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In order to solve problems of practical importance [1, 2], quantum computers will likely need to
incorporate quantum error correction, where a logical qubit is redundantly encoded in many noisy
physical qubits [3–5]. The large physical-qubit overhead typically associated with error correction
motivates the search for more hardware-efficient approaches [6–16]. Here, using a microfabricated
superconducting quantum circuit [17, 18], we realize a logical qubit memory formed from the con-
catenation of encoded bosonic cat qubits with an outer repetition code of distance d = 5 [10].
The bosonic cat qubits are passively protected against bit flips using a stabilizing circuit [19–23].
Cat-qubit phase-flip errors are corrected by the repetition code which uses ancilla transmons for
syndrome measurement. We realize a noise-biased CX gate which ensures bit-flip error suppression
is maintained during error correction. We study the performance and scaling of the logical qubit
memory, finding that the phase-flip correcting repetition code operates below threshold, with logical
phase-flip error decreasing with code distance from d = 3 to d = 5. Concurrently, the logical bit-flip
error is suppressed with increasing cat-qubit mean photon number. The minimum measured logical
error per cycle is on average 1.75(2)% for the distance-3 code sections, and 1.65(3)% for the longer
distance-5 code, demonstrating the effectiveness of bit-flip error suppression throughout the error
correction cycle. These results, where the intrinsic error suppression of the bosonic encodings allows
us to use a hardware-efficient outer error correcting code, indicate that concatenated bosonic codes
are a compelling paradigm for reaching fault-tolerant quantum computation.
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I. INTRODUCTION

For quantum computers to solve problems in materi-
als design, quantum chemistry, and cryptography, where
known speed-ups relative to classical computations are
attainable, currently proposed algorithms require tril-
lions of qubit gate operations to be applied in an error-
free manner [1, 2]. Despite impressive progress over the
last few decades in reducing qubit error rates at the physi-
cal hardware level, the state-of-the-art remains some nine
orders of magnitude away from these requirements. One
path towards closing the error-rate gap is through quan-
tum error correction (QEC) [3–5]. Similar to classical
error correction used in communications [24] and data
storage [25], QEC can realize an exponential reduction
in errors through the redundant encoding of information
across many noisy physical qubits.

Recently, QEC experiments have been performed in
various hardware platforms, including superconducting
quantum circuits [26–30], trapped ions [31, 32], and neu-
tral atoms [33]. Some of these experiments are approach-
ing [28], or have surpassed [30], the threshold where scal-
ing of the error correcting code size leads to exponential
improvements in the logical qubit error rate. In these ex-
periments, the qubits are realized using a simple encoding
into two levels of a physical element, leaving them suscep-
tible to environmental noise that can cause both bit- and
phase-flip errors. Correcting for both types of errors re-
quires QEC codes such as the surface code [26–29], which
have a relatively high overhead penalty [1].

A complementary QEC paradigm is to use a layered
approach to noise protection, in which one starts from
a qubit encoding that natively protects against differ-
ent noise channels and suppresses errors. One example
is bosonic qubits, where qubit states are encoded in the
infinite-dimensional Hilbert space of a bosonic mode (a
quantum harmonic oscillator) [6, 34, 35], and the extra
dimensionality of the mode provides redundancies that
can be utilized to perform bosonic QEC. Experiments
taking advantage of this redundancy at the single bosonic
mode level to suppress errors have been performed using
cat codes [20–22, 36–39], binominal codes [40], and GKP
codes [41–43]. At the same time, various proposals have
been put forward to further scale bosonic QEC by con-
catenating it with an outer code across multiple bosonic
modes [6, 8–16, 44], leveraging the protection offered in
each bosonic mode to reduce the overall resource over-
head for QEC.

In this work, we demonstrate a scalable, hardware-
efficient logical qubit memory built from a linear array of
bosonic modes using a variant of the repetition cat code
proposal in Ref [10]. In particular, we stabilize noise-
biased cat qubits in individual bosonic modes. Bit-flip
errors of the cat qubits are natively suppressed at the
physical level, and the remaining phase-flip errors are cor-
rected by an outer repetition code over a linear array of
modes. The use of a repetition code enables low overhead
due to its large error rate threshold and linear scaling of

code distance with physical qubit number [10, 11, 14].
In what follows, we describe a microfabricated supercon-
ducting quantum circuit which realizes a distance d = 5
repetition cat code logical qubit memory, present a noise-
biased CX gate for implementing error syndrome mea-
surements with ancilla transmons, and study the logical
qubit error-correction performance.

II. QUANTUM DEVICE REALIZING A
DISTANCE-5 REPETITION CODE OF CAT

QUBITS

A schematic of the repetition code device we use
and the corresponding superconducting circuit layout are
shown in Fig. 1(a) and Figs. 1(b)-(d), respectively. The
distance d = 5 repetition code consists of five bosonic
modes that host the data qubits (blue), along with four
ancilla qubits (orange). The bosonic modes, also referred
to as storage modes, are coplanar waveguide resonators
with frequencies in the range 5.24− 5.41 GHz. The stor-
age modes have an average T1 (T2) time of over 60 µs
(80 µs). The ancilla qubits are fixed-frequency trans-
mons with frequencies in the range 5.20−5.32 GHz, nar-
rowly detuned from their neighboring storage-mode fre-
quencies. The ancilla qubits are coupled to the storage
modes through a tunable-transmon coupler [45, 46]. By
applying a flux pulse on a tunable coupler we can turn on
a dispersive interaction between an ancilla transmon and
a storage mode. This dispersive interaction is used to re-
alize a controlled-X operation (CX gate), with the ancilla
transmon as the control and the data qubit as the target.
Using the CX gates, we measure the repetition code sta-
bilizers X̂iX̂i+1 (gray triangles), equivalent to measuring
the joint photon-number parity of two neighboring stor-
age modes. Each ancilla qubit is dispersively measured
using a readout resonator coupled to a dedicated Purcell
filter [47] and reset by applying microwave tones that
remove the qubit excitations through the readout res-
onator [48]. See Appendices A, B, E and F for further
details on device fabrication, experimental set-up, and
component parameters.

As mentioned, each data qubit in our system is a cat
qubit encoded in a storage mode [19–21]. The basis states
of a cat qubit are shown in Fig. 1(e) along with their
experimental Wigner tomograms [49]. The |0⟩ and |1⟩
computational basis states are approximately the |α⟩ and
|−α⟩ coherent states, respectively, with a mean photon
number of |α|2. The complementary basis states are ex-
actly the even and odd cat states |±⟩ ∝ |α⟩±|−α⟩. Thus
a bit-flip (X) error is a 180-degree rotation in the phase
space mapping |α⟩ ↔ |−α⟩, and a phase-flip (Z) error
corresponds to a parity flip between the even and odd cat
states. Owing to the phase-space separation of the |±α⟩
coherent states, bit-flip error rates can be exponentially
suppressed with cat size |α|2 [22, 23, 37–39]. In contrast,
phase-flip errors, which are caused by single-photon loss
and heating, have a rate which increases linearly with
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FIG. 1. Repetition code of bosonic qubits. (a) Schematic diagram of the repetition code device. Data qubits S1, · · · ,S5
(blue) are encoded into the Hilbert space of a quantum harmonic oscillator. Two photons from each oscillator are exchanged
with a photon in a damped buffer mode B1, · · · ,B5 (green). The ancilla qubits A1, · · · ,A4 (orange) are transmon qubits which
detect Z errors on the data qubits by measuring repetition-code stabilizers. Here we show a Z error on a data qubit being
detected by two ancilla qubits. (b) Circuit layout of the repetition code device. The five bosonic modes (Si) are implemented
as coplanar waveguide resonators. Each resonator is connected to a buffer mode (Bi). Buffer modes are damped through a
multi-pole filter. Ancilla transmons (Ai) are connected to the storage modes by tunable couplers (Ci,j). The device is formed
from two chips bump-bonded together with linear elements (e.g., storage modes, readout resonators, and filters) on the bottom
chip and nonlinear elements (e.g., ancillas, couplers, and buffers) on the top chip. Zoomed-in circuit sections showing (c) a
storage-buffer subsystem and (d) an ancilla transmon coupled to its neighboring storage modes by tunable couplers. (e) Cat
qubit encoding in a bosonic mode. We show experimentally measured Wigner functions of the four basis states of a cat qubit
with arrows representing X and Z errors. (f) Bit-flip and phase-flip times of the five cat qubits in our device under simultaneous
two-photon dissipation. Error bars incorporate sampling variance and fit uncertainty.

|α|2.
In this work we stabilize cat qubits using two-photon

dissipation which ensures that the cat-qubit amplitude α,
and thus the noise bias, are maintained over time [19–
21]. To realize the two-photon dissipation, we couple
each storage mode to a lossy buffer mode (green) which
is implemented using a version of the asymmetrically-
threaded SQUID element [22, 23]. We apply a flux pump
to the buffer which converts pairs of photons in the stor-
age into one photon in the buffer and vice versa. The
buffer mode is heavily damped in order to dissipate this
photon and realize the two-photon loss on the storage
mode. The buffer mode is also linearly driven to pro-
duce a coherent two-photon drive on the storage mode to
complement the two-photon loss, stabilizing the storage

to the | ± α⟩ manifold. The loss spectrum of each buffer
is colored through a 4-pole metamaterial bandpass fil-
ter [50] such that the lifetime of the storage mode is not
degraded by the strong buffer loss channel. Moreover,
the buffer-mode parameters are carefully chosen to min-
imize other parasitic buffer-induced nonlinearities on the
storage mode. This enables long cat-qubit bit-flip times
even under pulsed cat-qubit stabilization, a crucial oper-
ation in our architecture, where two-photon dissipation
is turned off for a significant fraction of a cycle. For more
details on our cat-qubit realization we refer the readers
to Appendix D1 and Ref. [23].

In Fig. 1(f) we show the bit-flip and phase-flip times
of all five data cat qubits when they are being simultane-
ously stabilized by two-photon dissipation. The bit-flip
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FIG. 2. Noise-biased CX gate between a transmon and a cat qubit. (a) CX gate sequence. At the start of the sequence
the ancilla is initialized and cat-qubit stabilization (blue arrows) is on. The stabilization is then turned off and the CX gate
is applied between the ancilla and cat qubit. After the CX gate, the stabilization is turned back on and the ancilla qubit is
readout and reset to |g⟩. Through the experimentally measured Wigner functions, we show the evolution of the storage state
during the sequence for each of the ancilla states |g⟩, |e⟩, and |f⟩, with an initial storage-mode state |α⟩. (b) Storage-mode
Wigner tomograms before and after 10 applications of the CX gate sequence with the ancilla in |g⟩ and storage initialized
in |α⟩. The sequence is applied with and without stabilization to show the importance of stabilization in preventing error
accumulation. (c) Characterization of the CX gate. We apply repeated CX2 cycles (see main text) with a 3us cycle duration,
and plot the measured bit-flip time of the cat qubit as a function of cat-qubit photon-number, |α|2, for different ancilla states.
Inset shows the measured phase-flip times when the ancilla is initialized to |g⟩+ |f⟩. Error bars incorporate sampling variance
and fit uncertainty.

times of our cat qubits increase exponentially with the
mean photon number |α|2, while the phase-flip times de-
grade as 1/|α|2 as expected. The phase-flip times cor-
respond to effective storage lifetimes under two-photon
dissipation, T1,eff, in the range 57 − 68 µs. A particu-
larly important feature of our cat qubits is that a large
noise bias is achieved even with small values of |α|2. Con-
cretely, at |α|2 = 2, we achieve greater than 1 ms bit-flip
times and 27 − 33 µs phase-flip times. This constitutes
a sizable (> 30) noise bias and at the same time a long
phase-flip time in comparison to an error correction cycle
time (2− 3 µs).

III. NOISE-BIASED CX GATES IN THE
REPETITION CAT CODE

For optimum performance of the repetition cat code,
we must ensure that the large noise bias of the cat qubits
is retained under all operations used in repetition code
syndrome measurements. The key operation which en-

ables syndrome measurements is the CX gate between a
data cat qubit and an ancilla qubit with computational
states |0a⟩ and |1a⟩. The CX gate can propagate errors
in the ancilla qubit to the data cat qubit. Therefore, we
need to realize a noise-biased CX gate which minimizes
undesired bit flips on the target cat qubit caused by an-
cilla errors.

While cat qubits can be used as ancilla qubits to im-
plement noise-biased CX gates, these gates can induce
significant control errors and require a complex drive
scheme [10, 14]. To avoid this issue, we use fixed-
frequency transmons as ancilla qubits whose lowest three
energy eigenstates are denoted by |g⟩, |e⟩, |f⟩. We real-
ize the CX gate with a storage-ancilla dispersive coupling
which can be thought of as an ancilla-state-dependent ro-
tation of the storage-mode state in phase space [51–53].
Specifically, the CX gate is realized by having the data
cat qubit rotate by 180 degrees conditional on the ancilla
being in |1a⟩. However, if the ancilla qubit is simply en-
coded in the |g⟩/|e⟩ manifold of a transmon, |e⟩ → |g⟩
decay events of the transmon during a CX gate can de-
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phase the data cat qubit and induce bit flips.

To circumvent this challenge, we follow Refs. [54–56]
and encode an ancilla qubit in the states |0A⟩ = |g⟩ and
|1A⟩ = |f⟩, and engineer an approximately “χ-matched”
dispersive interaction between the ancilla and the stor-
age mode in the form of Ĥ = χgeâ

†â|e⟩⟨e|+χgf â
†â|f⟩⟨f |

with χge ≃ χgf (here â and â† are the annihilation and
creation operators of the storage mode). With the χ-
matching, even if the ancilla decays from |f⟩ to |e⟩, the
storage mode will continue to rotate at a similar rate,
and thus additional bit-flip errors on the data cat qubit
are suppressed. This ensures that the noise bias of a
CX gate is robust against the first-order ancilla decay
events. Only higher-order or suppressed ancilla error
mechanisms, such as two sequential decay events or heat-
ing will cause bit-flip errors on the data cat qubit.

There are several additional important features of our
CX gate. First, a tunable coupler mediates the dispersive
coupling between a storage mode and an ancilla. This
allows us to turn on the dispersive coupling when a CX
gate is applied while maintaining high extinction when
it is off. Second, unlike previous demonstrations where
the χ-matching condition is achieved through a strong
off-resonant drive on a transmon [54, 55], we realize a
natively χ-matched dispersive interaction without strong
drives by targeting carefully chosen frequency detunings
between storage and ancilla (see Appendices D and E and
the references therein). Lastly, the χ-matching condition
does not need to be satisfied exactly because small mis-
rotations during the CX gate due to a mismatched χ ratio
(e.g., 0.8 ≲ χge/χgf ≲ 1.2) can be corrected by subse-
quent two-photon dissipation for cat-qubit stabilization
(see Appendix J 3).

In Fig. 2(a) we show a control sequence involving a
CX gate similar to the one used for an error correction
syndrome measurement. We illustrate the robustness of
our CX gate to ancilla decay by measuring the action
of the gate on a storage mode prepared in a |α⟩ coher-
ent state with the ancilla prepared in the |g⟩, |e⟩, or |f⟩
states. Before the CX gate begins we turn off the cat-
qubit stabilization to allow the storage mode to rotate
freely. Then we activate the CX gate by applying a flux
pulse on the tunable coupler. As shown by the Wigner
tomograms, the storage mode does not rotate when the
ancilla is in |g⟩, while it rotates by approximately 180
degrees over the course of a CX gate when the ancilla is
in |e⟩ or |f⟩. Due to the imperfect χ-matching the stor-
age mode has slightly overrotated when the ancilla is in
|e⟩. In addition, miscalibrations, self-Kerr nonlinearities,
and decoherence can cause misrotations and distortion
of the storage-mode states. Notably, all these imperfec-
tions can be corrected with high probability when the
two-photon dissipation is turned back on after the CX
gate, as demonstrated in the last column of the Wigner
tomograms. To further highlight the importance of ap-
plying the two-photon dissipation, in Fig. 2(b) we show
the results of 10 repetitions of the CX gate cycle with
and without the pulsed cat-qubit stabilization. When the

two-photon dissipation is not applied, errors accumulate
over multiple rounds causing significant distortion in the
final storage mode state. When two-photon dissipation is
applied every cycle, the storage mode stays well confined
to the ideal target coherent state.
We quantify the performance of our CX gate, including

its noise bias, in a way that is representative of how we
will use it during error correction. To do so, we repeat-
edly apply the same pulse sequence as in Fig. 2(a), but
with one difference: the single CX is replaced with the
equivalent of two CX gates (a CX2 gate). This ensures
that, similar to a stabilizer measurement, our cycle error
rate is first-order insensitive to ancilla state preparation
errors.
In Fig. 2(c) we show bit-flip times measured during

repeated CX2 cycles for a representative interaction be-
tween ancilla A1 and storage S1. Each cycle has a length
of 3 µs (where the CX2 gate length is 504 ns). We mea-
sure the bit-flip times with the ancilla in state |g⟩+ |f⟩,
as would be used for syndrome extraction. As control ex-
periments, we repeat the same procedure with the ancilla
in |g⟩ and |g⟩ + |e⟩ as well. The black curve serves as a
reference showing the exponential increase of the bit-flip
times as a function of the mean photon number |α|2 in
the case where the two-photon dissipation is continually
applied (as in Fig. 1(d)). When the gates are applied
with the ancilla in |g⟩, bit-flip times exceeding 5 ms are
achieved. The small degradation relative to the reference
performance at |α|2 ≳ 3 is due to heating events in the
ancilla or coupler during the CX2 gate. With the an-
cilla in |g⟩+ |e⟩, bit-flip times are severely limited to well
under 1 ms due to the storage dephasing caused by the
first-order |e⟩ → |g⟩ decay errors of the ancilla. With
the initial ancilla state |g⟩+ |f⟩, we recover bit-flip times
over 1 ms at |α|2 ≥ 3 due to the insensitivity to sin-
gle decay events of the ancilla afforded by χ-matching
(here χge/χgf ≈ 1.1; see Appendix J 3). In the inset
of Fig. 2(c), we also report the corresponding phase-flip
times with the ancilla in the state |g⟩+ |f⟩. An effective
storage lifetime T1,eff of 63± 2 µs is inferred, showing no
substantial difference from T1,eff = 68±2 µs measured in
Fig. 1 in the absence of CX2 gate application. In terms
of error probabilities per cycle, the bit-flip and phase-flip
errors per cycle are respectively (3.5 ± 0.4) × 10−3 and
(9.6 ± 0.4) × 10−2 at |α|2 = 2, corresponding to a noise
bias > 25.

