This category has an internal function object:

Maps (X, Y )(S) = {(u, f ) | u : Spf S → Spf R, f : u∗X → u∗Y }.

3. This satisfies the exponential relation

Maps (X ×Spf R Y , Z) ∼= Maps (X,Maps (Y , Z)).

Proof. A good reference for these facts — indeed, for this entire section — is Strickland [15, Section 2]. �

Definition 2.4. Formal affine k-space is defined to be Âk
= Spf RJx1, . . . , xkK. A formal variety V is a formal scheme

noncanonically isomorphic to Ân for some n. A coordinate on V is a selected such isomorphism Âk ∼=
−→ V . A formal Lie

group is a commutative group object in the category of formal varieties; additionally, all formal Lie groups considered here
will be 1-dimensional, i.e., isomorphic as formal schemes to Â1.

Definition 2.5. The Lubin–Tate cochains (see Lubin and Tate [9, Definition 2.2]) of a pair of formal Lie groups (F;G) is defined
as the ordinary affine scheme

Ak(F;G) = Maps (F×k,G).

There is a structure of cosimplicial object on A∗ coming from the group operation in F ; hence there aremaps δk
: Ak(F;G)→

Ak+1(F;G) forming a cochain complex upon evaluation on an algebra S. The kernel of δk is the group of Lubin–Tate k-cocycles,
denoted by Zk(F;G), and the image is the group of Lubin–Tate k-coboundaries, denoted by Bk(F;G). The object Zk is again
an ordinary affine scheme, but Bk may merely be a presheaf.

There is a further collection of presheaves H∗(F;G) defined by the presheaf quotient

Hk(F;G)(S) =
ker δk

: Ak(F;G)(S)→ Ak+1(F;G)(S)
im δk−1 : Ak−1(F;G)(S)→ Ak(F;G)(S)

=
Zk(F;G)(S)
Bk(F;G)(S)

.

Definition 2.6. The Lubin–Tate k-variate symmetric 2-cocycle group Ck(F;G) is an affine subscheme of Maps (F×k,G)

consisting of points f : F×k → Gwith f (σ x) = f (x) and

f (x1, x2, x3, . . .)−G

f (x0 +F x1, x2, x3, . . .)+G

f (x0, x1 +F x2, x3, . . .)−G

f (x0, x1, x3, . . .) = 1G.
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Definition 2.7. In the language of formal schemes, Spf R[ε]/ε2 plays the role of a point equipped with a tangent vector. The
tangent bundle TX of a scheme X is then defined as

TX = Maps (Spf R[ε]/ε2, X).

Note then that

TX(S) = Maps (Spf S,Maps (Spf R[ε]/ε2, X))

= Maps (Spf S ×Spf R Spf R[ε]/ε2, X)

= Maps (Spf S[ε]/ε2, X).

Given an R-valued point x : Spf R→ X , the tangent space at x is defined to be the subscheme of TX restricting to x along the
map Spf R→ Spf R[ε]/ε2 induced by ε → 0. Equivalently, it is the pullback of the corner

TxX := lim

Spf R

x
−→ X ← TX


.

When X is a group scheme, we write T1X for the tangent space of X at the identity point.

Definition 2.8. The most important formal Lie groups in this paper are Ĝa and Ĝm, both isomorphic to Â1 as varieties. The
functor Ĝa is described on an I-adic R-algebra A by Ĝa(R) = I with group law

x+Ĝa
y = x+ y.

The functor Ĝm is described on R by Ĝm(R) = 1+ I with group law given by

(1+ x)+Ĝm
(1+ y) = (1+ x)(1+ y) = 1+ (x+ y+ xy).

The isomorphism Ĝm ∼= Â1 is given by 1 + x → x, and so the group law induced on the formal affine line is described by
x+ y+ xy.

Lemma 2.9. T1G ∼= Ĝa.

Proof. Both T1G and Ĝa are isomorphic to Â1; the points εa ∈ T1G(R) are in bijective correspondence with the points
a ∈ Ĝa(R). Moreover, this map respects the group laws, since every formal group law is of the form x+G y = x+y+o(2). �

3. Lubin–Tate cohomology and multiextensions

For ordinary groups F and G, the cohomology groups H∗(F;G) classify certain kinds of extensions of G by F . Because the
Lubin–Tate cohomology of formal Lie groups is set up so similarly, it solves an identical extension problem, phrased in terms
of torsors. This is discussed in generality by Demazure and Gabriel [4, III.6.1], though the new reader should note that the
special case of formal Lie groups is simpler to work out by hand than to read in the reference. The groups H2 are the original
objects studied by Lubin and Tate [9, Section 2], which can also serve as exposition.

The Ck groups defined in the previous section also solve a sort of the extension problem, but because it is less well-known
we take the time to seriously explore it here. As reference, the group C3 makes an appearance in Breen’s text [3, Sections 1
and 2], and the Ck groups are discussed in light tones in an introductory section of the previous paper [6, Section 2.3]. What
we present is a straightforward generalization of what can be found at those sources.

First, we introduce torsors as a model for the ‘‘total space’’ of an extension of group schemes, along with constructions
with them familiar to topologists.

Definition 3.1. Fix group S-schemes G and H and base S-schemes X and Y . A G-torsor L is an X-schemewith G-action such
that the map G×S L → L ×S L described by (g, ℓ) → (g ·ℓ, ℓ) is an isomorphism of S-schemes. The torsor is additionally
said to be trivializable when it is noncanonically G-equivariantly isomorphic to G×S X as X-schemes, or equivalently when
it admits a section X → L . If L is as above and M is an H-torsor over Y , then a map L → M of torsors is defined to be a
triple of maps of schemes (G→ H, L → M , X → Y ) which commute with all the data present. Experienced readers will
note that this is not the definition of map of torsors common to the rest of the literature, discussed in Remark 3.2 below.

Several common constructions for bundles translate to torsors.

• Pullback. Let L be a G-torsor over Y , and let f : X → Y be a map of schemes. Then we define the pullback f ∗L to be the
fiber product L ×X Y , which is easily seen to be a G-torsor over Y .
• Pushforward. Let L be as above, and let ϕ : G→ H be a map of group schemes. Then we define the pushforward torsor

ϕ∗L as the colimit of the diagram

L × G× H L × H

L × H × H L × H,

· × id

id × ϕ × id

id × ·
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encoding the Borel construction. Because formal schemes are not closed under arbitrary colimits, it is not clear if this
formula is sane without assuming the trivializability of L . This is one reason why we will restrict our attention to such
torsors.
• Tensor product. Let L and M be two G-torsors over X . Then there exists a G-torsor L ⊗ M over X , with a natural

isomorphism of fibers (L ⊗ M )x ∼= Lx ⊗G Mx. Note that if we write ∆ : X → X × X for the diagonal map and
µ : G × G → G for the multiplication, then L ⊗M = ∆∗µ∗(L ×M ), where the product × is the scheme-theoretic
product with the diagonal G-action.
• Dual. Let 1 denote the trivial G-torsor G × X over the S-scheme X . Then any G-torsor L over X has a dual defined by

L−1 = Maps
G
(L , 1). The dual comes with a natural isomorphism L ⊗ L−1 → 1 given by evaluation.

Remark 3.2. Given two trivializableG-torsorsL andM over the S-schemes X and Y respectively, a ⋆-mapL → M is a pair
(f , t) of a map f : X → Y and a G-equivariant isomorphism of S-schemes t : L → f ∗M . This produces a different category
of G-torsors over S-schemes than what is described above, and is by far the more common definition. Our notion of map of
torsors is strictly weaker and designed to accommodate the pushforward, which we will use prominently in Section 6.

Now we turn to certain torsors over large bases, which are seen as parameterized families of extensions.

Definition 3.3. Fix a formal Lie group G to play the role of the structure group. We make a sequence of definitions leading
up to that of a higher cubical structure.

• Select a family of formal Lie groups F1, . . . , Fk. A multiextension L is a G-torsor over F1 × · · · × Fk so that for any point
fı̂ = (f1, . . . , f̂i, . . . , fk) ∈ F1 × · · · × F̂i × · · · × Fk the corresponding pullback s∗L along s(fi) = (f1, . . . , fi, . . . , fk) gives
an extension of group schemes of Fi by G. After selecting trivializations, we see that these extensions are controlled by a
family of 2-cocycles u in Z2(F;G), parameterized by the missing index i and the points fı̂:

ui(fı̂) : Fi × Fi → G.

See Fig. 1 for an illustration for extensions contained in a multiextension when k = 2.

Fig. 1. Extensions contained in a biextension.

• In the case F = F1 = · · · = Fk, we can impose various symmetry conditions on such a multiextension. For the moment,
let us just consider k = 2, where there is a flip map σ : F × F → F × F . One could ask for a specified isomorphism
α : σ ∗L → L , but this may actually incorporate nontrivial isomorphisms of L in a way we do not want: specifically,
the diagonal ∆ : F → F × F has the property that ∆ = σ∆. Likewise, we should require that α pulls back to the identity
id = ∆∗α : ∆∗σ ∗L → ∆∗L .

For a general k, we have a family of morphisms σ : F k
→ F k corresponding to permutations σ ∈ Σk, and to each

permutation σ we can construct a map ∆σ : F |k/⟨σ ⟩|
→ F k that populates the σ -orbits of F k with diagonal values. We

necessarily have ∆σ = σ∆σ , and hence ∆∗σ L is canonically isomorphic to (σ∆σ )∗L . The most basic condition asserts
that we fix a family of isomorphisms τσ of isomorphisms τσ : σ

∗L → L extending these given isomorphisms satisfying
the coherence relations τσ ′σ = (σ ∗τσ ′)τσ . A multiextension together with this symmetry data is called a symmetric
multiextension.
• The most extreme symmetry we can request are trivializations such that the controlling cocycles satisfy

ui(f1, . . . , f̂i, . . . , fk)(fi, fn+1) = uσ i(fσ1, . . . , f̂σ i, . . . , fσk)(fσ i, fσ(k+1))

for all choices of σ ∈ Σk+1. Under these conditions, we can simply write u(f1, . . . , fk+1) without ambiguity, since all
interpretations of this symbol produce the same point in G. A multiextension satisfying this condition is called a higher
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cubical structure. The name ‘‘cubical structure’’ stems from previous work on the case k = 2; see Mumford [11] and
Breen [3].

Higher cubical structures can actually be produced enmasse as sections of a certain functorially constructed torsor, which
we now describe.

Definition 3.4. Denote the map (f1, . . . , fk) →
F

i∈I fi by µI , and select an extension L of F by G. We define ΘkL by

ΘkL =


I⊆{1,...,k}

(µ∗I L )(−1)
|I|
, (ΘkL )x =


I⊆{1,...,k}

L
(−1)|I|

i∈I xi
.

A Θk-structure on an extension L is a chosen trivialization of ΘkL .

Remark 3.5. AΘk+1-structure onL corresponds to a higher cubical structure onΘkL . Both of these structures are classified
by the Lubin–Tate cocycle groups Ck(F;G). To indicate how this classification proceeds, we treat the special case of k = 2
for simplicity. Suppose that we have a Θ3-structure on L , i.e., a selected isomorphism Θ3L

∼=
−→ 1. Then, we produce a map

on fibers as follows:

1x,y,z
∼=
−→

Lx+y+z ⊗ Lx ⊗ Ly ⊗ Lz

Lx+y ⊗ Lx+z ⊗ Ly+z
,

Lx+z ⊗ Ly+z

Lx ⊗ Ly ⊗ Lz

∼=
−→

Lx+y+z

Lx+y
,

Lx+z

LxLz
⊗

Ly+z

LyLz

∼=
−→

Lx+y+z

Lx+y ⊗ Lz
,

(Θ2L )x,z ⊗ (Θ2L )y,z
∼=
−→ (Θ2L )x+y,z,

which is a part of the biextension structure. Symmetries of the tensor product used in the definition of Θk+1L ensure that
the inducedmultiextension structure onΘkL is a higher cubical structure. Such structures are classified by their controlling
cocycle u, i.e., a point of Ck(F;G)(S). This observation is recounted in great, careful detail in both Breen [3] andMumford [11].