IV. CORRECTING PHASE-FLIP ERRORS
WITH THE REPETITION CODE

Equipped with the noise-biased CX gates, we now
demonstrate the ability to correct the dominant phase-
flip errors using a repetition code. Phase-flip errors are
detected by repeatedly measuring the repetition code’s
stabilizer generators, X̂iX̂i+1 (for i = 1, · · · , d − 1). As
shown in Fig. 3(a), each measurement of a stabilizer gen-
erator, referred to as a syndrome measurement, com-
prises initialization of the ancilla Ai, two CX gates be-
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FIG. 3. Detecting and correcting phase-flip errors with the repetition code. (a) Error correction circuit, showing
repeated error correction cycles with duration 2.8 µs. (b) Detection probabilities for the measured stabilizers versus error
correction cycle for three different cat qubit photon numbers, |α|2 = 1, 2, 3. Bold traces correspond to the average over the
individual stabilizer traces. Error bars represent sampling variance. (c) Depiction of erasures occurring in the repetition code
experiment due to ancilla decay from |f⟩ to |e⟩. We show shots of the experiment from a representative stabilizer where |f⟩
is light gray, |g⟩ is dark gray, and the erasure state |e⟩ is shown in red. (d) Effective measurement error before and after
accounting for the erasure for |α|2 = 1. Bold traces correspond to averaging over the stabilizers. (e) Example fits of the decay
of the X logical operator for the distance-5 repetition code for different photon numbers. (f) Error corrected logical phase-flip
probability per cycle (ϵL,phase-flip = pZ + pY ) and logical X lifetime (TX) as a function of |α|2 for the different repetition code
sections. Data and fits are shown with (squares and solid curves) and without (circles and dashed curves) inclusion of erasure
information. The fits are to the power law (|α|2)γ for |α|2 ≥ 1.5. Faded points indicate fits binned by the number of even
cat states |+⟩ in the initial state and serve to indicate the spread from asymmetric error rates at low photon number (see
Appendix H10 for more details). The dotted purple curve shows the simulated logical phase-flip probability for the distance-5
section. Error bars incorporate sampling variance and fit uncertainty.

tween Ai and its adjacent data qubits Si and Si+1, and
finally measurement and reset of the ancilla. During the
measurement and reset, we turn on the dissipative sta-
bilization on all the cat qubits. Each syndrome mea-
surement cycle has a conservatively chosen duration of
2.8 µs, with CX gate lengths across the device ranging
from 292− 552 ns.

After running an experiment with many error correc-
tion cycles we decode the syndrome measurements us-
ing minimum-weight perfect matching (MWPM). As the
first step in this decoding process, we compare the out-
comes of consecutive syndrome measurements. Consecu-
tive measurement outcomes that differ indicate an er-
ror. We refer to the comparisons of consecutive syn-
drome measurements as detectors, and differing consec-
utive measurements as detection events [57, 58].

In Fig. 3(b) we plot the probability of detection events
over time for each ancilla, and for different values of the
cat mean photon number |α|2. These probabilities in-

crease in proportion with |α|2, reflecting the fact that
the phase-flip error rates of the cat qubits scale with pho-
ton number. Notably, the detection probabilities in our
system are approximately constant over time. We at-
tribute the constant detection probabilities here to the
dissipative stabilization of the cat qubits, which natu-
rally prevents the accumulation of leakage out of the cat
qubit subspace without requiring additional protocols for
active leakage suppression [59, 60].

Further improvements in error decoding can be
achieved by making use of the fact that |f⟩ → |e⟩ an-
cilla transmon decay errors constitute detectable erasure
errors [61–64]. Specifically, while the χ-matching ensures
that decay to |e⟩ is unlikely to cause a bit-flip error, the
decay has a high probability (∼ 50%) to cause a syn-
drome measurement error. As shown in Fig. 3(c), a T1-
decay error from |f⟩ → |e⟩ can be understood as an era-
sure because it takes the ancilla outside of its computa-
tional subspace |g⟩/|f⟩. We detect these erasures using
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a three-state transmon readout that separately resolves
|g⟩, |e⟩, and |f⟩. The heatmap shows the occurrence
of erasure events (indicated in red) interspersed among
valid syndromes in the data (gray shades). When an era-
sure occurs, the corresponding syndrome measurement
provides no information about errors in the data qubits.
We account for these erased syndromes in decoding by
constructing detectors only using the non-erased syn-
dromes (see Appendix H 3 for more details). As shown
in Fig. 3(d), doing so effectively reduces the syndrome
measurement error probability by over a factor of two
for |α|2 = 1.

We characterize the repetition code’s ability to cor-
rect cat qubit phase-flip errors by measuring the decay
time of the repetition code logical operator X̂L = X̂1.
To do so, we initialize the system into a logical X state
by measuring the parity of each cat qubit’s steady state
under stabilization, which randomly prepares the logi-
cal qubit into one of the 2d possible product cat states
(e.g. |+⟩|−⟩|−⟩|+⟩|+⟩). Next, we perform a variable
number of syndrome measurement cycles. Finally we ex-
tract X̂L by measuring the parity of each storage-mode
state. Corrections from the MWPM decoding are ap-
plied in software. We fit ⟨X̂L(t = 0)X̂L(t = t)⟩ to a de-
caying exponential and define the decay time constant,
TX , as the logical X lifetime. The averaging of ⟨X̂L(t =

0)X̂L(t = t)⟩ is based on the distribution from which the
product cat states are sampled, which notably is nonuni-
form especially at low |α|2 (see Appendix H10 for fur-
ther discussion). Example exponential fits are shown in
Fig. 3(e) for various cat mean photon numbers |α|2 for
the distance-5 code. From TX we compute the logical
phase-flip error per cycle as ϵL,phase-flip = Tcycle/(2TX)
(equivalent to pZ + pY ).

The cat qubit architecture gives us the ability to study
the performance of the error correcting code in situ, since
we can tune the data qubit phase-flip error rate by vary-
ing |α|2. In Fig. 3(f) we plot the measured ϵL,phase-flip

versus |α|2 for the distance-5 repetition code and the two
minimally overlapping distance-3 repetition codes con-
tained within it. As the photon number increases, we see
the expected increase in the logical error probability as
the likelihood of a higher-order error not being caught by
the error correction increases. Across the measured range
of |α|2, we find that the distance-5 code outperforms the
distance-3 subsections. This indicates that the physical
phase-flip error rates of our system are below the repeti-
tion code’s error threshold for the entire range of photon
numbers we consider. Note also that there is a sizable
reduction in the logical phase-flip rate when the erasure
information is incorporated (e.g., by 20% at |α|2 = 1.5
for d = 5), a result of the reduced effective measurement
error probabilities achieved via the erasure conversion.

More quantitatively, the logical phase-flip rate is ex-
pected to scale as (|α|2)γ [65, 66], where |α|2 is a proxy
for the cat qubit phase-flip error rate. When the erasure
information is incorporated, we estimate from fits to the
measured logical phase-flip probability versus |α|2, scal-

ing exponents of γ = 1.67 ± 0.06 and γ = 1.84 ± 0.04 in
the two d = 3 subsections, and γ = 2.28 ± 0.02 in the
full d = 5 section. The increase in scaling exponent from
d = 3 to d = 5 shows that the increased code distance
is providing greater resiliency to phase-flip errors. Al-
though the measured values of γ are lower than the ideal
values, γ = (d + 1)/2, they are consistent with simula-
tions (shown in Fig. 3(f) as a dotted purple curve for the
distance-5 code) based on a simple model that incorpo-
rates the measured probabilities of cat phase flips, an-
cilla erasures, and syndrome measurement error. We at-
tribute the scaling behavior to the close proximity of our
data qubit phase-flip error rates to the code threshold—
a regime where the idealized scaling is not generally ex-
pected to hold (see Appendix H 11).

V. MAINTAINING LONG BIT-FLIP TIMES IN
A REPETITION CAT CODE

Having demonstrated the ability to correct the domi-
nant phase-flip errors of cat qubits via a repetition code,
we now proceed to characterize the logical bit-flip rates.
Unlike the logical phase flips which are corrected using
the repetition code syndrome measurements, logical bit
flips are passively suppressed at the level of the individ-
ual cat qubit encodings. As a result achieving long logical
bit-flip times is challenging because any single cat-qubit
bit-flip event in any part of the repetition code directly
causes a logical bit-flip error. Moreover simultaneous
syndrome extraction across the entire chain of the rep-
etition code can cause various types of crosstalk. Here,
we present strategies for overcoming these challenges and
demonstrate that long logical bit-flip times can be main-
tained during the syndrome extraction of the repetition
code in our device.
To achieve a low logical bit-flip error rate, large

noise bias must be maintained on every single cat qubit
while syndrome measurements are performed. This re-
quires all the storage-ancilla interactions to have a suffi-
ciently χ-matched interaction, which we achieve by accu-
rately targeting storage-ancilla detunings across the en-
tire device (see Appendix E). Additionally, we carefully
tune the syndrome measurements to avoid parasitic ef-
fects that can induce cat-qubit bit-flip errors, including
measurement-induced state transitions that can excite
the couplers and ancillas [67], spurious two-level systems
(TLSs) in the ancillas [68], non-adiabatic errors from the
CX gate, and undesired nonlinear buffer resonances. In
addition, moving from isolated CX gate tune-up to si-
multaneous stabilizer measurements, the CX gate fideli-
ties can degrade due to crosstalk. To counter this we
perform in situ calibration of storage and ancilla phases
associated with the CX gates (see Appendix G3). We
also find that due to frequency collisions, some readout
resonators can be unintentionally excited by buffer flux
pumps. We mitigate this crosstalk mechanism though
active compensation.
With the calibration carefully tuned to avoid addi-
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FIG. 4. Characterizing logical bit-flip error rates. (a)
Fitted decay curve of the logical Z operator for several storage
mean photon numbers for the distance-5 code. Error bars
represent sampling variance. (b) Logical bit-flip probability
per cycle (ϵL,bit-flip = pX+pY ) and logical Z lifetime (TZ) as a
function of |α|2 for the two distance-3 repetition-code sections
and the distance-5 section. Solid lines correspond to data
and dotted lines correspond to a phenomenological model.
Error bars, capturing sampling variance and fit uncertainty,
are smaller than the markers.

tional bit-flip mechanisms at the repetition-code level,
we move onto characterizing the logical bit-flip probabil-
ities by measuring the decay time, TZ , of the logical Z
operator ẐL = Ẑ1Ẑ2 · · · Ẑd. To do so, we first initial-
ize the data cat qubits in a tensor-product of coherent
states (e.g., |α⟩⊗d and |−α⟩⊗d). Then, we repeatedly ap-
ply a variable number of syndrome extraction cycles. Fi-
nally, we perform single-shot Z-basis measurements (see
Appendix G1) on all of the data cat qubits to measure

ẐL. Note that after the first round of stabilizer measure-
ments, the data qubits are projected into an eigenstate
of the logical Z operator up to random phase flips that
do not affect the logical Z measurement. The logical Z
lifetime, TZ , is then obtained by fitting the decay curve
of ⟨ẐL(t = 0)ẐL(t = t)⟩ to an exponential. Example
fits are shown in Fig. 4(a). From TZ we compute the
logical bit-flip error per cycle as ϵL,bit-flip = Tcycle/(2TZ)
(equivalent to pX + pY ).

In Fig. 4(b) we show ϵL,bit-flip as a function of |α|2 for
the distance-5 (purple) and two distance-3 (red and blue)
sections. At a low cat mean photon number of |α|2 = 1,

the logical bit-flip error per cycle are approximately 2%
for the two distance-3 sections and 4% for the distance-
5 section. As the cat mean photon number increases to
|α|2 = 4, the logical bit-flip error per cycle drop to below
0.5% for the two distance-3 sections and below 1% for
the distance-5 section, due to the increased level of bit-
flip protection from the cat qubits. Note that ϵL,bit-flip

combines together the bit-flip error contributions from all
the cat qubits and CX gates. Since the distance-5 sec-
tion has more bit-flip error locations than the distance-3
sections, it has higher logical bit-flip probability. Never-
theless, the large noise bias maintained throughout the
error correction cycle allows us to achieve sub-1% logical
bit-flip probability even for the distance-5 section which
involves 5 cat qubits and 8 CX gates.
Also shown in Fig. 4(b) is a phenomenological model

of the logical bit-flip errors. In this model, the total log-
ical bit-flip error probability is a sum of |α|2-dependent,
idling bit-flip error probabilities for each cat qubit, to-
gether with additional |α|2-independent bit-flip proba-
bilities for each CX gate. The values of these physical
error probabilities are fit from independent CX and cat-
qubit characterization experiments (see Appendix I 2).
The agreement between the model and measurements
indicates that there is no significant degradation in the
bit-flip performance of individual cat qubits or CX gates
when integrated together into the repetition code.

VI. OVERALL MEMORY LIFETIME AND
ERROR BUDGET

Combining together the logical bit-flip and phase-flip
probabilities, we show in Fig. 5(a) the overall logical er-
ror per cycle [26, 28], ϵL = (ϵL,phase-flip + ϵL,bit-flip)/2 =
(pX + 2pY + pZ)/2, for the repetition cat codes. Since
ϵL,phase-flip increases with |α|2, while ϵL,bit-flip decreases
with |α|2, ϵL is minimized at a certain value of |α|2.
We find the measured logical error probabilities of the
distance-3 sections are minimized near |α|2 = 1, while
that of the distance-5 code is minimized at a higher
photon number near |α|2 = 1.5. This is because the
shorter codes provide less protection against phase-flip
errors, but simultaneously have fewer locations for phys-
ical bit-flip errors to lead to logical bit-flip errors. Thus,
as the mean photon number increases to |α|2 = 1.5 or
higher, the performance of a distance-3 section quickly
becomes limited by phase-flip errors which are not suffi-
ciently suppressed by a short repetition code. In contrast,
the distance-5 code has better protection from phase-flip
errors. This enables the distance-5 code to operate at
higher values of |α|2 and benefit from the larger noise bias
of the cat qubits. The best measured performance for the
distance-5 section is ϵL = 1.65% ± 0.03% at |α|2 = 1.5.
This is comparable to the best observed performance for
the distance-3 sections which are ϵL = 1.83% ± 0.03%
and ϵL = 1.67%± 0.04% at |α|2 = 1.
For each value of |α|2 ≥ 1.5, the logical error rate of

the distance-5 code is lower than that of the distance-3
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FIG. 5. Logical qubit memory performance. (a) Over-
all logical error per cycle of the repetition cat code, ϵL =
(ϵL,bit-flip + ϵL,phase-flip)/2 = (pX + 2pY + pZ)/2, versus cat
qubit mean photon number |α|2. As in Fig. 3(f), the faded
points correspond to fits to groupings of the data by the num-
ber of even cat states in the initial state. The lines are guides
to the eye, computed by interpolating both the logical phase-
flip and bit-flip probabilities, ϵL,phase-flip and ϵL,bit-flip, respec-
tively. (b) Error budget for the distance-5 repetition code us-
ing erasure information. Different shades of color correspond
to the different per cat (or per CX gate) contribution to the
error budget. Error bar incorporate sampling variance and fit
uncertainty.

sections. Without noise bias, logical error rates would
only increase with code distance, since the decrease in
logical phase-flip error rate would be outweighed by the
corresponding increase in logical bit-flip error rate. How-
ever, with the large noise bias of the cat qubits and the
CX gates, the logical phase-flip error contribution dom-
inates for mean photon numbers above |α|2 = 1.5, and
thus we benefit from using a larger distance repetition
code.