Remark 3.6. Finally, we make some remarks on how multiextensions interact with the torsor operations defined in
Definition 3.1. All of these facts are proven by considering the naturality of the bijection between higher cubical structures
and the group schemes Ck. Throughout, select a structure group S-scheme G, a base group S-scheme F , and B and C higher
cubical structures over F×k.

• Select amap f : X → Y of group S-schemes. Then the pullback f ∗B receives the structure of a symmetric multiextension
so that the induced map f ∗B → B is a map of multiextensions. If uB is the controlling cocycle for B, then we have
uf ∗B

= uB
◦ f ×k.

• Select a map ϕ : G → H of group S-schemes. Then the pushforward ϕ∗B receives the structure of a higher cubical
structure so that B → ϕ∗B is a map of higher cubical structures. If uB is the controlling cocycle for B, then we have
uϕ∗B = ϕ ◦ uB.
• The dual torsor B−1 receives the structure of a higher cubical structure. If uB is the controlling cocycle for B, then we

have uB−1
= [−1]G ◦ uB.

• The tensor product B⊗ C also receives the structure of a higher cubical structure, with controlling cocycle described by
uB⊗C

= uB
+G uC .

4. Calculations tangent to the Lubin–Tate cohomology of (Ĝa; Ĝm)

Our ultimate goal is to understand the group scheme Ck(Ĝa; Ĝm) and compute its coordinate ring. As in classical Lie
theory, it is fruitful to first compute the tangent space at the identity as a means of understanding the local picture.

4.1. Calculation of T1H∗(Ĝa; Ĝm)

Let us begin by computing the tangent space to the cohomology groups.

Lemma 4.1. T1H∗(F;G) = H∗(F; T1G).

Proof. We expand the definition of H∗(F;G) to make the following calculation:

T1Hk(F;G)(S) =
ker T1δk

: T1Ak(F;G)(S)→ T1Ak+1(F;G)(S)
im T1δk−1 : T1Ak−1(F;G)(S)→ T1Ak(F;G)(S)

=
T1Zk(F;G)(S)
T1Bk(F;G)(S)

.
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Hence, we reduce to understanding T1Zk(F;G) and T1Bk(F;G).
The point of Zk(F;G)(S) corresponding to the identity element is represented by the power series 0, sending F k to the

identity point of G. A point of T1Zk(F;G)(S) is then a power series u of the form 0 + εu+ for some power series u+. Since
ε2
= 0, we compute the G-inverse of εu+ to be−εu+, and hence the 2-cocycle condition on u corresponds to the following

condition on u+:

u+(x1, x2, x3, . . .)−
u+(x0 +F x1, x2, x3, . . .)+
u+(x0, x1 +F x2, x3, . . .)−

u+(x0, x1, x3, . . .) = 0.

These u+ are exactly the elements of Zk(F; T1G)(S). We also have inclusion in the other direction; a point u+ ∈ Zk(F; T1G)(S)
corresponds to a point 0+ εu+ ∈ T1Zk(F;G)(S). The argument for coboundaries is entirely similar. �

Corollary 4.2. The tangent space T1H∗(Ĝa; Ĝm) is H∗(Ĝa; Ĝa).

Theorem 4.3. Letting ai represent x2
i
, we calculate

H∗(Ĝa; Ĝa)(F2) ∼=


i

F2[ai].

Proof. It is equivalent to compute Ext F2[x](F2, F2) in the category of F2[x]-comodules. Then, as the P.D. algebra ΓF2 [x]
is the linear dual of F2[x], it is again equivalent to compute Ext ΓF2 [x]

(F2, F2) in the category of ΓF2 [x]-modules. Using the

splitting of the algebraΓF2 [x] in the tensor productΓF2 [x] ∼=

∞

i=0 Λ[x[2
i
]
], we see that it suffices to compute Ext Λ[y](F2, F2)

for each factor individually then tensor together those results. Performing this last computation is straightforward with
the Tate resolution [16]. The differential graded algebra described by Tate which computes Ext Λ[y](F2, F2) is given by
R∗ = Γ [a] ∼=


∞

i=0 Λ[a[2
i
]
]with differential da[j] = a[j−1]y. Therefore,

Ext Γ [x](F2, F2) ∼=

∞
i=0

Ext
Λ[x[2i]](F2, F2)

∼=

∞
i=0

Hom (Γ [ai], F2)

∼=

∞
i=0

F2[a∨i ]. �

Remark 4.4. As defined, the objects H∗(Ĝa; Ĝa)(F2) are only groups, but identifying their computation with that of an Ext ,
together with Tate’s method for computing Ext , shows that they are in fact rings. The multiplication structure in fact exists
on the level of A∗; we set (f · g)(x1, . . . , xp+q) = f (x1, . . . , xp) · g(xp+1, . . . , xp+q), the product of power series. An exact
mimic of the proofs for cup products of singular cocycles shows that (f · g) ∈ Zp+q when f ∈ Zp and g ∈ Zq, and moreover
that this operation descends to cohomology.

4.2. Calculation of T1C∗(Ĝa; Ĝm)

The scheme Ck(Ĝa; Ĝm) also has an interesting tangent space at its identity, which we describe now.

Lemma 4.5. T1Ck(F;G) is Ck(F; T1G).

Proof. This is identical to Lemma 4.1. �

Corollary 4.6. T1Ck(Ĝa; Ĝm) ∼= Ck(Ĝa; Ĝa).

Definition 4.7. Let ζ n
k denote the integral polynomial

ζ n
k = φ(n, k)−1


X⊆{x1,...,xk}


(−1)|X | ·


x∈X

x

n
= φ(n, k)−1


λ⊢n

ℓ(λ)=k


n
λ


xλ,

where φ(n, k) is defined by

φ(n, k) = gcd
λ


|λ|

(λ1, . . . , λk)


= gcd

λ


n!

i

(λi!)
−1


.
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Remark 4.8. The familiar reader will recognize ζ n
2 as Lazard’s 2-cocycle [8].

Theorem 4.9 ([6, Corollary 3.4.10 and Theorem 3.6.2]). Let Dn,k count the number of power-of-2 partitions of n into k′ parts,
where k′ is the smallest possible size equal to or greater than k. Then there is an isomorphism

OCk(Ĝa; Ĝa)× Z(2) ∼= Z(2)[cn | n ≥ k] ⊗
Z(2)


bn,i

 1 ≤ i < Dn,k,
n ≥ k


⟨2bn,i⟩

.

The elements cn corepresent ζ n
k , and the elements bn,i corepresent all possible polynomials τ(λ), whereλ is amulti-index consisting

only of powers of 2.

Remark 4.10. In Fig. 3 below, we provide an excerpt from the previous paper [6, Appendix A.1] to give the reader a sense
of what the space of additive 2-cocycles over F2 looks like.

Important remark 4.11. There is a gap in the proof of our theorem from the previous paper [6, Theorem 3.6.2] that we
must remark on: the classification there correctly demonstrates this result for Fp-algebras, but does not provide enough to
conclude the result forZ(p)-algebras. To this end, it suffices to show that ζ n

k is the only additive cocycle overZ/p2 with leading
coefficient not divisible by p. The key is that whenworking in characteristic pwe have (a+b)p

j
= ap

j
+bp

j
, whereas in Z/p2

we instead have (a+ b)p
j
= ap

j
+ bp

j
+
p−1

i=1

 pj

ipj−1

ap

j−1 ibp
j−1(p−i), where now

 pj

ipj−1

is nonzero mod p2. In the language of

the previous paper, this has the effect of enlarging our annihilator sets dramatically — namely, any carry-minimal partition
contains in its annihilator set all other carry-minimal partitions, since we are now able to split and regather power-of-p
entries.

5. The tangent spectral sequence

Now we use the information local to the origin computed in Section 4 to produce information about the entire scheme
H∗(Ĝa; Ĝm) through successive approximations. We organize this procedure into a spectral sequence and describe a family
of nontrivial differentials for it.

Theorem 5.1. There exists a filtration spectral sequence of signature

T1H∗(F;G)(R) = H∗(Ĝa; Ĝa)⇒ H∗(F;G)(R).

Proof. Recall that picking coordinates gives Ak(F;G)(R) = {


I aIx
I
| x = (x1, . . . , xk)} the set of k-variate power series,

which can be identified with the space of scheme-theoretic maps F k
→ G for a pair of 1-dimensional formal groups F and

G. The cochain complex A∗(F;G) admits a descending filtration by leading degree d, denoted by

Ak
n = Ak

n(F;G)(R) =


I

aIxI : aI = 0 whenever |I| < n


.

Using standard machinery, this gives a convergent filtration spectral sequence, with E1-page described by certain
polynomials of homogeneous degree:

Ek,n
1
∼=


f ∈ k[x1, . . . , xk] : f =


|I|=n

aIxI , δkf = 0 mod ⟨x1, . . . , xk⟩n+1


.

Because F(x, y) = x+ y (mod ⟨x, y⟩2) for all formal group laws F , we identify elements of these Ek,n
1 -groups with those of

H∗(Ĝa; Ĝa) which are representable as k-variate polynomials of homogeneous degree n. �

So, the previous calculation of H∗(Ĝa; Ĝa) = T1H∗(Ĝa; Ĝm) serves as input to the tangent spectral sequences, with E1-
page illustrated in Fig. 2. With that description in hand, we turn to the differentials.

Fig. 2. The E1-page of the tangent spectral sequence over R = F2 .
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Theorem 5.2. Set R = F2, F = Ĝa, and G = Ĝm, and select u+ = caiaj for i ≠ j and a coefficient c. Then there is a nonzero
differential:

d2i+2j(caiaj) = c2(a2i aj+1 − ai+1a2j ).

Proof. The additive cohomology class caiaj = c[u] can be represented by the polynomial u = cx2
i
y2

j
. The first differentials

in the tangent spectral sequence arise from applying the multiplicative coboundary map to polynomials, and so we can
compute the smallest nonvanishing differential on c[u] by computing

1+ cu(x, y)
1+ cu(w + x, y)

·
1+ cu(w, x+ y)
1+ cu(w, x)

,

provided that the result is not null-cohomologous. In our case, we have
1+ cx2

i
y2

j
 

1+ cw2i(x+ y)2
j



1+ c(w + x)2iy2j

 
1+ cw2ix2j

 = 1+ c2w2ix2
i
y2

j+1
− c2w2i+1x2

j
y2

j
+ o(2i+1

+ 2j+1)).

Hence, d2i+2j(caiaj) = c2(a2i aj+1 − ai+1a2j ) as an equation on the E2i+2j-page.
To show that this produces a nonvanishing differential, we must show that all these classes still exist on this page. The

application of δ2 to 1 + u+ has leading additive part of degree divisible by |u+|; hence the first nonvanishing differential
with source a2i aj+1 − ai+1a2j must be on the E2i+1+2j+1-page. To check that it is also not the target of a differential, classes of
degree below 2i

+ 2j are too far away from a2i aj+1 − ai+1a2j to hit it with a differential by the E2i+2j-page. There is only one
class in E1,t

1 for 2i
+ 2j
≤ t < 2i+1

+ 2j+1: assuming i > j, it is ai+1. We calculate the minimal differential on ai+1 similarly as

1+ cx2
i+1
+ cy2

i+1

(1+ cx2i+1)(1+ cy2i+1)
= (1+ cx2

i+1
+ cy2

i+1
) · (1− cx2

i+1
+ c2x2

i+2
− o(3 · 2i+1))

· (1− cy2
i+1
+ c2y2

i+2
− o(3 · 2i+1))

= 1− c2x2
i+1

y2
i+1
+ o(3 · 2i+1).

Hence d2i+1(c[ai+1]) = −c
2
[a2i+1], and the degree of this class exceeds that of aiaj. �

Corollary 5.3. To lift caiaj to a multiplicative cocycle it is necessary that the coefficient c satisfy c2 = 0.

Remark 5.4. Note that these results obstruct particular asymmetric cohomology classes, and that the symmetric cocycles
ζ n
2 do not support these differentials. For example, the cohomology class [ζ 2i+2j

2 ] is represented as aiaj+ ajai = 0, which has
no obstruction.