Shown in Fig. 5(b), we use models of the logical bit-
flip and phase-flip errors to construct an error budget
for the distance-5 repetition cat code (see Appendix I
for details). The error budget is broken into four error
mechanisms: cat intrinsic bit-flip errors (red), CX gate
induced bit-flip errors (blue), cat intrinsic phase-flip er-

rors capturing idling and CX gate phase-flips (green), and
syndrome measurement errors (gray). The first two con-
tribute to the logical bit-flip rate while the latter two
contribute to the logical phase-flip rate. The bit-flip
mechanisms dominate at small |α|2, and the phase-flip
mechanisms dominate at large |α|2. The minimum logi-
cal error rate is achieved at |α|2 ≃ 1.5 where the bit-flip
and phase-flip contributions are comparable. Notably, at
this optimal value of |α|2 ≃ 1.5, the cat intrinsic bit-
flip and phase-flip errors are the dominant contributors.
Thus the minimum logical error rate of our repetition cat
code is limited primarily by the individual cat-qubit er-
rors, rather than by additional CX gate induced bit-flip
errors or syndrome measurement errors caused by the
ancilla transmons.

VII. CONCLUSION AND OUTLOOK

In this work, we have performed error correction us-
ing a concatenated bosonic code, where bit-flip errors
are suppressed with a bosonic cat code, and residual
phase-flip errors are corrected with a repetition code.
This experiment serves as a promising first step in tak-
ing advantage of bosonic qubits, and additionally noise
bias, to improve the hardware efficiency of quantum error
correction. Furthermore, having constructed our logical
qubit memory using planar microfabrication processes,
this work highlights the potential scalability of the con-
catenated bosonic qubit architecture.

The logical error in our current device is dominated by
intrinsic cat bit-flip and phase-flip errors (see Fig. 5(b)),
but there are several strategies to reduce these errors in
the near term. To reduce both types of error, the cy-
cle time could be reduced by a factor of ∼ 2 by remov-
ing padding in the pulse sequence and achieving more
uniform CX gate lengths across the device. Further-
more cat-qubit bit-flip rates can be reduced (see Appen-
dices D 1 and F 5) by using optimized circuit parameters
to achieve higher performing two-photon dissipation as
demonstrated in Ref. [23]. We project that with these im-
provements, an overall logical error per cycle approach-
ing 0.5% (limited by transmon errors) is achievable with
a distance-5 code even without improvements in the com-
ponent coherence times.

The use of ancillary transmons for syndrome measure-
ments is critical to our experiment, enabling coherence-
limited, noise-biased CX gates. While the current per-
formance of our experiment is not limited by the cat
bit-flip errors induced by ancilla transmon double decay
and heating, these mechanisms would ultimately place a
lower bound on the logical error probability of our repe-
tition cat code. This performance floor can be lowered in
the near term by improving the coherence of the ancilla
transmons. A scalable, long-term approach to overcome
the remaining limitation, while still enjoying the practi-
cal benefits of the ancilla transmon, is to concatenate cat
qubits into rectangular surface codes [14] or XZZX sur-
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face codes [13] which are tailored to noise-biased qubits.
We analyze this approach in Ref. [69], and find that
significant hardware-efficiency improvements are possible
relative to the case without biased noise.

An alternative approach to overcome the transmon-
induced limitations is to utilize cat qubits as the ancillas
as well as the data qubits. This was proposed early on in
Ref. [10], but existing proposals for cat-cat CX gates are
hampered by large control errors [10, 11, 14]. Searching
for ways to implement syndrome measurements with a
large noise bias but without undesired control errors [70–
72] thus represents an important direction for future re-
search. Indeed, if the performance of gates were limited
only by the cats’ intrinsic bit-flip and phase-flip rates,
sizable reductions in logical-memory overhead would be
possible with realistic device parameters. For example, in
Ref. [23] we show a cat qubit with bit-flip times approach-
ing 1 s at |α|2 = 5 that correspond to a bit-flip error per
cycle of 10−6 assuming 1 µs error-correction cycles. With
improvement of the storage lifetime to ∼ 300 µs [73], we
project (see Appendix I 4) that an overall logical error
per cycle below 10−5 could be achieved with a repetition
code comprising only d = 11 cat qubits. Further, with
≳ 100 s bit-flip times [37], and ms-scale storage T1 [74],
algorithmically-relevant logical error per cycle of ∼ 10−8

could be achieved with similar overhead. While these
examples assuming coherence-limited gates are idealized
hypotheticals, they nevertheless highlight the potential
of cat qubits to enable hardware-efficient logical qubits.
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Appendix A: Device fabrication

The repetition code device consists of two silicon dies
fabricated separately on high-resistivity silicon then flip-
chip bonded together [75, 76], as described in Ref. [23].
The 16 × 14 mm2 aluminum-based “qubit” die contains
Al/AlOx/Al Josephson junctions to form nonlinear cir-
cuit elements in the ancilla transmons, couplers, and
buffers. The second, 20 × 20 mm2 tantalum-based die
is patterned to form storage resonators and other linear
elements such as the readout resonators, Purcell filters
for the readout resonators, and filters for the buffers.
Indium bumps are deposited on both dies to facilitate
flip-chip bonding and electrical connection between the
dies, as well as an under-bump metallization layer on
the aluminum-based die. Bond-stop spacers are used to
improve the uniformity of the gap between dies. After
flip-chip bonding of the paired dies, signal line pads at
the periphery of the tantalum-based die are wirebonded
to a PCB with aluminum wirebonds.
We have separated the fabrication of constituent

“qubit” and tantalum-based dies into distinct process
flows tailored for their individual requirements. This sep-
aration has several benefits. First, this allows us to fab-
ricate high-coherence storage modes in thin-film tanta-
lum [73, 77] without process integration constraints im-
posed by fabricating Al/AlOx/Al Josephson junctions
on the same wafer. Second, we are free to test and
select die pairs which have favorable frequency align-
ment throughout the unit cells of the repetition code,
particularly between the ancillas on the qubit die and
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storage resonators on the tantalum-based die. By us-
ing the estimated Josephson junction energies measured
at room-temperature to inform the circuit layout for the
tantalum-based dies, we can partially account for both
systematic and stochastic junction energy variations in
the flip-chip integrated device, as detailed in Appendix E.
Third, systematic imperfections in the fabricated Joseph-
son junction energies on the qubit die relative to their
designed parameters (e.g. due to spatial gradients across
a wafer) can generally be reduced by keeping the die size
smaller. The latter two benefits are especially important
in scaling up from unit-cell devices as in Ref. [23] to rep-
etition codes.

Appendix B: Control lines and fridge setup

The buffer is flux-biased by Σ and ∆ control lines
which drive flux symmetrically and antisymetrically in
the buffers flux loops [22]. To drive the buffer mode and
set the steady-state for the two-photon dissipation, we
drive an input line capacitively-coupled to the first unit
cell of the filter array. The buffer output is a transmis-
sion line coupled to the last element of the buffer mode
filter. This input line and output line can also be used for
calibration of the buffer mode by spectroscopically mea-
suring the buffer mode. When not performing readout of
the buffer, the buffer output is terminated to a 50 Ohm
environment. The flux pump to realize the two-photon
dissipation is applied on the Σ flux bias line.

The storage mode can be displaced with a charge-
coupled drive line. The coupler bias is controlled through
a flux line which addresses its SQUID loop. The ancilla
has an XY control line and can be read out through its
readout resonator coupled to a transmission line. The
ancillas on the chip are grouped so that two or three
ancillas are read out using the same readout line in a
multiplexed manner [47, 78].

The dilution fridge and room temperature setup used
for one unit cell of the device is shown in Fig. 6. This
setup is duplicated across all of the unit cells in the rep-
etition code. Note that compared to Ref. [23] the wiring
diagram is almost identical. The main differences are the
buffer output line configuration which uses a cryoswitch
to allow multiple buffers to be read out with one read-
out line and some minor differences in room temperature
filtering.

We temperature cycle the dilution fridge to shift spuri-
ous two-level systems (TLSs) [68] if they are at problem-
atic frequencies (see Appendix F 9). The need for this
could be minimized in the future by moving to tunable-
frequency ancilla qubits.

Appendix C: Basis and error rate convention

Similarly as in Refs. [10, 14], we use the basis conven-
tion where the complementary basis states |±⟩ of the cat

qubit are given by the even and odd cat states, i.e.,

|±⟩ ≡ |C±
α ⟩ = |+ α⟩ ± |−α⟩√

2(1± e−2|α|2)
. (C1)

Thus, the computational basis states |0⟩ = (|+⟩ +

|−⟩)/
√
2 and |1⟩ = (|+⟩ − |−⟩)/

√
2 are approximately

given by the coherent states, i.e., |0⟩ ≃ | + α⟩ and

|1⟩ ≃ |−α⟩ in the limit of e−2|α|2 ≪ 1. In this ba-

sis convention, a Pauli X operator X̂ of the cat qubit
is simply given by the photon number parity operator
exp[iπn̂] where n̂ = â†â is the photon-number operator.
As a result, an X-basis readout of a cat qubit can be
straightforwardly implemented by a photon-number par-
ity measurement.
Since the computational basis states are given by two

coherent states | ± α⟩, reading out a cat qubit in the Z
basis requires the ability to distinguish the two coherent
states. One way to achieve this is to perform displaced-
parity measurements and average the measurement out-
comes over many shots (see, e.g., Ref. [23]). However,
this approach does not realize the Z-basis readout in a
single-shot manner which is necessary for characterizing
one of the logical operators of the repetition cat code.
Thus in this work, we instead use displaced-vacuum pop-
ulation measurements [69] to perform a single-shot Z-
basis readout of a cat qubit (see Appendix G1 for more
details).
In our basis convention, the cat qubits have noise

bias towards phase-flip (Z) errors which are caused by
parity flips due to photon losses. Thus as an outer
error-correcting code, we use a distance-d repetition code
whose stabilizer generators are given by X̂iX̂i+1 for 1 ≤
i ≤ d− 1. With this choice, the stabilizers of the repeti-
tion code anti-commute with the Z errors and thus can
extract non-trivial error syndromes of the dominant Z
errors of the data cat qubits.
The logical Z operator of the repetition code is given

by ẐL = Ẑ1Ẑ2 · · · Ẑd. Then the correctability of the Z
errors is illustrated by the large irreducible Hamming
weight of the logical Z operator. In contrast, any single-
qubit Pauli X operator acts as a logical X operator of
the repetition code, i.e., X̂L = X̂i for any 1 ≤ i ≤ d. For
example, the action of X̂1 on the repetition code states
is equivalent to that of X̂2 since these two operators only
differ by the multiplication of a stabilizer X̂1X̂2 which
acts trivially in the code space. As a result, a bit-flip (X)
error on any single qubit can directly cause a logical X
error in the repetition code. Thus it is crucial that the
bit-flip errors on the data cat qubits are suppressed at
the physical level.
To characterize the logical lifetimes and the error

rates of the repetition cat code, we measure ⟨X̂L(t =

0)X̂L(t = t)⟩ and ⟨ẐL(t = 0)ẐL(t = t)⟩ using the pulse
sequences in Fig. 23 and Fig. 24, respectively. Then we
fit ⟨X̂L(t = 0)X̂L(t = t)⟩ to an exponential decay curve

with a constant offset, i.e., ⟨X̂L(t = 0)X̂L(t = t)⟩ =
A exp[−t/TX ] + B and define the logical X lifetime as
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17

the decay time constant TX . Note that the constant
offset is added to account for the non-zero asymptotic
value of ⟨X̂L(t = 0)X̂L(t = t)⟩ in the long time limit,
which is expected in the small |α|2 regime due to the
asymmetric phase-flip rates between the even and odd
cat states (see Appendix H10 for more details). For the

logical Z lifetime, we fit ⟨ẐL(t = 0)ẐL(t = t)⟩ to an
exponential decay curve without a constant offset, i.e.,
⟨ẐL(t = 0)ẐL(t = t)⟩ = A exp[−t/TZ ] and define the
extracted decay time constant TZ to be the logical Z
lifetime. A constant offset is not included in this case be-
cause the bit-flip rates are not state-dependent and thus
⟨ẐL(t = 0)ẐL(t = t)⟩ is expected to vanish in the long
time limit. Based on these logical X and Z lifetimes TX

and TZ , we define the logical phase-flip and bit-flip error
per cycle as

ϵL,phase-flip = pZ + pY ≡ Tcycle

2TX
,

ϵL,bit-flip = pX + pY ≡ Tcycle

2TZ
, (C2)

where Tcycle is the error-correction cycle time which is
given by Tcycle = 2.8 µs in our experiments. Note that the
factor of 2 in the denominator emerges from the fact that
two subsequent errors cancel out in a simple Lindblad
noise model with Pauli jump operators [23, 26, 28–30].
Following Refs. [26, 28–30], we define an overall logical
error per cycle as

ϵL ≡ 1

2
(ϵL,phase-flip + ϵL,bit-flip). (C3)

Lastly we remark that for the single-cat bit-flip and
phase-flip times, we follow the same convention (includ-
ing the factor of 2) as in Ref. [23].

Appendix D: Device Hamiltonian

Here we provide more details on the Hamiltonian of a
unit cell of our device (see e.g., Fig. 1(c) and Fig. 2(a)).
In particular, we focus on the aspects that are crucial
for realizing a noise-biased CX gate between a data cat
qubit and an ancilla transmon qubit. The desired ef-
fective Hamiltonian for realizing the CX gate takes the
form

Ĥ =
(
g2(t)(â

2 − α2)b̂† +H.c.
)

+ χge(Φx,c(t))â
†â|e⟩⟨e|+ χgf (Φx,c(t))â

†â|f⟩⟨f |.
(D1)

As will be made clear shortly, however, g2(t) and Φx,c(t)
are never turned on simultanesouly in our experiments.

Here, â and b̂ are the annihilation operators of the stor-
age and the buffer, respectively. g2(t) is the strength of
the three-wave mixing (3WM) interaction between them.

Combined with the buffer loss κbD[b̂], the storage-buffer

interaction g2(t)(â
2 − α2)b̂† +H.c. realizes a two-photon

dissipation of the form κ2(t)D[â2−α2] which stabilizes a
cat qubit with a mean photon number of approximately
|α|2. Note that similarly as in Ref. [23], we use the termi-
nology “pure two-photon dissipation” to refer to the dy-
namics due to κ2D[â2] (i.e., two-photon dissipation with
α = 0).

Note that |e⟩ and |f⟩ are the first and the second ex-
cited states of the ancilla transmon. Thus, χge(Φx,c(t))
and χgf (Φx,c(t)) represent the dispersive shift of the stor-
age mode frequency as the ancilla transmon is excited
from the ground state |g⟩ to an excited state |e⟩ and |f⟩,
respectively. During a CX gate, the ancilla transmon
should ideally be in the |g⟩/|f⟩ manifold. However in
practice the ancilla may have a non-zero |e⟩ state popu-
lation for various reasons such as state-preparation errors
and an |f⟩ → |e⟩ decay process.

The dispersive coupling strengths χge(Φx,c(t)) and
χgf (Φx,c(t)) depend on the external flux Φx,c of a tunable
coupler. Each coupler in our system is implemented by
a tunable-frequency transmon. Ideally when the coupler
is in an “off” position (Φx,c = 0 maximizing the coupler
frequency), both χge and χgf should vanish. Moreover
when the coupler is in the “on” position (Φx,c = Φ0/2,
or the half flux quantum, minimizing the coupler fre-
quency), we ideally need to achieve the “χ-matching”
condition χge = χgf such that the bit-flip rates of a cat
qubit are first-order insensitive to the processes that put
the ancilla transmon in the |e⟩ state when it is supposed
to be in the |f⟩ state.

In our implementation of the CX gate, the two-photon
dissipation and the flux pulse are never turned on simul-
taneously. That is, the two-photon dissipation is turned
on only when the coupler is in the “off” position (i.e.,
Φx,c(t) = 0 when |g2(t)| > 0) and not when a coupler
flux pulse is applied (i.e., g2(t) = 0 when |Φx,c(t)| > 0).
This way, the cat qubit in the storage mode can freely
rotate when a coupler flux pulse activates the storage-
ancilla dispersive coupling.

In this section, we first provide more details on the
buffer modes in our device including nonidealities in some
unit cells in Appendix D1. Then moving on the the CX
gates we discuss in Appendix D2 how the χ-matching
condition can be natively achieved for the CX gates
through frequency targeting based on a simple Kerr os-
cillator model. Finally in Appendix D3, we provide a
circuit-quantization-level model of a CX gate in our de-
vice and discuss various practical aspects of the storage-
ancilla interaction for implementing the CX gate.

1. Buffer mode for implementing two-photon
dissipation

The buffer mode in our device is implemented as an
ATS [22] with additional inductors [23] in series with the
two side junctions. To protect the storage modes from
the strong engineered decay on the buffer modes (e.g.,
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with κb/2π ∼ 10 MHz), we use a 4-pole metamaterial
bandpass filter for each buffer. The bandwidth of the
filter is approximately 1GHz and the transmission drops
sharply outside of the filter passband. This ensures that
the lifetimes of the storage modes are not limited by the
buffer’s loss channel as in Ref. [23].