6. Half-Weil forms

We will write the group structure of the fibers of our multiextensions using multiplicative notation, as the structure
group Ĝm will be the case of interest. In this section, we fix a prime pwhich can be taken to be 2 or an odd prime; the theory
is identical either way. We will apply only the case p = 2 in the following section.

Definition 6.1. Fix a group scheme F and an integer k. For any 1 ≤ i ≤ k, define pi to be the map F k
→ F k defined by

1× · · · × 1× p× 1× · · · × 1, with the p occurring in the ith position.

Theorem 6.2. Select a multiextension L over F×k with structure group G. There is a diagram

p∗L L⊗p p∗i L

L L ,

p∗
⊗p

p · −

p∗i

βi

µ
◦(p−1)
i

α

factoring the multiplication-by-p map on L so that the composition of the top row is an isomorphism of torsors.

Proof. Let L be trivialized with controlling cocycles u1, . . . , uk arising from coordinates on the base and structure groups;
this proof then becomes completely computational. The map⊗p is described by the formula

⊗p : (g × (x1, . . . , xk)) → (g × (x1, . . . , xk))⊗p =

gp
× (x1, . . . , xk)


∈ L⊗p.

Then, the map p∗ acts as

p∗ : (g × (x1, . . . , xk)) → (gp
× (x1, . . . , xk)),
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which determines the map α to be

α : (g × (x1, . . . , xk)) → (g × (x1, . . . , xk)).

Hence, α is an isomorphism.
We perform the same analysis on βi. The map p∗i acts by

p∗i : (g × (x1, . . . , xk)) → g × (x1, . . . , xi−1, pxi, xi+1, . . . , xk).

Then, writing xı̂ for (x1, . . . , xi−1, xi+1, . . . , xk), the map µ
◦(p−1)
i acts by iterated multiextension addition in the ith factor,

which gives the formula

µ
◦(p−1)
i (g × (x1, . . . , xk)) =


g

p−1
i=1

ui(xı̂)(xi, ixi)× (x1, . . . , pxi, . . . , xk)


.

Hence, the map βi is determined to be

βi : (g × (x1, . . . , xk)) →


g

p−1
i=1

ui(xı̂)(xi, ixi)× (x1, . . . , xk)


.

Because the twist in the G-factor is invertible, as G is a group, βi is also an isomorphism. �

Definition 6.3. Given a 2-cocycle u ∈ Ck(Ĝa; Ĝm)(R), we define the associated ‘‘half-Weil form’’

e =
p−1
i=1

u(ix1, x1, x2, . . . , xk−1).

Theorem 6.4. The half-Weil form e associated to such a u ∈ Ck(Ĝa; Ĝm)(R) for R an Fp-algebra is a (not necessarily symmetric)
(k− 1)-variate multiplicative 2-cocycle satisfying

δ1e = up.

Proof. As p = 0 in R, the higher cubical structure B associated to u has trivial pullback p∗i B, since the cocycles associated
to p∗i B are of the two forms

uj(x1, . . . , xi−1, 0, xi+1, . . . ,xj, . . . , xk)(xj, x′j) = 1,
ui(xı̂)(0, 0) = 1.

The isomorphism p∗i B ∼= p∗B can be reinterpreted as a trivialization of the tensor p∗B/p∗i B, i.e., a 1-cocycle whose image
under δ1 is the 2-cocycle associated to p∗B/p∗i B — but, since the 2-cocycle associated to p∗i B is 1, we are really trivializing
p∗B, which has associated 2-cocycle (u(x1, . . . , xk))p.

We can produce an explicit formula for this 1-cocycle by chasing points around the diagram

p∗B ⊗ p∗B p∗B

p∗i B ⊗ p∗i B p∗i B.

µj

βα ⊗ βα βα
µj

Wemake the following two computations, writing x = (x1, . . . , xj, . . . , xk) and x′ = (x1, . . . , x′j, . . . , xk):

βα ◦ µj

(g × x)⊗ (g ′ × x′)


= βα


(gg ′u(xȷ̂)(xj, x′j)

p)× (x1, . . . , xj + x′j, . . . , xk)


= (gg ′u(xȷ̂)(xj, x′j)
pe(x1, . . . , xj + x′j, . . . , xk))× (x1, . . . , xj + x′j, . . . , xk),

µj

(βα ⊗ βα)(g × x)⊗ (g ′ × x′)


= µj


(ge(x)× x)⊗ (g ′e(x′)× x′)


= (gg ′u(x1, . . . , pxi, . . . ,xj, . . . , xk)(xj, x′j)e(x)e(x′))× (x1, . . . , xj + x′j, . . . , xk).

Because βα is a map of multiextensions, the G-coordinates of these expressions must be equal, and hence

u(x1, . . . ,xj, . . . , xk)(xj, x′j)p = e(x1, . . . , xj, . . . , xk)e(x1, . . . , x′j, . . . , xk)

e(x1, . . . , xj + x′j, . . . , xk)

= δ1e(x1, . . . , xk). �
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Remark 6.5. The classical Weil pairing associated to a cubical structure arises as the composite isomorphism

(p× 1)∗L
(β1α)−1

−−−−→ p∗L
β2α
−−→ (1× p)∗L ,

which in the fiber over a point (x1, x2) ∈ Ĝ2
a acts by multiplication by

p−1
i=1

u(x1, ix1, x2)
u(x1, ix2, x2)

,

where u is the 2-cocycle associated to L . This was the object used by Mumford [11] to compare Weil pairings and cubical
structures.

Lemma 6.6. There is an additive version of the half-Weil form. To a multiplicative 2-cocycle u with additive part u+, we associate
an additive half-Weil form e+, which is determined by

e+ =
p−1
i=1

u+(ix1, x1, x2, . . . , xk−1)

when this sum is nonzero. Again, δ1e+ = pu+ ≡ 0.