In practice, various buffer-induced nonlinearities such
as the storage self Kerr Ks and storage-buffer cross Kerr
χsb can negatively affect the performance of two-photon
dissipation and degrade the bit-flip times of a cat qubit.
Following the method detailed in Ref. [23], we have care-
fully optimized the circuit parameters of the buffer mode
(especially its average side junction energy and the serial
inductance) such that the self Kerr of the buffer mode
is minimized at the saddle points (where the buffer fre-
quency is first-order insensitive to the flux deviations).
As a result, the buffer-induced storage self Kerr and the
storage-buffer cross Kerr are predicted to be small in
most unit cells of our devices (i.e., |Ks/2π| < 2 kHz and
|χsb/2π| < 120 kHz) compared to the 3WM interaction
strength g2/2π which range from 320 kHz to 420 kHz.
In one of the unit cells which exhibits the worst bit-
flip performance (i.e., S4), the buffer-induced nonlinear-
ities are predicted to be large (Ks/2π = 2.7 kHz and
χsb/2π = 390 kHz compared to g2/2π = 350 kHz) due to
mis-targeting of the buffer junction energies. These pre-
dictions are made using a detailed circuit-quantization-
level model of our device, where the model parameters
are systematically tuned up to match the measured buffer
spectrum in the same way as in Ref. [23].

The desired 3WM mixing interaction between the stor-

age and the buffer (i.e., g2â
2b̂†+H.c.) is realized by pump-

ing the sigma flux of the buffer mode [22] with a pump fre-
quency of ωp = 2ω̄s − ω̄b. Here, ω̄s and ω̄b are the Stark-
shifted frequencies of the storage and the buffer under
the buffer pump. As shown in Ref. [23], this buffer pump
can generally lead to undesired side-band transitions. In
the parameter regime of our device, the most relevant

side-band transition takes the form of â†b̂†3+H.c. due to
the resonance condition 2ωp ∼ ω̄s + 3ω̄b. In some of the

unit cells of our device, the undesired process â†b̂†3+H.c.
is not sufficiently detuned from the desired 3WM process

â2b̂† +H.c and leads to additional parity-flip rates of our
storage mode under the buffer pump (see for example
Figs. 9 and 10).

2. Simple Kerr oscillator model of the CX gate and
χ-matching

To understand the basic aspects of the CX gate and
χ-matching, we first provide here a toy model of the
storage-ancilla subsystem based on a simple Kerr oscil-
lator model of a transmon. The key conclusion of this
analysis is that an ideal χ-matching condition is achieved
approximately when the storage frequency is higher than
the ancilla frequency by the magnitude of the ancilla
transmon’s anharmonicity (assuming the qubit has a neg-

ative anharmonicity).
We consider the Hamiltonian of the form

Ĥ = ωs,0â
†â+ ωq,0q̂

†q̂ +
Kq

2
q̂†2q̂2 + g(âq̂† +H.c.).

(D2)

Here, â and q̂ are the annihilation operators of the storage
mode and the ancilla transmon qubit. Note thatKq is the
self Kerr (or the anharmonicity) of the qubit in isolation
without the coupling term g(âq̂†+H.c.), i.e., ωef −ωge =
Kq. For a transmon, the self Kerr Kq is negative and
typically given by Kq/2π ≃ −200 MHz.
We treat the coupling term g(âq̂† + H.c.) perturba-

tively. Then, we find the following storage frequencies
conditioned on the qubit being in |g⟩, |e⟩, |f⟩ (see, e.g.,
Eq. (41) of Ref. [18])

ωs,q:|g⟩ ≃ ωs,0 +
g2

∆0
,

ωs,q:|e⟩ ≃ ωs,0 +
2g2

∆0 −Kq
− g2

∆0
,

ωs,q:|f⟩ ≃ ωs,0 +
3g2

∆0 − 2Kq
− 2g2

∆0 −Kq
(D3)

to the second order in g2, where ∆0 ≡ ωs,0 − ωq,0. Note
that these conditional storage frequencies are indepen-
dent of the storage photon number n to the second order
in g2 but this is generally not the case if the higher order
terms are included (e.g., due to the qubit-induced self
Kerr of the storage mode).
The above conditional storage frequencies subse-

quently yield

χge ≡ ωs,q:|e⟩ − ωs,q:|g⟩ ≃
2g2Kq

∆0(∆0 −Kq)

χgf ≡ ωs,q:|f⟩ − ωs,q:|g⟩ ≃
2g2Kq(2∆0 −Kq)

∆0(∆0 −Kq)(∆0 − 2Kq)
(D4)

to the second order in g2. Note that the ratio between
χge and χgf is given by

χge

χgf
=

∆0 − 2Kq

2∆0 −Kq
. (D5)

Thus the χ-matching condition χge = χgf is achieved
when ∆0− 2Kq = 2∆0−Kq which is equivalent to ∆0 =
−Kq or more explicitly

ωs,0 = ωq,0 −Kq. (D6)

Hence for a transmon with a negative anharmonicity
Kq < 0, the above perturbative analysis suggests that
an ideal χ-matching condition is achieved when the stor-
age frequency is higher than the ancilla frequency by the
magnitude of the ancilla transmon’s anharmonicity (e.g.,
approximately 200 MHz) [79].
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3. Full circuit-quantization-level numerical model
of the CX gate and χ-matching

The Kerr oscillator model gives a useful intuition on
how the χ-matching condition can be natively achieved
through frequency targeting. In practice, various realis-
tic aspects of our device (e.g., presence of the couplers)
are not accounted for in the simple Kerr oscillator mode.
Thus, we use a more detailed circuit-quantization-level
model to accurately predict the χge/χgf ratio. Specifi-
cally, besides the storage, ancilla, and the coupler that
directly participate in the CX gate, our model also in-
cludes other elements that are adjacent to the storage
and the ancilla. For example, the buffer mode and addi-
tional modes associated with the buffer’s serial inductors
are included in the model since they affect the properties
of the storage mode. Similarly, even though the readout
resonator and another coupler in the same unit cell (for
realizing the CX gate in a different direction) do not di-
rectly participate in the CX gate, they are included in
the model as they affect the properties of the ancilla. To
make the diagonalization of such a large system tractable,
we use the DMRG-X method [80] (i.e., density matrix
renormalization group method for excited states). We
ensure that the results converge with respect to the local
dimension and the bond dimension within the accuracy
of interest.

Recall that in our device, we use a tunable-frequency
transmon as a coupler that mediates a tunable dispersive
coupling between a storage mode and an ancilla trans-
mon. The basic principles of this tunable dispersive cou-
pling are described in detail in Ref. [23]. In this previous
work, the tunable dispersive coupling was used simply
as a way to characterize the state of a storage mode at
the end of a pulse sequence. However in this work, the
tunable dispersive coupling has an important additional
role of mediating an entangling gate (i.e., a noise-biased
CX gate) between a data cat qubit and an ancilla trans-
mon. Since these CX gates are repeatedly applied in the
bulk of a repetition cat code error-correction sequence,
precise engineering of the tunable dispersive coupling is
crucial for the performance of our repetition cat code.
Here, we complement Ref. [23] by presenting additional
details of the tunable dispersive coupling related to the
implementation of a noise-biased CX gate.

In our noise-biased CX gate, the computational basis
states of an ancilla transmon are given by |g⟩ and |f⟩
where the latter may decay to the |e⟩ state. Thus it
is essential to track the properties of the system when
the transmon is in |f⟩ as well as in |g⟩ and |e⟩. We
present various properties of a CX gate predicted by our
circuit-quantization-level model of the device. The pa-
rameters of the model are chosen to reproduce the ob-
served frequency spectrum on one of the CX gates in our
device (i.e., CX gate between A2 and S3). With these
parameters, as the coupler flux goes from Φx,c = 0 to
Φx,c = Φ0/2, the frequency of the coupler tunes from
9.0 GHz to 6.6 GHz, approaching those of the storage

(a)

(b)

(c)

(d)

FIG. 7. Full circuit-quantization-level numerical
model of a CX gate and χ-matching. (a) Frequencies
of the storage, ancilla, and the tunable coupler as a function
of the coupler flux Φx,c in the unit of the flux quantum Φ0. (b)
The ratio χge/χgf as a function of the coupler flux. A crude
prediction based on the perturbative expression Eq. (D5) is
added as a reference (blue curve). The changes in the χge/χgf

ratio are mostly due to the increasing storage-ancilla detuning
as the coupler approaches its minimum frequency position at
Φx,c/Φ0 = 0.5. (c) Storage-ancilla χge and χgf as a function
of the coupler flux. (d) Self Kerr of the storage mode condi-
tioned on the ancilla being in |g⟩, |e⟩, |f⟩ as a function of the
coupler flux.

and the ancilla.
In Fig. 7(a), we show the frequencies of the storage

mode and the ancilla transmon as a function of the cou-
pler flux Φx,c which are predicted by our model. Sim-
ilarly as in Ref. [23], the coupler-ancilla coupling is de-
signed to be much stronger than the coupler-storage cou-
pling such that the storage mode does not inherit large
non-linearities from the coupler. As a result, the ancilla
frequency is more significantly shifted than the storage
frequency due to the level repulsion with the coupler as
the coupler approaches its minimum frequency and gets
closer to the storage and the ancilla. This then results in
an increase in the storage-ancilla detuning as the coupler
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approaches Φx,c = Φ0/2 which is where the CX gate is
operated at.

The dependence of the the storage-ancilla detuning on
the coupler flux is important because the χge/χgf ratio
varies as the detuning changes. In particular, we aim
to ensure that the χ-matching condition χge/χgf = 1 is
achieved at the operating point of the CX gate Φx,c =
Φ0/2. Thus the idling frequencies at Φx,c = 0 need to
be chosen carefully to account for the frequency shifts
due to the coupler as the coupler approaches the operat-
ing point. In Fig. 7(b), we show how the χge/χgf ratio
varies as a function of the coupler flux Φx,c. For refer-
ence, we also feature a naive prediction of the χge/χgf

ratio based on the dressed storage-ancilla detuning and
the ancilla anharmonicity and using Eq. (D5). Note that
the χge/χgf ratio decreases and gets closer to the ideal
value of 1 as the coupler approaches Φx,c = Φ0/2. This is
because the storage-ancilla detuning is increased due to
the asymmetric repulsion with the coupler as discussed
above. This behavior can also be explained qualitatively
by the expression in Eq. (D5). Despite the qualitative
agreement, the naive prediction based on the Kerr oscil-
lator model does not agree quantitatively with the one
from the full circuit-quantization-level model. Note that
we rely on the latter model in designing our system since
it agrees well with the experimental data for several key
metrics such as the χge/χgf ratio. For example for the
A2 ↔ S3 interaction considered here, the χge/χgf ratio is
measured to be 1.04 at the coupler’s minimum frequency
position (see Appendix F 4). The circuit-quantization-
level model predicts χge/χgf = 1.05 at the same oper-
ating point while the naive perturbative expression pre-
dicts χge/χgf = 1.13. This level of discrepancy can be
important, especially on the edge of the χ-matching re-
quirement 0.8 ≲ χge/χgf ≲ 1.2.

With the chosen model parameters, the storage-ancilla
dispersive shifts χge and χgf are given by around−1 MHz
in an approximately χ-matched manner as shown in
Fig. 7(c). This level of the magnitude of the dispersive
shift approximately corresponds to a CX gate length of
∼ 500ns. Furthermore, Fig. 7(d) shows that the magni-
tude of the storage self Kerr remains well below 5 kHz
at the operating point of the CX gate for all relevant
transmon states |g⟩, |e⟩, |f⟩. Importantly, these Kerr val-
ues are at least two orders of magnitude smaller than the
dispersive coupling strength. Thus the storage-ancilla in-
teraction remains sufficiently dispersive even with many
photons in the storage mode (e.g., |Ksα|2 ≪ |χge|, |χgf |
for an average photon number |α|2 on the order of 10).
This property is crucial for hosting a cat qubit with a
large number of photons in the storage mode.

Lastly, we remark that the storage self Kerr behaves
smoothly as a function of the coupler flux. This indicates
that our system is free of undesired resonances (e.g., of
the kind discussed in Ref. [23]). While the undesired
resonances are absent in our system, some unintended
transitions can still occur due to a flux pulse applied to
the coupler. In particular across all the unit cells in our

(a) (b)

Al chip Ta chip

FIG. 8. Tuning the tantanlum-based die for frequency
targeting. (a) Example of decreasing the storage mode fre-
quency by increasing the length of the storage resonator on
the tantalum-based die. The black outlines are the Al chip
cutout. (b) Example of decreasing the ancilla mode frequency
by increasing the degree of metallization in the tantalum-
based die. The extra metallization in the tantalum-based die
is achieved by reducing the length of the associated cutout.
This then increases the ancilla’s total capacitance, leading to
reduced anharmonicity and the frequency of the ancilla.

device, the storage-ancilla detuning ranges from 40 MHz
to 150 MHz when the coupler is in the “off” position. If
the flux pulse is not adiabatically ramped up and down
(relative to the energy scale of the storage-ancilla de-
tuning), it can contain a significant spectral density at
the storage-ancilla detuning and induce an “iSWAP”-like
excitation exchange between the storage and the ancilla.
Such an excitation exchange then causes additional heat-
ing and decay of the ancilla and results in a significant
degradation of the bit-flip times of our cat qubits.

Appendix E: Frequency targeting procedure for
achieving the χ-matching condition

As described in Appendix D, native χ-matching im-
poses a stringent requirement on targeting of the storage-
ancilla detuning. Targeting of the storage frequency is
relatively straightforward since the storage modes are
simple CPW resonators. However, targeting of the
ancilla frequency is challenging due to systematic and
stochastic variations in the Josephson junction energies
of the ancilla junctions. We address this challenge by
systematically optimizing the design parameters of the
tantalum-based die based on the estimated junction en-
ergies of the ancilla junctions in the aluminum-based die.
At room temperature, we directly measure the resis-

tances of all the ancilla junctions in the aluminum-based
die that will eventually form a final device. We then es-
timate the cryogenic ancilla junction energies based on
the outcome of the room-temperature resistance mea-
surement. In particular, we rely on an empirical relation-
ship between the room-temperature junction resistances
and the cryogenic junction energies which is established
based on prior tests.
Provided with the estimated ancilla junction energies,

we optimize various design parameters of the tantalum-
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based die. First as shown in Fig. 8(a), we tune the length
of the storage resonators (and thus their frequencies)
such that the storage modes have an optimal detuning
with respect to the expected ancilla frequencies. This
can correct for a global mistargeting of the ancilla fre-
quencies relative to the desired targets. Second as shown
in Fig. 8(b), we individually tune the total capacitance
of the ancilla transmons by varying the length of the as-
sociated cutouts in the tantalum-based die. This then
results in predictable changes in the anharmonicity and
frequency of the ancilla transmons. These changes can
be used to correct for individual random variations in
the ancilla frequencies relative to the desired targets. To
make the design optimization systematic, we use the full
circuit-quantization-level model of the CX gate presented
in Appendix D3. In particular, we aim to minimize the
metric |χge/χgf − 1| at a value of the coupler flux which
yields χgf/2π = −1.35 MHz such that the χge/χgf ra-
tios are optimized for a representative CX gate length of
approximately 500 ns.

Note that we have carefully designed both the
aluminum-based die and the tantalum-based die such
that they can flexibly accommodate a wide range of stor-
age frequencies and ancilla capacitances. We further re-
mark that for this design tuning procedure to succeed in
practice, we need an accurate relationship between the
room-temperature junction resistance and the cryogenic
junction energy. In particular, after the ancilla junction
resistance measurement, the aluminum-based die has to
wait until its tailor-designed tantalum-die is fabricated.
Thus, a good model of the evolution (i.e., “aging”) of the
junction resistances is also required to ensure that the
two dies remain as an optimal pair at a later point when
they are ready to be flip-chip bonded. Lastly, the flip-
chip gap should be consistently given by the expected
value across the entire device because it affects the ca-
pacitances (and thus also frequencies) of the storages and
the ancillas.

The frequency targeting of the two specific ancillas A1
and A2 illustrate the importance of the frequency tuning
procedure described here. The anharmonicities of A1 and
A2 were tuned by 5% resulting in the reduction of the
frequencies of these ancillas by approximately 100 MHz.
As a result, these ancillas achieved good measured χ-
matching ratios of 1.03 < χge/χgf < 1.12 which they
otherwise would not have if it were not for the frequency
tuning procedure.

Appendix F: Component calibrations and
parameters

1. Mode frequencies and coherences

The couplers in our device idle at their maximum fre-
quency positions. The maximum frequencies of the cou-
plers are above 8.5 GHz and their minimum frequencies
range from 6.25 GHz to 6.75 GHz. Each buffer mode is

biased to one of its two saddle points. When choosing
which one of the two saddle points each buffer should
operate on, we take into consideration the impact of
problematic pump-induced resonances discussed in Ap-
pendix D1 and Ref. [23]. The frequencies of all the im-
portant modes of our device are shown in Fig. 9(b). Note
that the reported ancilla and storage frequencies are mea-
sured with all the couplers at their idle (maximum fre-
quency) positions.
In Fig. 9 we also show the |e⟩ → |g⟩ and |f⟩ → |e⟩ de-

cay times of the ancilla transmons (T1,e→g and T1,f→e)
as well as the storage T1 and T2 with or without a pure
two-photon dissipation being applied. The storage mode
lifetimes and dephasing times are reported by averaging
over the T1 and T2 data collected during the repetition
code experiment run. The ancilla decay times T1,e→g

and T1,f→e are from the measurements taken at the time

of the CX2 gate performance characterization. Since the
ancilla decay and dephasing times can fluctuate over time
the reported values in Fig. 9 should only be viewed as a
representative snapshot. Note also that the ancilla de-
cay times can vary as a function of the coupler flux (see
Fig. 18).

2. Storage T1 and T2 measurements

We measure the T1 and T2 of the storage modes both
with and without two-photon dissipation being applied.
We follow a similar procedure to [23]. To measure the
storage T1 and T2 with the pure two-photon dissipa-
tion turned on, we displace the storage mode into a co-
herent state with a large coherent state amplitude of
|α| = 2. Then we apply pure two-photon dissipation

for 6 µs to prepare the state (|n̂ = 0⟩ + |n̂ = 1⟩)/
√
2

(up to relative phase and state preparation errors) and
subsequently apply a variable-length delay with the pure
two-photon dissipation turned on. When we measure the
storage T1 and T2 without the pure two-photon dissipa-
tion turned on during the delay, we mostly follow the
same approach above with the differences that the ini-
tial coherent state amplitude is now given by |α| = 0.75
and the pure two-photon dissipation is turned off dur-
ing the variable-length delay. We use a smaller coherent
state amplitude for the case without the pure two-photon
dissipation during the delay to ensure the storage mode
is well confined within the |n̂ = 0⟩/|n̂ = 1⟩ manifold
after the state preparation. After the delay period we
perform photon-number parity measurement to measure
the storage T1 while for the storage T2 measurement, we
displace the storage mode by ± ln(

√
1/2) ≃ ±0.83 and

apply a vacuum-selective pulse on the ancilla.
Note that in practice other mechanisms besides single

photon loss and dephasing can impact the storage T1

and T2 as measured with the methods described above.
For example our parity-based storage T1 measurements
are also sensitive to heating of the storage mode which
affects the photon number parity of the storage mode.
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FIG. 9. Mode frequencies and coherences. (a) Labels for the storages, buffers, couplers, ancillas, and readout resonators
in the circuit. (b) Frequencies of the modes. (c)(d) T1 of the ancilla ge and ef transitions. These measurements are taken with
the couplers in the off position and should be viewed only as approximate since the ancilla coherences can fluctuate over time
and vary when moving the coupler from the “off” to “on” position (see Appendix J 2 and Appendix F 9). (e)(f) Storage T1 and
T2 without two-photon dissipation being applied. (g)(h) Storage T1 and T2 with two-photon dissipation being applied.

(a)

(c)

(b)

(d)

FIG. 10. Storage T1 and T2 measurements. Example storage (a) T1 and (b) T2 measurements without the pure two-photon
dissipation applied during the delay for one of the storage modes S1 in our device. (c) T1 and (d) T2 measurements with the
pure two-photon dissipation turned on during the delay for the same storage mode S1. We observe degradation in the storage
T1 and T2 with pure two-photon dissipation applied during the delay. In addition the steady-state parity of the storage mode
is shifted when the pure two-photon dissipation is turned on. The inset shows the number splitting after applying two-photon
dissipation for 100 µs after starting from the vaccuum. The non-zero steady state parity can be attributed to buffer pump
induced resonances between the storage and buffer which cause undesired heating of the storage mode (occurring in this unit
cell as well as some other unit cells in our device; see Appendix D1 and Ref. [23] for more details).

In particular as discussed in Ref. [23] and Appendix D1,
some unit cells in our device are subject to the undesired

buffer-pump-induced resonances of the form â†b̂†3 +H.c.
which can induce heating of the storage mode under the

two-photon dissipation.

Fig. 10 shows an example of these T1 and T2 measure-
ments performed on one of the storage modes S1. We
observe degradation of both the T1 and T2 of the stor-
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FIG. 11. Ancilla transmon readout and reset. (a) Readout clouds for the ancilla states |g⟩, |e⟩, and |f⟩ for all the ancillas,
demonstrating good distinguishability of the three ancilla states. (b) |g⟩, |e⟩, and |f⟩ populations of the ancilla under the
reset pulses as a function of time. In these experiments, each ancilla is initialized in the |e⟩ state. The combined |e⟩ and
|f⟩ populations reach the readout floor in approximately 500 ns or less. The readout floor corresponds to the probability of
measuring not-|g⟩ when |g⟩ is prepared.

age mode when the pure two-photon dissipation is ap-
plied during the delay. Additionally, we observe that the
steady-state parity of the storage mode under the pure
two-photon dissipation is significantly shifted compared
to when the pure two-photon dissipation is not applied
during the delay. We attribute the shift in steady state
parity and decreased lifetime under two-photon dissipa-
tion to the undesired heating of the storage induced by
the buffer pump due to the mechanism mentioned above.
This is further evidenced by the small population of the
excited storage state shown in the inset of Fig. 10(c)
which presents the number splitting spectrum of the stor-
age after two-photon dissipation is applied for 100 µs to
the initial vacuum state. However, as demonstrated in
Ref. [23], the issue of the buffer-pump-induced heating of
the storage mode can be remedied by carefully arranging
the storage and buffer frequencies to avoid these unde-
sired resonances. Thus, we expect that these undesired
effects will not limit the dissipative cat qubit architec-
tures in the future.

The storage T1 and T2 reported in Fig. 9 are obtained
by averaging over multiple storage T1 and T2 datasets
collected during the repetition code experiment run as
outlined in Appendix G7.

3. Ancilla transmon readout and reset

Each ancilla transmon is read out by driving the read-
out resonator to which it is dispersively coupled [17].
The readout resonator is inductively coupled to a feed
line through a single-pole λ/4 Purcell filter to allow for
fast readout without degrading the lifetime of the ancilla
transmon. To allow for fast readout, the readout line
has a traveling wave parametric amplifier (TWPA) from
MIT Lincoln Laboratory [81]. We use a readout integra-
tion length which is 80 ns longer than the readout pulse
length. Then a ringdown time of 64 ns is added to evacu-
ate the excitations in the readout resonator. These read-
out time scales are chosen conservatively and could be
significantly reduced since the decay rates of the readout
resonators all exceed κr/2π > 5 MHz in our device. The
readout drive amplitude and the pulse length are tuned to
avoid measurement-induced state transitions [67] which,
in our system, may excite the ancilla and coupler to a
highly excited state (e.g., not reset by the reset tones
discussed below). We use the readout pulse duration of
200 ns for the first three ancillas (A1, A2, and A3) and
304 ns for the last ancilla (A4). The readout “clouds”
for the three ancilla states |g⟩, |e⟩, and |f⟩ are shown
in Fig. 11 for all four ancilla transmons. The state-
preparation and measurement (SPAM) error for distin-
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FIG. 12. Storage conditional phase measurements. Results of the storage conditional phase measurements for all 8
storage-ancilla pairs (corresponding to 8 couplers) are shown. In these measurements, each coupler is flux pulsed to the “on”
position which is chosen to be its minimum frequency position. The green horizontal line indicates the target conditional phase
of π required to achieve a CX gate. The vertical lines indicate the gate lengths for the CX gates in the |g⟩/|e⟩ (purple) and
|g⟩/|f⟩ (red) manifold used in the repetition-code error-correction experiment. The storage-ancilla dispersive coupling strengths
χge and χgf are determined by fitting the conditional phase as a function of the flux pulse length. In most cases χge is well
matched to χgf within the 20% relative precision, i.e., |χge − χgf |/|χgf | < 0.2. The S4-A4 interaction has a particularly large
mismatch between χge and χgf due to a small detuning between the storage and ancilla when the respective coupler in the
“on” position.

guishing |g⟩ and |e⟩ is under 2% on all ancillas with a
mean of 1.5%.

Reset of each ancilla transmon is initiated after the
readout ringdown is completed. Each transmon is re-
set by driving the |f0⟩ ↔ |g1⟩ transition between the
ancilla and the readout resonator while also driving the
|e⟩ ↔ |f⟩ transition of the ancilla at the same time [48].
With this reset strategy, both the |e⟩ and |f⟩ states of the
ancilla can be unconditionally reset to the ground state
|g⟩. Duration of these reset pulses is chosen to be 504 ns.
This reset duration is long enough for the combined |e⟩
and |f⟩ populations to reach the readout floor which is
given by the probability of measuring not-|g⟩ when |g⟩
is prepared. We have found that repeatedly applying
the ancilla reset pulses can cause elevated thermal pop-
ulations which can subsequently degrade the noise bias
of the CX gates. Thus, we have configured the ancilla
transmon XY lines carefully to mitigate this problem, as
shown in Fig. 6. Similarly, as in the case of the readout,
the reset duration is chosen conservatively and further
optimizations could speed up the ancilla reset.

4. Storage-ancilla dispersive couplings

In this section, we characterize the storage-ancilla in-
teractions at their “on” positions. There are 8 storage-
ancilla pairs, corresponding to 8 couplers. In our ex-

periments, the “on” position of each interaction is real-
ized by pulsing the associated coupler to its minimum
frequency position, where the storage-ancilla dispersive
coupling strength is maximized.

An initial characterization of the storage-ancilla dis-
persive coupling strength is performed using a storage
conditional phase measurement which is described in de-
tail in Ref. [23]. In this experiment, we determine the
storage phase as a function of coupler flux pulse length
with the ancilla in the |g⟩, |e⟩, and |f⟩ states. By com-
paring the storage phase evolution for different ancilla
states we can determine several important parameters of
our device. First by analyzing the storage phase with
the ancilla in |g⟩ we can determine an initial value of the
storage’s interaction frequency (i.e., storage frequency at
an “on” position; see Appendix F 7 for how this is fur-
ther refined later). Second, the slope of the storage phase
evolution with the ancilla in |e⟩ (or |f⟩) relative to the
ancilla in |g⟩ provides us the value of the storage-ancilla
χge (or χgf ). Lastly, an initial value of the CX gate
length in the |g⟩/|e⟩ (or |g⟩/|f⟩) manifold is determined
by finding where a relative storage phase of π is reached
between the cases where the ancilla is in |g⟩ versus |e⟩
(or |f⟩). Note that the CX gate lengths are refined later
in Appendix F 7.

The results of the storage conditional phase measure-
ments are shown in Fig. 12 for all 8 interactions. The
CX gate length in the |g⟩/|e⟩ (or |g⟩/|f⟩) manifold is indi-
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FIG. 13. Buffer parameters. (a) |S21| and fit for each of the buffer modes. κb (buffer loaded κ) and fb (buffer frequency) are
reported based on the fits. (b) Data to characterize the storage mode two-photon dissipation strength. The storage mode is
initialized to the coherent state |α⟩ and pure two-photon dissipation is applied for a variable duration. We measure the vacuum
state population of the storage mode. The data is fit against a master equation model to determine g2. (c) Data to characterize
the asymmetry of the two-photon dissipation. We perform a pulsed stabilization experiment where we intentionally apply a
phase between the storage mode state and the dissipative stabilization. The asymmetry of the dissipative map can be ascribed
to the calibration of the ∆b detuning for the stabilization and has implications on CX gate fidelity particularly on interactions
with significant χ mismatch.

cated by the red (or purple) vertical line in the plots. Ide-
ally all the interactions need to be perfectly χ-matched
(i.e. χge/χgf = 1. Due to the imperfections in the fre-
quency targeting (even after the tuning strategy in Ap-
pendix E is employed), the realized χge/χgf ratios range
from 0.85 to 1.3. Except for the S4 ↔ A4 interaction,
all remaining 7 interactions have a χ-mismatch of χge

and χgf less than 20%, i.e., |χge − χgf |/|χgf | < 0.2.
However as illustrated in Fig. 2 and discussed in the
main text, the over- or under-rotation due to a small
relative χ mismatch can be tolerated in the repetition-
code error-correction experiments thanks to the cat qubit
stabilization via the two-photon dissipation process (see
Appendix J 3).

5. Two-photon dissipation calibration

The buffer modes are parked on one of their two sad-
dle points. At a saddle point, the frequency of the buffer
is first-order insensitive to the fluctuation in both its
sigma and delta fluxes. For all five buffers, the cho-
sen saddle points are located within the buffer’s filter
passband. Thus all the buffers have radiative loss rates
of ∼ 10 MHz or higher at the chosen saddle points as
shown in Fig. 13(a). These high buffer loss rates are nec-
essary for satisfying the adiabatic elimination condition
for the two-photon dissipation. Despite the large buffer
loss rates, the storage-mode lifetimes are not limited by
the buffer loss channels since the buffer loss environment
is colored via a 4-pole metamaterial bandpass filter.

Tuning up the two-photon dissipation requires cali-
brating two frequencies, ωp and ωd. These frequencies
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correspond to the sigma-flux pump frequency and the
buffer drive frequency. For a generic set of pump and
drive frequencies, the two-photon exchange Hamiltonian

between the storage (â) and the buffer (b̂) is given by

Ĥ = g2â
2b̂†ei∆pt − g2α

2b̂†e−i∆dt +H.c., (F1)

in the rotating frame with respect to the Stark-shifted
storage and buffer frequencies ω̄s and ω̄b. Here ∆p =
ωp− (2ω̄s− ω̄b) is the detuning of the pump that realizes
the 3WM condition and ∆d = ωd − ω̄b is the detuning of
the buffer drive. When calibrating the two-photon dissi-
pation it is particularly important that storage detuning,
given by ∆ ≡ (ωp + ωd)/2 − ω̄s = (∆p + ∆d)/2 [22], is
minimized. Miscalibration of (ωp + ωd)/2 (i.e., a non-
zero residual storage detuning ∆) can degrade the bit-
flip times of a cat qubit by a multiplicative factor. In
contrast to the storage detuning which needs to be care-
fully minimized, the bit-flip times of a cat qubit are not
as sensitive to the conjugate detuning ∆b ≡ (∆p−∆d)/2
which we refer to as the buffer detuning. Note also that
while the buffer detuning ∆b does not significantly af-
fect the bit-flip times of a cat qubit in isolation, it can
have a more noticeable impact in the context of perform-
ing a noise-biased CX gate with an ancilla transmon (see
Appendix F 8).

In our experiment, the buffer detuning ∆b is calibrated
to a precision of ∼ 1 MHz while the storage detuning ∆
is calibrated to a precision of order 1 kHz or less. To
characterize the Stark-shifted storage frequency to a high
accuracy we use a Ramsey inteferometry experiment (of
the kind used for the storage T2 measurement as in Ap-
pendix F 2) with the pure two-photon dissipation turned
on during the delay. Then the pump frequency is updated
to match the measured Stark-shifted storage frequency
ω̄s. These calibrations are repeated often to account for
the drift in the storage frequency and update the pump
frequency. See Appendix G7 for more details.

We take into consideration the effects of undesired
buffer-pump-induced resonances (discussed in Ref. [23]
and Appendix D1) when choosing at which one of the
two saddle points each buffer should operate. However,
in some unit cells of our device, both saddle points are
susceptible to the buffer-pump-induced resonances. In
these unit cells, we pump the sigma flux of the buffer
more weakly so that the negative effects of the pump-
induced resonances can be mitigated. However, this leads
to a weaker 3WM interaction strength g2 and correspond-
ingly a weaker two-photon dissipation strength κ2. This
is one of the reasons why cat qubits in some unit cells
(e.g., S6) have poorer bit-flip performance (including less
favorable exponent in the exponential scaling of the bit-
flip times in |α|2) compared to the ones in other unit cells.
Through a different choice of the storage and buffer fre-
quencies as in Ref. [23], this issue can be avoided in the
future.

Parameters relating to the buffer and two-photon dissi-
pation calibration are shown in Fig. 13. In Fig. 13 (b) we

characterize the two-photon dissipation strength by ini-
tializing the storage mode into a coherent state |α|2 = 7
and applying pure two-photon dissipation (κ2D[â2]). We
measure the vacuum population of the storage mode as
a function of time. The population in the vacuum state
rises to 0.5 as the two-photon dissipation takes the stor-
age mode state into the |n̂ = 0⟩/|n̂ = 1⟩ manifold. By
fitting this decay to a numerical model we determine the
g2/2π of the storage modes which range between 330 kHz
and 430 kHz. The two-photon dissipation rates of the
storage modes vary between 25 kHz and 75 kHz. For
more details on this procedure see Ref. [23].