Proof. Reuse the above argument formultiextensionswith structure group Ĝa rather than Ĝm to produce an additive notion
of Weil pairing. The statement about the interaction of u+ and e+ and u and e stems from studying the filtration on the
tangent space used in Section 5. �

Lemma 6.7. The sum given above determining the additive half-Weil form associated to ζ n
2 is−ζ n

1 when n = pi and 0 otherwise.

Proof. Setting u+ = (x+ y)n − xn − yn as an additive 2-cocycle over Z, we telescope and calculate

e+ =
p−1
j=1

xn

(j+ 1)n − jn − 1


= pxn


pn−1 − 1


.

Then, ζ pi
2 = p−1((x + y)p

i
− xp

i
− yp

i
), and hence the associated half-Weil form over Fp is −ζ

pi
1 . But, when n is not of the

form pi, ζ n
2 = (x+ y)n − xn − yn exactly, and hence reducing modulo p gives 0. �

7. Obstructions and the calculation of Ck(Ĝa; Ĝm) × Spec Z(2)

We now have enough tools to investigate to what extent symmetric additive 2-cocycles can be lifted to multiplicative
2-cocycles. There are two special constructions concerning the cocycles ζ n

k which we describe first, and the remaining
additive cocycles are handled en masse by an obstruction result.

Theorem 7.1. Write νp(n) for the order of p-divisibility of the integer n, and recall the function φ(n, k) from Definition 4.7. Let
Ep(t) be the Artin–Hasse exponential, a p-integral series defined by

Ep(t) = exp


∞
k=0

tp
k

pk


.

Then, when νpφ(n, k) < νp(n), the power series

ζ̃ n
k = (δ1)◦(k−1)Ep(cxn)p

−νpφ(n,k)

is a multiplicative extension of cζ n
k over an Fp-algebra.

Proof. See Ando et al. [2, Corollary 3.22]. �

Remark 7.2. Ando et al. [2, Proposition A.10] also provide the equation

νpφ(n, k) = max

0,

k− σp(n)
p− 1


to aid in computing facts about this power series, where σp(n) is theN-valued digital sum of n in base p. This is an immediate
consequence of work of Kummer [7].

Theorem 7.3. Every additive cocycle u+ over a ring S of characteristic 2 can be written in the form

u+ =

n,m

ℓ(I)=k−3

rn,m,Iζ
n
2x

m
3 (x4, . . . , xk)I ,

where rn,m,I is an element in S. If r2n,2m,I ≠ r2m,2n,I for any choice ofm, n, and I, then anymultiplicative 2-cocycle 1+bu++o(|u+|)
must satisfy b2 = 0.



404 A. Hughes et al. / Journal of Pure and Applied Algebra 217 (2013) 393–408

Fig. 3. A depiction of Ck(Ĝa; Ĝa)(F2), reproduced from the previous paper [6, Appendix A.1]. The gray-shaded cells are those to which Theorem 7.1 applies.
See Theorem 4.9 for a reminder about notation.

Proof. Select such a cocycle u and select indices n, m, and I so that r2n,2m,I ≠ r2m,2n,I and assume r2n,2m,I ≠ 0. Construct
the associated half-Weil pairing e as in Definition 6.3; by assumption and Lemma 6.7 e+ is nonzero and the projection
of the cohomology class [e+] ∈ H2(Ĝa; Ĝa)(S[x3, . . . , xk−1]) onto the module factor S{anam} is nonzero with coefficient
r2n,2m,I − r2m,2n,I ≠ 0. Hence, the tangent spectral sequence and Theorem 5.2 dictate that the leading coefficient of e must
have vanishing square, as e is a multiplicative lift of e+. By distributivity and the characterization of e+ in Lemma 6.6, this
coefficient is an integer multiple of b. �

We need a small lemma, reminiscent of arguments used to prove Theorem 4.9, to interrelate these obstructions before
we can perform the promised 2-primary calculation.

Lemma 7.4. Fix an integer n and construct a graph whose nodes are labeled by unordered tuples of powers of 2 whose sum is n,
and insert an edge from a node of tuple length ℓ to a node of tuple length ℓ− 1 if exactly two entries of ℓ can be summed together
to produce the second tuple. Every subgraph consisting of all nodes of lengths ℓ and ℓ− 1 is connected, i.e., for any two tuples of
length ℓ, we can find a path in the graph connecting them.

Proof. Associate to such a tupleλ the finite sequence of natural numbers cλ
n so that cλ

n counts the number of times 2n appears
in λ, and order the set of tuples λ by the dictionary order on the associated sequences cλ

n . Given any two nonequal tuples
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λ and λ′′ of length ℓ, we can assume λ > λ′′; we want to construct a tuple λ′ with λ > λ′ > λ′′ by following edges in the
graph. An edge from λ of length ℓ to µ of length ℓ− 1 corresponds in sequences to

cµ
n =


cλ
n n ≠ i,
cλ
i − 2 n = i,
cλ
i+1 + 1 n = i+ 1

for some selected index i. So, as λ < λ′′, we select the first differing index i and remove 2 from cλ
i , add 1 to cλ

i+1, then
select any index j > i and remove 1 from cλ

j , adding 2 to cλ
j−1. The resulting sequence describes a new tuple λ′ satisfying

λ < λ′ < λ′′. Induction on the imposed ordering gives the lemma. �

Corollary 7.5. Let u+ be an additive 2-cocycle over F2. If u+ ≠ ζ n
2 for some n, then u+ is obstructed by Theorem 7.3.

Proof. Every obstruction aiaj stemming from an application of Theorem 7.3 to a term of the form ζ 2i
2 x

2j
3 can only be canceled

by the appearance of a term of the form ζ 2j
2 x

2i
3 , and hence the entire connected component of the graph in the above lemma

containing any of the tuples appearing in u+must appear, lest we produce a nontrivial obstruction. The lemma says that the
graph itself is connected; hence u+ must be a scalar multiple of ζ |u+|2 . �

Lemma 7.6. For ν2φ(n, k) > ν2n, u+ = ζ n
2 is obstructed from lifting to a multiplicative 2-cocycle.

Proof. The case ν2φ(n, k) > ν2n corresponds exactly to the appearance of summands of the form τ(2i1 , . . . , 1) in ζ n
k .