6. Displacement and dissipation amplitude
calibrations

In this section we discuss how we calibrate the storage-
mode displacement as well as the relationship between
the buffer drive amplitude and the mean photon number
of a cat qubit. We follow the same method presented in
Ref. [23].
Calibration of the storage mode displacement is done

by measuring the displaced parity of the storage mode
vacuum state. Specifically, we calibrate the displacement

by comparing to the expected functional form e−2|α|2

where α is the displacement amplitude. In Fig. 14 we
show the displacement calibration for all five storage
modes. On all but the first storage mode S1, we show
two calibration results where one is obtained by using
the ancilla on the left-hand side of the storage (e.g., A1
for S2) and the other is obtained by using the ancilla
on the right-hand side (e.g., A2 for S2). The calibrated
storage-mode displacements are consistent within the 2%
relative accuracy regardless of whether the ancilla on the
left-hand side versus the right-hand side is used. In the
repetition code experiments, we use the displacement cal-
ibration obtained via the ancilla on the right-hand side
of each storage.

We calibrate the buffer drive amplitude by measuring
the storage mode steady-state Wigner function for var-
ious buffer drive amplitudes. To reach a storage-mode
steady state we start with the storage mode in the vac-
uum and apply two-photon dissipation for 200 µs. In the
calibration we target measuring storage mode mean pho-
ton numbers ranging from 1 to 6. The storage mode
Wigner function is fit to a pair of diametrically op-
posed 2D Gaussians from which we determine the steady
state storage average photon number |α|2. Note that at
|α|2 = 1 the photon-number parity does not exactly van-
ish, indicating that the sum-of-two-Gaussians model is
not accurate in the |α| → 0 limit. Nonetheless, in simu-
lations we find that this effect causes only a few-percent-
level error on the fitted photon number near |α|2 = 1.
We fit the |α|2 versus buffer drive amplitude relation-
ship to a linear model to complete the calibration. In
subsequent experiments we use this linear model to de-
termine which buffer drive amplitude to use to achieve a
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FIG. 14. Storage displacement and dissipation amplitude calibrations. (a) Storage mode displacement calibration. We
calibrate the storage displacement by measuring the displaced parity of the vacuum state. In blue we show the measurements
using the ancilla on the left side of an ancilla mode and in orange the measurements using the right side of an ancilla mode.
The left measurement of the last storage has lower contrast due to imperfect tracking of the ancilla phase. (b) Dissipation
amplitude calibration. We calibrate the mapping of buffer drive amplitude to storage mean photon number by measuring
Wigner tomograms as a function of buffer drive amplitude. From the Wigner tomograms we determine the storage mean
photon number which we fit to a linear model as a function of the buffer drive amplitude. We show the calibrations taken in
the week before the repetition code experiment which were used for the data of the main text. We also show a calibration
taken a few days after the repetition code experiment to give a sense of how the calibration can drift.

target |α|2 of a cat qubit. In Fig. 14 we show the result
of this calibration for all five storage modes. The black
lines show the calibrations used for the repetition code
experiment which were taken in the days before. To give
a sense of how this calibration can fluctuate over time,
we show calibrations taken a couple days after the repeti-
tion code experiment run (brown lines). The calibrations
before and after are consistent to within 1% ∼ 8% rela-
tive accuracy at |α|2 = 1 across all five storage modes.
At |α|2 = 2 the calibrations are consistent to within the
1% ∼ 3% relative accuracy.

7. CX (and CX2) gate calibration procedure

The CX gates in our experiment are parameterized by
the coupler flux pulse amplitude, flux pulse shape param-
eters (e.g., ramp times), storage interaction frequency,
storage phase correction, ancilla interaction frequency,
ancilla phase correction, and flux pulse length (i.e., gate
length). The CX2 gates are calibrated in an analogous
way to how the CX gates are calibrated, with one differ-
ence that the pulse length is calibrated to achieve the full
2π conditional rotation instead of the π conditional rota-
tion. In this section we explain these parameters and pro-
vide details on how they are calibrated. Note that a sub-
set of the CX and CX2 gate parameters (e.g., coupler flux

pulse amplitude, flux pulse length, and storage interac-
tion frequency) was initially determined in Appendix F 4.
Here we refine the gate parameters by directly optimizing
bit-flip rates.

The pulse sequence for measuring the CX and CX2

gate bit-flip rates is shown in Fig. 15(a). In this pulse
sequence, which is representative of syndrome extraction
of a repetition-code stabilizer, the storage mode is ini-
tially prepared in the | + α⟩ coherent state. Then, we
repeatedly apply the cycles of ancilla state preparation,
CX (or CX2) gate, ancilla state unpreparation (inverse
of the state preparation), and ancilla readout and reset.
When the coupler flux pulse is not applied, two-photon
dissipation with some padding is applied to the storage
mode to bring it back to the cat-qubit manifold spanned
by the |±α⟩ coherent states. Each cycle in this pulse se-
quence takes 3 µs and these cycles are applied for a vari-
able number of rounds. Finally at the end of the pulse
sequence, we perform displaced parity measurements of
the storage mode with displacement amplitudes of ±α
to determine if a bit-flip error (i.e., | + α⟩ → |−α⟩) has
occurred on the cat qubit.

Our CX (or CX2) gates use flat-top Gaussian wave-
forms. That is, the flux pulse uses Gaussian shoulders
for ramping up and down and is otherwise held at a con-
stant amplitude. The first parameter we set for our CX
(or CX2) gates is the coupler flux pulse amplitude. For
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FIG. 15. CX2 gate calibration procedure. (a) Pulse sequence for characterizing the cat-qubit bit-flip times under a CX2

gate. (b) Bit-flip time of a cat qubit with |α|2 as a function of the storage phase shift for two different gate lengths. In this
experiment the ancilla is in its ground state |g⟩. The storage interaction frequency and the phase correction are fine tuned
based on a linear relationship between the optimal storage phase shift and the gate length. (c) Bit-flip time of a cat qubit
under a CX2 gate as a function of the CX2 gate length. In this experiment, the ancilla prepared in the |f⟩ state and is reset
every cycle. (d) Example exponential fits for determining the bit-flip times under a CX2 gate. These fits correspond to the
data in Fig. 2 with the ancilla prepared in the state |g⟩+ |f⟩.

all the CX gates used in our repetition-code experiments,
we pulse the respective couplers from their maximum fre-
quency position to the minimum frequency position.

The parameters of the ramps in our coupler flux pulse
need to be chosen carefully to avoid unwanted excitation
exchange between the storage and the ancilla discussed
in Appendix D3. Specifically spectral component of the
flux pulse at the storage-ancilla detuning can convert
storage photons into ancilla photons. On interactions
where the storage-ancilla detuning is smaller (especially
A1 ↔ S1 and A4 ↔ S4), these resonance processes are
less detuned and thus we use longer flux pulse ramp times
(64 ns for these two interactions) to avoid the undesired
excitation exchanges.

Under the coupler flux pulse, the frequency of storage
is shifted by the coupler approaching the storage mode.
The storage phase during the coupler flux pulse is tracked
by the storage interaction frequency and a storage phase
correction which accounts for offsets due to the flux pulse
transients. At the chosen flux pulse amplitude and the
pulse shape, we refine both the storage interaction fre-
quency under the flux pulse and calibrate the storage
phase correction to optimize bit-flip times. In particu-
lar, we apply a simplified version of the pulse sequence in
Fig. 15(a) where only the coupler flux pulse and pulsed
two-photon dissipation are performed in each cycle (i.e.,

omitting the ancilla state preparation, unpreparation,
readout, and reset). Then as shown in Fig. 15(b), we
characterize the bit-flip time of a cat qubit with |α|2 = 1
as a function of the storage phase shift for two different
gate lengths (i.e., flux pulse lengths), where the presented
results are for the A1 ↔ S1 interaction. For each gate
length, we find the optimal storage phase shift that max-
imizes the bit-flip time of the cat qubit. Then by using
a linear relationship between the optimal storage phase
shift and the gate length, we extract the storage inter-
action frequency (from the slope) and obtain the storage
phase correction (from the offset). This calibration is
repeated often to account for the drift in the storage fre-
quency over time.

Similar to the storage mode, the ancilla’s frequency is
also shifted under the coupler flux pulse due to increased
hybridization with the coupler. We perform experiments
where we track the ancilla phase under the flux pulse to
calibrate the ancilla interaction frequency and the ancilla
phase correction. These ancilla interaction frequency and
phase correction calibrations are not so important for the
CX2 bit-flip time characterization but is important when
we want to extract information on storage-mode parities.
For example the ancilla phase tracking is important in the
repetition code stabilizer measurements Appendix G5 or
any time we do storage parity measurements such as the
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FIG. 16. Summary of the bit-flip and phase-flip performance of all the CX2 gates. Summary of CX2 cycle performance
for all 8 interactions in the distance-5 repetition code. The curves correspond to a reference static stabilization case (black), the
ancilla being prepared to |g⟩ (orange), the ancilla being prepared to |g⟩+ |e⟩ (grey), the ancilla being prepared to |f⟩ (green),
and the ancilla being prepared to |g⟩+ |f⟩ (blue). These experiments were performed approximately 5 days after the repetition
code run presented in the main text. The cycle times used in these experiments are 3 µs.

final displaced-parity measurements in Fig. 15(a).

Equipped with the above calibrations, the gate length
of the CX2 gate, initially determined in Appendix F 4,
can be fined tuned by finding the optimal flux pulse
length that maximizes the bit-flip time of a cat qubit
with the ancilla prepared in the |f⟩ state via the prepa-
ration pulses. Specifically, we use a simplified version of
Fig. 15(a) without the ancilla readout. The inclusion of
ancilla reset in the pulse sequence is crucial for the CX2

gate length calibration. This is because the target an-
cilla state is given by |f⟩ and any residual excited state
populations of the ancilla can degrade the bit-flip times
of the cat qubit, compromising the gate calibration.

Fig. 15(c) shows an example result of the CX2 gate
length calibration for a specific interaction A1 ↔ S1.
Note that in our calibration, we use cat qubits with
|α|2 = 1 when optimizing the CX2 gate length. For com-
parison we also show in Fig. 15(c) the bit-flip times of
a larger cat qubit with |α|2 = 3. The achieved bit-flip
times at |α|2 = 3 are generally higher and less sensitive
to the exact gate length. Notably, the observed bit-flip
times are asymmetric in the sign of the timing mismatch
(relative to the optimal gate length) for the case with
|α|2 = 3. This is related to the asymmetry in how the
positive versus negative phase shifts are recovered by the
two-photon dissipation (see Appendix F 8). Moreover as
discussed in Appendix H 5, the performance of our ar-
chitecture may be further improved if all the gates are
specifically calibrated for each average photon number
|α|2, as opposed to exclusively for |α|2 = 1.

Note that the bit-flip times under a CX2 gate are not
sensitive to ancilla state preparation errors to |g⟩ because
the storage mode either stays in or returns to the |+ α⟩

coherent state regardless of whether the ancilla is in |g⟩
or |f⟩. In contrast, the bit-flip times under a CX gate
are sensitive to the ancilla state preparation errors since
the storage mode ends up in two different coherent states
| ± α⟩ depending on whether the ancilla is in |g⟩ or |f⟩.
For this reason, we do not calibrate the CX gate length
using the pulse sequence shown in Fig. 15(a). Instead, we
use stabilizer measurement circuit of the repetition code
to tune up the CX gate lengths (see Appendix G2). We
also remark that storage phase correction and the ancilla
phase correction are further revised in the repetition-code
experiments Appendix G3.

A comprehensive summary of the CX2 cycle perfor-
mance for all 8 storage-ancilla pairs is given in Fig. 16.
Right before collecting the CX2 cycle performance data
presented in Fig. 16, we ran the storage phase optimiza-
tion as in Fig. 15(b). The CX2 cycle performance data
shown in the main text (i.e., Fig. 2(c)) is for the spe-
cific interaction A1 ↔ S1 (i.e., first column in Fig. 16).
Fig. 15(d) shows example underlying data and exponen-
tial fits for determining the bit-flip times for the same in-
teraction A1 ↔ S1 with an ancilla initial state of |g⟩+|f⟩.
In these experiments we use the gate length correspond-
ing to a CX2 gate in the |g⟩/|f⟩ manifold. This allows
us to see the effect of χ-mismatch by looking at the er-
ror rates for the |g⟩ + |e⟩ initial state. With significant
χ-mismatch the error rates at low |α|2 are enhanced for
the initial state |g⟩+ |e⟩.

Besides the A4 ↔ S4 interaction, the bit-flip times
under a CX2 cycle exceed 1 ms with a sufficiently large
|α|2 for all remaining 7 interactions in the case when the
ancilla is prepared in the |g⟩+|f⟩ state. The A4 ↔ S4 in-
teraction is an outlier in terms of the CX2 bit-flip times.
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(a) (b) (c)

FIG. 17. Effect of ∆b detuning. (a) Simulated population recovery of two-photon dissipation with different ∆b detunings. The
red corresponds to population returning to |−α⟩ and the blue corresponds to population returning to |α⟩. (b) Experimentally
measured bit-flip time as a function of storage phase shift for a pulsed stabilization experiment. We perform a pulsed stabilization
experiment where the storage is phase shited every time the two-photon dissipation is turned off. ∆b,0 corresponds to the nominal
value of ∆b used in experiments. (c) Simulated bit-flip probability for the A4 ↔ S4 interaction as a function of buffer detuning
(∆b).

This is understandable given the particularly large χ-
mismatch of χge/χgf ≃ 1.3. For a 2π rotation this means
that an ancilla decay into |e⟩ from |f⟩ can cause misro-
tation of the storage mode by over 90 degrees. With
such an extreme misrotation, the storage state has a
high probability of being recovered incorrectly by the
two-photon dissipation, causing bit-flip errors. All 8 in-
teractions show effective storage mode lifetime T1,eff over
50 µs which is extracted from a linear fit of the phase-flip
rates as a function of |α|2.

8. Dissipative map assymmetry

We refer to the mapping from an initial density matrix
ρ̂0 to the population in the coherent states | ± α⟩ after
two-photon dissipation as the dissipative map. Specifi-
cally, we let PD,±α(ρ̂0) denote the probability of the ini-
tial state ρ̂0 is mapped to |±α⟩ after the two-photon dis-
sipation. The ideal two-photon dissipation with steady
states | ± α⟩, is described by

dρ̂(t)

dt
= D[â2 − α2]ρ̂(t). (F2)

We consider the case with α ∈ R. Then with the ideal
two-photon dissipation, if a storage mode is initialized
into the state |β ± iδ⟩ where β, δ ∈ R, the dissipative
map will yield the same population distribution into |±α⟩
regardless of the sign of δ for a given β, i.e., PD,α(|β +
iδ⟩⟨β + iδ|) = PD,α(|β − iδ⟩⟨β − iδ|). Similarly in this
ideal case, the dissipative map also is symmetric under
the sign flip of β for a given δ, i.e., PD,α(|β+iδ⟩⟨β+iδ|) =
PD,−α(|−β+ iδ⟩⟨−β+ iδ|) (note the sign flip of α in the
subscript). When these symmetry properties do not hold,
we call the dissipative map asymmetric.

When we perform a CX (and CX2) gate between a

storage-ancilla pair with near-perfect χ-matching, the
symmetry of the two-photon dissipation does not have
a big effect on the cat-qubit bit-flip rates since the stor-
age state will rotate close to the target dissipative steady
state even if the ancilla decays from |f⟩ to |e⟩ during
the gate. On the other hand if there is a significant
χ-mismatch, the asymmetry in the dissipative map can
either help or hurt the gate bit-flip rates. Consider
for example the case of performing a CX2 gate where
χge/χgf = 1.25 (χge, χgf < 0). Suppose that the storage
is initialized to |α⟩. Then if the ancilla is initialized to |f⟩
and decays to |e⟩ in the very beginning of the gate, the
storage mode can overrotate by π/2 (relative to the target
angle of 2π) to the state |iα⟩ instead of |α⟩. With ideal
two-photon dissipation the storage state would be equally
recovered to |α⟩ and |−α⟩. This means that ancilla de-
cay events of this form (and state preparation error to
|e⟩) have a 50% probability of causing a bit-flip event. If
we can add asymmetry to the two-photon dissipation we
can make it more likely for the overrotated population
to return to the target steady state |α⟩ over the other
steady state |−α⟩ and reduce the bit-flip probability.
Here, we show how the dissipative map can be made

asymmetric by detuning the pump and drive frequencies
of the two-photon dissipation in a specific direction. To
do so, we consider the Hamiltonian with detuned 3WM
pump and linear drive of the storage-buffer system:

Ĥ = g2â
2b̂†ei∆pt − g2α

2b̂†e−i∆dt +H.c. (F3)

Here ∆p is the detuning of the pump that realizes the
3WM condition and ∆d is the detuning of the linear
buffer drive. We use rotated detunings of the form [22]

∆ = (∆p +∆d)/2,

∆b = (∆p −∆d)/2. (F4)
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Asymmetric two-photon dissipation is realized by varying
∆b. With ∆ = 0, the effective evolution is described by

dρ̂(t)

dt
= −i[Ĥeff, ρ̂(t)] +

κbg
2
2

∆2
b + (κb/2)2

D
[
â2 − α2

]
ρ̂(t),

(F5)

with

Ĥeff = − g22∆b

∆2
b + (κb/2)2

(â†2 − α2)(â2 − α2). (F6)

This shows that the main effects of adding the ∆b detun-
ing are to marginally weaken the two-photon dissipation
strength (assuming κb ≫ ∆b) and to introduce a Kerr-
cat Hamiltonian [82] commensurate with the two-photon
dissipation (i.e., with a consistent cat-qubit amplitude
α). While the steady states of the two-photon dissipation
are unchanged, the use of non-zero ∆b can induce signif-
icant asymmetry in the dissipative map. We illustrate
this in Fig. 17(a) by showing the amount of population
recovered to |±α⟩ for an initial coherent state at each
point in the phase space. With ∆b = 0 the two-photon
dissipation is symmetric while with ∆b/2π = ±5 MHz,
significant asymmetry is introduced. The orientation of
the asymmetry depends on the sign of ∆b.
To carefully resolve this asymmetry in experiment

we perform a pulsed cat-qubit stabilization experiment
where the storage mode is intentionally phase shifted ev-
ery time the two-photon dissipation is turned off. By
measuring the bit-flip time as a function of the phase
shift we can get a sensitive characterization of the asym-
metry in the two-photon dissipative map. In Fig. 17(b),
we show the measured bit-flip times as a function of the
storage phase shift for 3 different photon numbers and 3
different ∆b values. We observe that under the nominal
value of ∆b we use in our experiment (∆b,0), the dissi-
pative map is asymmetric in favor of recovering positive
phase shifts. Decreasing ∆b increases the asymmetry in
this direction whereas increasing ∆b reduces the extend
of the asymmetry. Since the dissipative map is approxi-
mately symmetric when we use ∆b = ∆b,0 +2π× 2 MHz
(dotted curve), we estimate that the ∆b,0 detuning in our
experiment is ∆b,0/(2π) ≃ −2 MHz.
The sign of the phase shift is defined such that a posi-

tive phase shift has the same sign as accumulating phase
with a lower physical storage frequency. Thus in our ex-
periment, the orientation of the dissipative map asymme-
try is in a favorable direction of correcting over-rotations
caused by the χ-mismatch of the form χge/χgf > 1 (in
our case χge, χgf < 0). In Fig. 17(c) we show the sim-

ulated CX2 bit-flip probabilities for the storage-ancilla
pair A4 ↔ S4 as a function of ∆b for |α|2 = 3. Bit-flip
probabilities can be reduced by almost a factor of 2 by
going to negative ∆b detunings on the scale of −5 MHz.
In contrast, positive ∆b detuning can result in signifi-
cantly increased bit-flip probabilities. In the future sys-
tematically tuning ∆b across the device is an avenue to

further optimize the CX gate performance under mis-
matched χ ratios. The vertical black line corresponds to
∆b,0/2π ≈ −2 MHz used in our experiment.

(a)

(c)

(b)

FIG. 18. Examples of device instability. All of these
examples are from a different temperature cycle of the chip
compared to what was used for the rep code experiment. (a)
Example of a storage having a low T2. In this case the storage
is S1. (b) Example of direct f → g decay on the A4,S4
interaction. We initialize the transmon into |f⟩ and measure
the population in |g⟩, |e⟩, and |f⟩ after an 800 ns flux pulse to
the on position. We perform this measurement while exciting
the storage mode with variable |α|2. We observe direct decay
of |f⟩ to |g⟩. (c) Example of the ancilla interacting with TLS
as the coupler is tuned from the off to on position on the A3,
S3 interaction. We initialize the ancilla into |e⟩ and apply a
coupler flux pulse with variable amplitude and duration. We
observe that there are multiple TLS in the ancilla spectrum.
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9. Examples of noise affecting repetition code
performance

In Fig. 18 we show a few ways in which device per-
formance can be unstable. These datasets are not from
the time period of the repetition code experiment. In
Fig. 18(a) we show an example of a storage-mode T2 be-
ing degraded. We intermittently observe that storage
T2 may fluctuate which might be due to spurious two-
level systems (TLSs) in buffer or storage. In Fig. 18(b)
we perform an experiment where the ancilla is initialized
to |f⟩, an 800 ns flux pulse is applied, and the ancilla
state is read out. We study the dependence of the an-
cilla population on the average photon number |α|2 of a
coherent state in the storage mode. We observe in this
instance that the population of |f⟩ decays directly to |g⟩,
bypassing |e⟩. This effect is most pronounced around
|α|2 = 10. This could for example be due to a TLS
mediating a multi-photon process involving ancilla, cou-
pler, and storage photons. In Fig. 18(c) we perform a T1

measurement on an ancilla as a function of coupler flux
pulse amplitude. As the coupler moves to its minimum
frequency the hybridization of the coupler and ancilla in-
creases and the ancilla frequency is shifted. Both these
effects can result in the ancilla encountering TLSs at spe-
cific coupler flux values. In this case we see example of
multiple TLSs coupled to the ancilla. These TLSs can
cause ancilla population loss and are especially problem-
atic if they are present at the coupler “on” position.

Appendix G: Repetition code calibration and pulse
sequences

1. Single-shot Z-basis measurement of a cat qubit

To characterize the repetition code logical Z observ-
able we need to measure ẐL = Ẑ1Ẑ2 · · · Ẑd. This re-
quires single-shot Z-basis measurement of the cat qubits
since the outcomes of the Z-basis measurements of all the
data cat qubits need to be multiplied together in a given
shot to evaluate the logical Z operator. As mentioned
in Appendix C, the Z-basis readout scheme based on
displaced parity measurements does not suffice for char-
acterizing the repetition code as they require averaging
over many shots. Here, we present an alternative Z-basis
readout scheme that works in a single-shot manner and
demonstrate it experimentally. In particular we show
that through an adequate symmetrization, the measure-
ment axis of our readout scheme is not tilted from the Z
basis under various imperfections (transmon errors and
non-orthogonality of the coherent states in the small |α|2
regime).

To perform a single-shot Z-basis measurement on a cat
qubit, we first displace the storage by either +α or −α
such that one of the two computational basis states of a
cat qubit is mapped to the vacuum state. Then we mea-
sure the vacuum population of the storage mode by using

(a)

(b)

FIG. 19. Storage mode Z-basis measurement. (a) Pulse
sequence for storage Z-basis measurement. The storage mode
is assumed to have started in the cat qubit manifold spanned
by the |±α⟩ coherent states. The storage mode is displaced by
−α. The vacuum population of the storage mode is read out
by using a weak vacuum-selective π pulse on the ancilla. (b)
Characterization of the storage mode Z-basis measurement.
The storage mode is prepared into either | + α⟩ or |−α⟩ and
the two-photon dissipation is applied for 10 µs. Then finally
the storage Z-basis measurement is performed. The faded
lines indicate the assignment fidelity for each of the storage
modes and the solid lines indicate the average performance,
averaged over all the storage modes.

an ancilla transmon. In particular, the vacuum popula-
tion measurement is enabled by the dispersive coupling
between the storage mode and the ancilla. Due to the dis-
persive interaction, the frequency of the ancilla is shifted
when the storage mode is not in the vacuum state. Thus
by applying a sufficiently weak drive on the ancilla, we
can realize a selective π pulse of the ancilla (exciting it
from |g⟩ to |e⟩) conditioned on the storage mode being
in the vacuum state. Finally by reading out the state of
the ancilla in the end, we can determine whether the cat
qubit was in the |0⟩ ≃ |+α⟩ state or the |1⟩ ≃ |−α⟩ state
in a single-shot manner.

The pulse sequence for the storage Z measurement
is shown in Fig. 19(a). First the storage mode is dis-
placed. Then a net-zero flux pulse is applied on the cou-
pler such that the storage-ancilla dispersive coupling is
turned on. In the second half of the net-zero flux pulse, a
weak π pulse is applied to the ancilla, which is resonant
only when the storage mode is in the vacuum state. Fi-
nally the ancilla is read out. The weak vacuum-selective
pulses use Gaussian waveforms with pulse lengths of ei-
ther 1.6 µs or 1.8 µs depending on the unit cell.
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In Fig. 19(b) we show the probability of correctly as-
signing a cat qubit state in the Z-basis readout as a func-
tion of |α|2. For this Z-basis readout data, the storage
mode is displaced by −α. The faint lines correspond
to the Z-basis readout fidelities of the five cat qubits in
our system. The dark lines represent the average perfor-
mance. Note that the probability of correctly measuring
|−α⟩ is higher than for | + α⟩. This is because when
the storage mode is in | + α⟩, it is displaced to the vac-
uum state |n̂ = 0⟩. This results in the vacuum-selective π
pulse exciting the ancilla transmon. Thus in this case, the
assignment fidelity is sensitive to transmon decay during
the π pulse and the transmon readout. In contrast if the
storage is in |−α⟩, it is displaced to |−2α⟩ and the ancilla
is not excited by the vacuum-selective π pulse. In this
case the Z-basis readout is not sensitive to the ancilla
decay and the assignment fidelity is higher.

In practice we symmetrize the Z-basis readout by ap-
plying the +α displacement in half of the shots and −α
displacement in the remaining half of the shots. This has
the effect of averaging out the asymmetry in the read-
out assignment fidelity discussed above. For a distance-d
repetition code we apply all 2d combinations of the ±α
displacements with equal probabilities across the shots.

We note that our single-shot Z-basis readout scheme
works adequately even in the small |α|2 limit provided
that we symmetrize over the ±α displacements. To illus-
trate this point, we characterize the POVM elements of

the readout scheme. Let P
(+α)
0 (ρ̂) and P

(−α)
0 (ρ̂) be the

probability of getting the bit-string 0 for a given initial
state ρ̂. Here the superscript indicates whether the initial
displacement is +α or −α. Since the initial |0⟩ ≃ |+ α⟩
state is displaced to the |+ 2α⟩ state under the +α dis-

placement, P
(+α)
0 (ρ̂) is defined as the probability of the

storage being in a non-vacuum state after the +α dis-

placement. Similarly, P
(−α)
0 (ρ̂) is defined as the proba-

bility of the storage mode being in the vacuum state after
the −α displacement since |0⟩ ≃ |+ α⟩ is mapped to the
vacuum state |n̂ = 0⟩ under the −α displacement. Then,

P
(±α)
1 is simply given by P

(±α)
1 = 1− P

(±α)
0 .

Assuming no incoherent errors, we analytically find

P
(±α)
0 (ρ̂)

=
1

2
(1∓ e−2|α|2)⟨+|ρ̂|+⟩+ 1

2
(1± e−2|α|2)⟨−|ρ̂|−⟩

+
1

2

√
1− e−4|α|2(⟨+|ρ̂|−⟩+ ⟨−|ρ̂|+⟩). (G1)

where |+⟩ and |−⟩ are the even and odd cat states. Note
that without symmetrizing the ±α displacements, our
readout scheme can differentiate between the even and
odd cat states in the small |α|2 limit where e−2|α|2 is not

negligible (i.e., P
(±α)
0 (|+⟩⟨+|) ̸= P

(±α)
0 (|−⟩⟨−|)). This

is undesirable since it indicates that the measurement
basis is tilted from the Z basis. However by sampling
both the ±α displacements with equal probabilities, we

can remove this asymmetry. In particular, we have

P0(ρ̂) ≡
1

2

(
P

(+α)
0 (ρ̂) + P

(−α)
0 (ρ̂)

)
=

1

2
(⟨+|ρ̂|+⟩+ ⟨−|ρ̂|−⟩)

+
1

2

√
1− e−4|α|2(⟨+|ρ̂|−⟩+ ⟨−|ρ̂|+⟩). (G2)

This probability can be succinctly represented as P0(ρ̂) =

Tr[ρ̂F̂0] with a POVM element

F̂0 =
1

2
(1 +

√
1− e−4|α|2)|0⟩⟨0|

+
1

2
(1−

√
1− e−4|α|2)|1⟩⟨1|, (G3)

where |0⟩ and |1⟩ are the computational basis states.
Similarly the POVM element for measuring 1 is given
by

F̂1 =
1

2
(1−

√
1− e−4|α|2)|0⟩⟨0|

+
1

2
(1 +

√
1− e−4|α|2)|1⟩⟨1|. (G4)

In the large |α|2 limit where e−4|α|2 can be neglected,
these POVM operators reduce to the ideal Z-basis read-
out POVM elements F̂0 = |0⟩⟨0| and F̂1 = |1⟩⟨1|. From
the deviation from these ideal POVM elements, we iden-
tify that the intrinsic measurement error rate of our Z-
basis readout scheme is given by 1

2 (1 −
√
1− e−4|α|2).

Importantly however, the two POVM elements are di-
agonal in the computational basis at any value of |α|2.
Thus, while our Z-basis readout scheme is subject to an
intrinsic assignment error due to the non-orthogonality
of the two coherent states | ± α⟩, its measurement basis
is not tilted from the Z basis.
Finally, we remark that the above symmetrization also

eliminates the imbalance due to an asymmetric trans-
mon readout confusion matrix (which could be caused by
asymmetries in the intrinsic readout errors as well as the

errors in the vacuum-selective ancilla π pulse). Let P
(t)
j→k

be the probabilities that the transmon was prepared in
state |j⟩ and then measured in |k⟩ where j, k ∈ {g, e}.
Then the probabilities P

(±α)
0 (ρ̂) are modified as Q

(±α)
0 (ρ̂)

with

Q
(+α)
0 (ρ̂) = P

(+α)
0 (ρ̂)P (t)

g→g + (1− P
(+α)
0 (ρ̂))P (t)

e→g,

Q
(−α)
0 (ρ̂) = P

(−α)
0 (ρ̂)P (t)

e→e + (1− P
(−α)
0 (ρ̂))P (t)

g→e.

(G5)

Then after the symmetrization, we find

Q0(ρ̂) ≡
1

2

(
Q

(+α)
0 (ρ̂) +Q

(−α)
0 (ρ̂)

)
=

1

2
(⟨+|ρ̂|+⟩+ ⟨−|ρ̂|−⟩)

+
1

2

√
1− e−4|α|2

(
1− 1

2
(P (t)

g→e + P (t)
e→g)

)
× (⟨+|ρ̂|−⟩+ ⟨−|ρ̂|+⟩), (G6)
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FIG. 20. CX gate length calibration and validation summary. For each CX gate, we measure the logical bit-flip time
of the corresponding d = 2 repetition code as a function of the CX gate length. The vertical lines indicate the CX gate
lengths used in the repetition code experiment. Some vertical lines are slightly shifted so they do not overlap with others. The
experiment serves as a validation of the gate lengths because the d = 2 repetition code bit-flip times are maximized near the
chosen gate lengths.

where we used P
(t)
g→g + P

(t)
g→e = 1 and P

(t)
e→g + P

(t)
e→e = 1.

Thus after the symmetrization over the ±α displace-
ments, any imbalances due to an asymmetric transmon
readout confusion matrix are removed. For example, the
even and odd cat states still cannot be distinguished
by our single-shot Z-basis readout scheme. Note how-
ever that the readout contrast is degraded by a factor of

(1− 1
2 (P

(t)
g→e+P

(t)
e→g)) due to the transmon readout assign-

ment errors. As shown in Fig. 19, the Z-basis assignment
infidelities in our experiments saturate to non-zero value
for a sufficiently large average photon number |α|2 ≳ 3.
These non-zero saturated infidelities can be attributed
to the effective error probabilities P

(t)
g→e, P

(t)
e→g > 0 which

account for the effects due to intrinsic transmon read-
out assignment infidelities as well as the errors in the
vacuum-selective ancilla π pulse.

2. Calibrating the CX gate length for the
repetition code

Previously in Appendix F 7 we described how we fine
tuned the CX2 gate length by directly optimizing the
bit-flip times of a single cat qubit. Here we show how we
optimize the length of a CX gate which is used in the rep-
etition code sequence. To fine tune the CX gate length,
we optimize the bit-flip time of a d = 2 repetition cat
code (i.e., bit-flip time under the repeated measurements

of a X̂iX̂i+1 stabilizer).
Recall that the bit-flip times under a CX2 gate are

insensitive to ancilla state preparation errors. This is be-
cause an X2 operation acts trivially on a single cat qubit.
Similarly, bit-flip times under a X̂iX̂i+1 stabilizer mea-
surement are not sensitive to ancilla state preparation
errors because the stabilizer acts trivially on the repeti-
tion code states. This is why we use logical bit-flip time
of a X̂iX̂i+1 to fine tune the length of the CX gates. In

the pulse sequence for measuring the X̂iX̂i+1 stabilizer,
the associated ancilla transmon (e.g., A1) is prepared in

the |g⟩+ |f⟩ state and two CX gates are applied sequen-
tially between the ancilla and its two neighboring cat
qubits (e.g., A1 ↔ S1 and A1 ↔ S2). Then, the ancilla
is unprepared through the inverse of the state prepara-
tion pulse. Finally the ancilla is read out and reset. For
the purpose of calibrating the CX gate length, we use
a simplified pulse sequence where the ancilla readout is
omitted. However, it is crucial to keep the ancilla reset
for similar reasons as in the CX2 gate length calibration.
To calibrate the length of each CX gate, we measure

the logical bit-flip time of the corresponding d = 2 repeti-
tion code as a function of the CX gate length of interest.
Fig. 20 shows the logical bit-flip time of a d = 2 rep-
etition code as a function of a CX gate length for all
8 CX gates. The CX gate lengths used in the repeti-
tion code experiment are indicated by the vertical lines.
These chosen gate lengths are validated by the results
in Fig. 20 since the logical bit-flip times of all the con-
stituent d = 2 repetition codes are maximized around the
chosen gate lengths. Note that before these experiment,
the storage phase corrections were optimized for the nom-
inal CX gate lengths following a procedure similar to the
one described in Appendix G3.