Applying Theorem 7.3, we produce an obstruction of the form ai1a0 with nomirror a0ai1 , since [a0] is not in the image of the
additive Weil pairing e+. �

Theorem 7.7. We compute

O(Spec F2 × Ck(Ĝa; Ĝm)) = F2[zn | ν2φ(n, k) ≤ ν2n] ⊗ Γ [bn,γ2(n,k) | ν2φ(n, k) > ν2n]

⊗ F2[bn,i | γ2(n, k) < i < Dn,k]/⟨b2n,i⟩,

where n ≥ k ranges over integers, Dn,k is the coefficient of the generating function

∞
i=0

1

1− tx2i
=


n,k

Dn,kxntk,

and γp(n, k) = max{0,min{k− σp(n), νp(n)}} counts the number of divided power classes introduced already.

Proof. These tensor factors correspond, in order, to the additive cocycles ζ n
k which lift without additional restrictions to

multiplicative cocycles, via Theorem7.1, the additive cocycles ζ n
k which are obstructed by Lemma7.6, lifted using the divided

power exponential, and the remaining additive cocycles τ(λ) not already belonging to a divided power structure, which are
also obstructed by Theorem 7.3 and which are lifted using the truncated exponential. �

Remark 7.8. We have remained deliberately vague about the description of the third tensor factor in Theorem 7.7 above,
specifically in the choices ofλ. It is clear that the polynomial ζ n

k and its 2j-powers play important roles in describing the space
of multiplicative cocycles. However, there is too little structure present in the computation and in the resulting answer to
produce a preferred basis of additive cocycles extending {(ζ n

k)
2j
}.

Corollary 7.9. We compute the 2-primary component to be

O(Spec Z(2) × Ck(Ĝa; Ĝm)) = Z(2)[zn | ν2φ(n, k) ≤ ν2n] ⊗ Γ [bn,γ2(n,k) | ν2φ(n, k) > ν2n]

⊗Z(2)[bn,i | γ2(n, k) < i < Dn,k]/⟨2bn,i, b2n,i⟩.

Proof. This follows immediately fromTheorem7.7,which gives the general structure of the answer, and Theorem4.9,which
shows that the j in the 2jbn,i in the quotient must be a 1. �

8. Outro

We now reflect on this paper’s relation to previous work, its relation to topology, and what is left to pin down internally,
so that the thread may easily be picked up again in the future.
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Remark 8.1 (Odd Dimensional Topological Classes). Thewhole of Ando, Hopkins, and Strickland’s argument [2] is to compare
the functors Spec E0kU2k and Ck(Spf E0CP∞; Ĝm) for certain (co)homology theories E, where kU2k denotes the (2k − 1)-
connected cover of BU × Z or equivalently the 2kth space in the Ω-spectrum representing connected complex K -theory.
The multiplicative structure on E0kU2k arises from the destabilization of the Whitney sum of stable virtual bundles, and in
the case that E0kU2k is even-concentrated, Spec E0kU2k makes sense. They reduce to the cases E = HQ and E = HFp, where
Spf E0CP∞ ∼= Ĝa, and they complete the proof by explicitly calculatingO(Ck(Ĝa; Ĝm)) for k ≤ 3 and recalling the previously
known calculation of H∗(kU2k; Fp) due to Singer [12] and at p = 2 to Stong [14].

The computation presented in this paper is part of an attempt to compareO(Ck(Ĝa; Ĝm)) andH∗kU2k for k > 3,wherewe
find an immediate obstruction on the topological side. Singer’s calculation describes H∗kU2k as a quotient of H

∗BU tensored
together with a certain subalgebra of H∗K(Z, 2k − 3). At p = 2, this subalgebra contains the class Sq7 Sq3 ι2k−3, which is
nonvanishing for k > 3 and of odd cohomological degree. The usual supercommutativity present in algebraic topology thus
presents an obstacle to the immersion of the ring H∗kU2k into algebraic geometry, which traditionally takes as input only
commutative rings, and so we must modify what ring we expect to compare to O(Ck(Ĝa; Ĝm)).

Calculational experiments with Mathematica have shown that the graded ranks of indecomposables in H∗(kU2k; F2)

match those of the indecomposables inO(Spec F2×Ck(Ĝa; Ĝm)) through some 240 bidegrees, ranging in both n and k, after
we delete the closure of the odd dimensional classes under the action of the Steenrod algebra. This is strong evidence that
these two objects can yet be successfully compared.

Remark 8.2 (Equivariance). The construction of the map

Spec H∗(kU2k; F2)→ Ck(Ĝa; Ĝm)× Spec F2

described by Ando, Hopkins, and Strickland admits a certain compatibilitywith the Steenrod algebra suggested to be present
by the above brute-force computation. The module H∗(kU2k; F2) is a coalgebra over the dual Steenrod algebra almost by
definition, and the scheme Ck(Ĝa; Ĝm) carries an action of the scheme Aut(Ĝa) of group automorphisms of the additive
formal group. Long-standing work identifying the role of cohomology operations/homology cooperations in the context
of chromatic homotopy theory has shown that the dual Steenrod algebra occurs as the ring of functions on Aut(Ĝa), and
hence the coaction of the dual Steenrod algebra on H∗(kU2k; F2) can be seen as an action of Aut(Ĝa) on Spec H∗(kU2k; F2).
Moreover, the map Spec H∗(kU2k; F2)→ Ck(Ĝa; Ĝm)× Spec F2 is seen to be Aut (Ĝa)-equivariant.

To use their map to form the comparison of H∗(kU2k; F2) and Ck(Ĝa; Ĝm) × Spec F2 for k > 3, we need to be able to
describe it in some detail. Its equivariance with respect to this action greatly rigidifies this problem, provided we can
calculate the Aut(Ĝa)-action on both of these objects. The description of the action on the nilpotent part of Ck(Ĝa; Ĝm) ×
Spec F2 is quite easy to calculate, but the action on the free part is not known at this time.

Understanding the Steenrod action on Ck(Ĝa; Ĝm) may also allow us to employ an argument similar to that of Adams
and Priddy [1], where any spectrum with a particular sort of homology is shown to be equivalent to kSO. Their argument
rests upon investigating the Adams spectral sequence, and so requires as input the Steenrod action on the homology as well.
We are in a similar sort of position: an understanding of the dual Steenrod coaction on O(Ck(Ĝa; Ĝm))⊗ F2 would allow us
to construct at least the E2-page of a fantasy Adams spectral sequence. Using that, we could potentially recover a variety of
partial information about the homotopy theory of spectra whose homology is as desired.

Remark 8.3 (Hopf Rings and Ring Schemes). One idea unexploited in this paper is Cartier duality. For an even-concentrated
H-space X and even periodic ring spectrum E, both the homology E0X and cohomology E0X areHopf algebras, and the duality
between theirmultiplications and diagonals is encoded in the algebro-geometric formulaHom (Spf E0X, Ĝm) ∼= Spec E0X . In
general, the object Hom (Spf E0X, Ĝm) is called the Cartier dual of the group scheme Spf E0X . Our calculation in Theorem 7.7
demonstrates that Spec Z(2) × Ck(Ĝa; Ĝm) has a well-behaved Cartier dual Ck,(2)(Ĝa) satisfying Hom (Ck,(2)(Ĝa), Ĝm) ∼=

Ck(Ĝa; Ĝm) × Spec Z(2), and we expect these congruences to match up in the sense that the following diagram should
commute:

Spec H∗(kU2k; F2) Spec F2 × Ck(Ĝa; Ĝm)

Hom (Spf H∗(kU2k; F2), Ĝm) Hom (Ck,(2)(Ĝa), Ĝm).

Then, because ku is a ring spectrum and HF2 has Künneth isomorphisms, we should expect that H∗(kU2k; F2) assemble
into a Hopf ring as k varies. The induced structure on formal schemes is harder to understand; that Spf and Spec are
arrow-reversing indicates that Spec H∗(kU2∗; F2) should assemble into a ‘‘coring scheme’’, a somewhat unfamiliar object.
However, the dual schemes Spf H∗(kU2∗; F2) assemble into a graded ring scheme, and using Cartier duality, understanding
these objects should in turn give descriptions of the original homological objects of interest. This program is outlined in
part by Ando et al. [2, Remark 2.32] in their original paper, and there are known computations of the Hopf ring structure for
H∗kO∗, due to Cowen Morton [10, Section 5], and for H∗kU∗, due to Hara [5, Section 4].
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Remark 8.4 (Odd Primary Information). We note that these same techniques give partial results at odd primes. The entire
program goes through for building the obstruction theory, but the resulting theorem at the end does not cover all possible
cases any longer. For the interested reader, we recount statements of the relevant computations. First, the Lubin–Tate
cohomology is computed to be

H∗(Ĝa; Ĝa)(Fp) ∼=


i

Λ[ai]


⊗


i

Fp[bi]


,

where ai represents xp
i
and bi represents ζ

pi
2 . Then, using truncated exponentials to partially lift xp

i
yp

j
to a multiplicative

2-cocycle, one computes the following differential in the tangent spectral sequence, pictured in Fig. 4:

d(p−1)(pi+pj)(caiaj) = cp(ai+1bj+1 − aj+1bi+1).

Fig. 4. The E1-page of the tangent spectral sequence over R = F3 .

By combining this differential with Lemma 6.7, one produces an obstruction theorem which produces a large family of
obstructions to multiplicative lifts. However, this is only sometimes useful, with frequency decreasing as p grows. For a
useful instance, one can compute all the obstructions necessary to describe the multiplicative lifts of linear combinations
of the additive cocycles τ(9, 2, 1) − τ(10, 1, 1) and τ(6, 3, 3) over F3, precisely because 2 + 1 in (9, 2, 1) is a power of 3
and 6 + 3 in (6, 3, 3) is a power of 3, so the Weil pairing calculation of Lemma 6.7 applies. On the other hand, we have no
information about the adjacent cocycles τ(9, 1, 1, 1) and τ(3, 3, 3, 3), since no pair of elements in these multi-indices sum
to a power of 3. It is not clear how to get around this problem — our suspicion is that the methods in this paper cannot be
made to extend to give a complete solution at odd primes.

Remark 8.5 (The Adams Splitting). The observations in Remark 8.4 are somewhat reflected in the topological situation by
the Adams splitting of the connective K -theory spectrum kU . There is a spectrum BP occurring as the minimal summand in
the p-localization of the complex bordism spectrum MU , and Stephen Wilson [17] describes a sequence of approximating
spectra

BP⟨∞⟩ → · · · → BP⟨n⟩ → · · · → BP⟨1⟩ → BP⟨0⟩,

with BP⟨∞⟩ ≃ BP , BP⟨0⟩ ≃ HZ(p), and π∗BP⟨n⟩ ∼= Z(p)[v1, . . . , vn] with |vn| = 2(pn − 1). The folk theorem states that as
ring spectra we have a splitting

LpkU ≃
p−2
i=0

Σ2iBP⟨1⟩.

This is to say that the data in connective K -theory falls neatly into bands described by these truncated Brown–Peterson
summands. In the previous paper [6], we witnessed a similar banding in the data, described in the 0th stratum by power-
of-p multi-indices and in the nth stratum by distance leftward (i.e., in decreasing dimension) from the power-of-p band.
Something similar happens in our Theorem7.3: it is a necessary hypothesis thatwe beworking in the band one step leftward
of the power-of-p band. If not, the obstruction produced by the half-Weil pairing is always 0, as illustrated in the above
example with τ(3, 3, 3, 3).

It would be interesting (and likely important) to understand what subfunctor Spec H∗BP⟨1⟩k represents and what of our
methods aremore appropriately cast in that language. This splitting ismade use of by Hara [5, Proposition 4.9] in his study of
the Hopf ring structure of H∗kU2k, so this can bemade to tie in with Remark 8.3. Moreover, it is an interesting question what
Spec H∗BP⟨k′⟩k represents in general, and how these are assembled from the even further split objects Spec H∗Yk described
using methods highly relevant to Remark 8.1 by Zabrodsky [18, Section 5.2]. This question for BP⟨k′⟩

∗
has been addressed

in a point-wise fashion by Sinkinson [13].
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