3. In situ calibrations of CX gate for repetition
code operation

Prior to every run of the repetition code experiment we
optimize both the storage and ancilla phase corrections.
The storage phase corrections affect the logical-bit flip
rates while the ancilla phase corrections affect the syn-
drome measurement error probability of the stabilizers.
Optimization of the storage and ancilla phase correction
are each done in parallel across all unit cells.
To optimize the storage mode phase we perform a

slightly simplified repetition code experiment with the
ancilla in |g⟩ and readout not applied. With the an-
cilla in |g⟩, individual storage Z observables are mean-
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(a)

(b)

FIG. 21. Example in situ calibration of the storage and
ancilla phase corrections for a repetition code opera-
tion. (a) Example of optimizing the storage CX gate phase
for a repetition code experiment. We perform an experiment
similar to the repetition code Z-basis experiment with the
main difference being that the ancilla is in the state |g⟩. We
sweep that phase applied during the CX gate on the storage
mode. Rather than optimizing the logical bit-flip time we
optimize the bit-flip times of the individual storage modes.
The vertical green line indicates the optimal point which was
selected based on the calibration. (b) Example of optimizing
the ancilla CX phase for a repetition code experiment. We
measure the ancilla detection probability as a function of the
phase on the ancilla. We fit the minimum to a quadratic to
find the optimal phase which is indicated by the vertical line.

ingful quantities since ideally no entanglement between
between different storage modes is generated after the
first round of the stabilizer measurement. We in parallel
vary the phase of each of the storage modes in a win-
dow around their nominal values. For each storage mode
we update the storage mode phase to the value which
yields the highest bit-flip time. We show an example of
this calibration for the first storage mode in Fig. 21(a).
We show the data for all of the storage mode phase cal-
ibrations from the repetition code run in Fig. 40(b). As
expected the center storage mode S3 has the calibration
which most significantly depends on the repetition code
section being used since it can either be on the boundary
or in the center.

To calibrate the ancilla phase correction, we perform
a repetition code experiment where in parallel we vary
the phase correction on each ancilla. We determine the
detection probability for each of the stabilizers as a func-

(b)

(a)

FIG. 22. Crosstalk from flux pump. (a) Ramsey measure-
ments of the ancilla A4 with and without crosstalk from the
flux pump on the buffer B1. In blue we show the result of a
typical Ramsey measurement on the ancilla A4. In orange we
show the same Ramsey measurement on A4 when the buffer
flux pump is applied on B1. The crosstalk causes significant
excitation of A4’s readout resonator R4 which then dephases
and causes an average frequency shift of the ancilla A4. (b)
Optimizing the crosstalk cancellation phase. We perform the
ancilla Ramsey measurements in the presence of the buffer
flux pump in B1 as a function of the phase of a crosstalk can-
cellation tone applied on the readout resonator R1. When the
phase is properly chosen we can cancel out the crosstalk from
the buffer flux pump.

tion of the ancilla phase [57]. We fit the minimum to a
quadratic to determine the optimal value of the ancilla
phase. An example of this is shown in Fig. 21(b). We
show the all of the storage mode phase calibrations from
the repetition code run in Fig. 40(a).

4. Crosstalk cancellation

Both the readout resonators and the buffer flux pumps
in our system have the frequencies ranging from 7 GHz
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to 8 GHz. Thus, the buffer flux pumps for realizing two-
photon dissipation may excite the readout resonators due
to crosstalk. In our device, we find that the crosstalk
to the readout resonator R4 of the ancilla A4 from the
flux pumps on the buffers B1 and B2 is significant and
problematic.

The buffer-pump-induced excitation of a readout res-
onator have several detrimental consequences. First, ex-
citations in the readout resonator cause an average fre-
quency shift and dephasing of the ancilla which can affect
the syndrome measurement fidelity of the associated sta-
bilizer. Second, the excitation of the readout resonator
can significantly limit the performance of the ancilla reset
since the ancilla can be excited by the reset tones if the
readout resonator is not in its ground state. Lastly, if the
readout resonator is excited, couplers can be excited as
they are flux pulsed from their “off” to the “on” position
and pass through the readout resonator. In particular,
the latter two effects (additional heating of the ancillas
and couplers) can induce cat-qubit bit flips.

In Fig. 22(a), we show an example of how a buffer
flux pump may dephase an ancilla through crosstalk by
performing Ramsey experiments on A4 with and without
the flux pump applied to B1. When the flux pump is
turned on in the buffer B1, the coherence of the ancilla
A4 is significantly degraded as illustrated by the orange
curve (to be compared against the blue curve). This is
due to the excitation of the readout resonator R4 which
is caused by the flux pump on the buffer B1.

In our experiment, ancilla readout and reset occur
while the flux pumps are applied on the buffers. As a re-
sult, for readout and especially reset to work properly we
need to cancel out any crosstalk from flux pumps. We ap-
ply an additional compensation tones on the readout line
at the same frequency as the buffer flux pump to cancel
this crosstalk. The amplitudes and phases of the addi-
tional compensation tones need to be calibrated to cancel
out the crosstalk from the flux pump. In Fig. 22(b) we
show an example of calibrating the crosstalk cancellation
phase for the crosstalk from B1 to A4’s readout resonator
R4. We determine the optimal cancellation phase by fit-
ting the frequency shift of the ancilla A4 as a function
of the cancellation phase. The green curve in Fig. 22(a)
demonstrates that the ancilla coherence can be success-
fully recovered by performing the crosstalk cancellation.

In practice we need to apply two crosstalk cancellation
tones to A4’s readout resonator R4 due to crosstalk from
the buffer flux pumps on B1 and B2. One important
note is that we only calibrate crosstalk cancellation for
the steady state. The transients of the flux pump are
not cancelled out and thus it is still important to con-
servatively pad the turning on of the buffer flux pump.
As discussed in Appendix H6 nonideal padding of the
buffer flux pump causes slightly elevated detection frac-
tions on the stabilizer associated with A4 when running
the full d = 5 repetition code experiment. Note that the
reason we turn off the two-photon dissipation well before
the coupler flux pulses for the CX gates and even before

the ancilla state preparation is to ensure that any excita-
tions of the readout resonator due to crosstalk are fully
dissipated away before these operations begin.

5. Repetition code X basis pulse sequences

In Fig. 23 we show the pulse sequence for the charac-
terization of the repetition code logical X lifetime. The
sequence can be broken into three parts. First the stor-
age mode states are prepared into their initial states, next
a variable number of cycles (in this case 5) of stabilizer
measurements are applied, and finally the storage mode
states are read out.
For the logical X lifetime experiment the storage

modes are initialized into an even or odd cat state. Before
applying operations to the cat qubits we have a 300 µs
recycle delay between shots of the experiment. Then,
we apply two-photon dissipation on all the cat qubits for
200 µs (not shown in its entirety) where all the storage
modes start from the vacuum state. The duration of
200 µs is chosen to be long enough compared to all of
the storage T1 lifetimes in the circuit so that the storage
modes reach a steady-state parity. The reason that we
apply the two-photon dissipation rather than displacing
the storage mode to a coherent state is that the steady-
state parity at low photon number for the two-photon
dissipation is different from the photon-number parity
of a coherent state at the same photon number. Af-
ter applying the two-photon dissipation we prepare the
storage modes into either an even or odd cat state by
non-destructively measuring the parity of each storage.
These parity measurements are performed with the an-
cilla transmons in the |g⟩/|e⟩ manifold. The last ancilla
A4 is used to measure the parity of the last two storage
modes (S4 and S5), while all of the other ancillas (A1,
A2, and A3) are used to measure the parity of only one
storage mode (S1, S2, and S3). After preparing the stor-
age mode states we briefly apply two-photon dissipation
for 1 µs.
Note that after the parity measurement, a tensor-

product state of even and odd cat states (e.g.
|+⟩|−⟩|−⟩|+⟩|+⟩) is randomly prepared in the storage
modes. For a distance-d repetition code, there are 2d

possible combinations of such tensor-product states and
the outcomes of the parity measurement can be used to
determine which one of the 2d states is prepared. With
a sufficiently large |α|2 (e.g., |α|2 ≳ 1.5), these 2d states
are drawn from a uniform distribution. However due to
the asymmetric phase-flip rates between even and odd
cat states, the distribution is skewed towards the even
cat states in the small |α|2 regime (see Appendix H 10).
After the storage states are prepared we apply repeated

rounds of stabilizer measurements with a conservative
cycle time of 2.8 µs. The stabilizer measurements begin
with the preparation of the anclla into the state |g⟩+ |f⟩
using a ge π/2 pulse and two ef π/2 pulses. Next the CX
gates are applied between ancillas and the storage modes.
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Storage X basis measurementsState prep

FIG. 23. Pulse sequence for characterizing the distance-5 repetition code logical X lifetime. The storage modes
are prepared into cat states, multiple rounds of syndrome extraction are applied, and finally the storage mode parity is readout.
Storage mode preparation into cat states is done by applying two-photon dissipation for 200 µs and measuring parity. The
sequence is simplified to not show phase offsets which are applied each cycle.

We apply two layers of CX gates with a padding between.
Since the CX gates have different gate lengths the CX
gates in the first layer are padded at front and the CX
gates in the second layer are padded at the back to ensure
the spacing padding between CX gates of the first and
second layer are uniform across the device. This serves to

minimize the amount of time between the two CX gates
since an ancilla decay to the |g⟩ state between the CX
gates induces a logical bit-flip error whereas an ancilla
decay before or after the CX gates is unlikely to induce a
logical bit-flip error. After the CX gates the ancilla state
is unprepared using two ef π/2 pulses and a ge π/2 pulse
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mapping the ancilla to the |g⟩/|e⟩manifold in the absence
of the ancilla decay. Note that if the ancilla decayed
during the CX gates it ends up in the |f⟩ state after the
unpreparation pulses. We subsequently also apply an ef
π pulse. This additional pulse allows us to detect ancilla
|f⟩ → |e⟩ decay during the readout as an erasure error.

Once the ancilla pulses have been applied, we read out
and reset the ancilla tranmons. As mentioned in Ap-
pendix F 3, the readout includes 80 ns of integration and
we include an additional 64 ns of padding between read-
out and reset. We apply the two-photon dissipation when
the couplers are in the “off” position and in parallel to
ancilla readout and reset. Both the buffer drive and flux
pump for realizing the two-photon dissipation use flat-
top Gaussian waveforms. In the steady-state of the two-
photon dissipation a crosstalk cancellation tone is applied
to some readout resonators as described in Appendix G4.
We do not turn on (or off) the two-photon dissipation di-
rectly after (or before) the CX gates to reduce the effects
of the buffer-pump-induced crosstalk on the cat-qubit
bit-flip rates. For example, if the two-photon dissipation
is turned off right before the CX gate, the transients of
the flux pulse turning off (which are not cancelled by the
crosstalk cancellation tone) can excite the readout res-
onator which can in turn excite the coupler as it passes
through the readout resonator on its way to the “on” po-
sition. This coupler excitation then increases the prob-
ability of a bit-flip error. As will be discussed later the
padding of the flux pulse could be further improved rel-
ative to the ancilla pulses to mitigate a slight increase in
the detection probabilities of the A4 stabilizer in the rep-
etition code experiment shown in Appendix H 6. Many
of the conservative paddings in the circuit, such as that
between the readout and reset or between readout and
the state preparation for the next round, can be reduced
to improve the performance of our repetition cat code.
The last cycle of the stabilizer measurements is slightly
different because the two-photon dissipation stays on as
we do not perform another ancilla state preparation.

After the last cycle of the syndrome measurements,
we measure the individual photon-number parity of all
the storage modes. Due to a data processing detail ex-
tra digitizations are present on some of the ancillas but
these are not pulses played on the device. At the end
of the sequence we apply two-photon dissipation for 4 µs
to partially reset the storage modes by accelerating their
return to the |n̂ = 0⟩/|n̂ = 1⟩ manifold. The subsequent
recycle delay of 300 µs resets the storage modes to the
vacuum.

6. Repetition code Z basis pulse sequences

The sequence for characterizing the logical Z lifetime
of the repetition code is shown in Fig. 24. The sequence
follows the same steps of initial storage mode state prepa-
ration, multiple cycles of stabilizer measurement, and fi-
nally storage mode measurements.

For state preparation in the logical Z basis experiment
we displace each for the storage modes to the state |α⟩.
We briefly apply two-photon dissipation for 1 µs before
starting the error correction cycles. Though the states
are identical up to an instrument phase we do also ini-
tialize the repetition code into the |−α⟩⊗d state for com-
pleteness.
It is important that the central cycles of the logical

Z lifetime experiment apply identical pulses to the de-
vice as the sequence for characterizing the logical X life-
time shown in Appendix G5. Since the measurement
outcomes for the central rounds are not used for a logi-
cal Z basis experiment we do not digitize the outcomes.
This does not affect the tones played on the device and
is the only difference in the error correction cycle pulse
sequence. In Appendix H 7 we perform a Z basis ex-
periment with digitization on to confirm the detection
probabilities in the Z basis experiment are commensu-
rate with the X basis experiment even with the different
initialization.
After the error correction cycles each cat qubit in a

storage mode is measured using the single-shot Z basis
measurement to distinguish |α⟩ from |−α⟩ as discussed
in Appendix G1. The single-shot Z basis measurement
is symmetrized over all 2d possible ways of ±α displace-
ments. After the measurement, each storage mode is
partially reset to the |n̂ = 0⟩/|n̂ = 1⟩ and a 300 µs delay
is applied in the same way as in the X basis experiment.

7. Repetition code characterization procedure

To characterize the repetition code performance we
perform a set of three interleaved calibrations and char-
acterizations of the distance-3 and distance-5 sections.
More specifically we perform the following high level se-
quence.

for i in [1,2,3]:
for code in [

distance_5,
first_distance_3,
second_distance_3

]:
calibrate_ancilla_phases()
if code == distance_5:

storage_T1_with_dissipation_off()
storage_T1_with_dissipation_on()

calibrate_simultaneous_storage_
Ramsey_with_dissipation_off(code)

calibrate_simultaneous_storage_
Ramsey_with_dissipation_on(code)

calibrate_storage_phases(code)
collect_Z_basis_logical_data(code)
collect_X_basis_logical_data(code)

The calibrations are kept identical between the differ-
ent repetition code sections to not give an advantage to
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FIG. 24. Pulse sequence for characterizing the distance-5 repetition code logical Z lifetime. The storage modes are
prepared into coherent states, multiple rounds of syndrome extraction are applied, and finally the storage modes are readout
using Z-basis measurement. The sequence is simplified to not show phase offsets which are applied each cycle. Photon number
selective pulse amplitudes are increased to make them more visible.

one section over the others. We only characterize the
storage lifetimes for the d = 5 section since it is done
purely for characterization purposes and not used to up-
date the calibration. When we characterize the repetition
code Z logical lifetime we do so for the ancilla being in
|g⟩+ |f⟩ and |g⟩. For the repetition code X basis exper-

iments the axis ordering used is [storage mean photon
number, number of cycles]. For the Z basis experiment
the axis ordering is [storage mean photon number, an-
cilla state, storage initial state, number of cycles, read-
out symmetrization]. For the d = 5 Z-basis experiments
we use 50 shots and for the d = 5 X-basis experiment
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we use 5000 shots. For the d = 3 Z-basis experiments
we use 120 shots and for the d = 3 X-basis experiment
we use 5000 shots. Note that for the Z-basis experiment
more points are collected for d = 5 compared to d = 3
with the same number of shots due to the larger number
of storage Z-basis readout symmetrizations as explained
in Appendix G1. To analyze the repetition code data
we combine together the data from the interleaved runs
into a large dataset which we perform the analysis on.
The duration of the characterization procedure is roughly
6 hours.

Appendix H: Repetition Code Data Analysis

1. Fitting procedure for the logical lifetimes

To determine the logical lifetimes we fit the exponential
decay of ⟨ÔL(0)ÔL(t)⟩ as a function of time (here Ô can

be X̂ or Ẑ).

First, we describe how the value of ⟨ÔL(0)ÔL(t)⟩ and
its uncertainty are computed from the raw experimental
data. The raw output from the experiment for one time
step is a length-N binary vector, where N is the number
of shots, and ith vector element is 0 (1) when the initial
and final logical states agree (disagree). From this vector
we compute the sample mean µ0. We assume the the data
comes from a binomial distribution which has the beta
distribution as its conjugate prior. We take a uniform
prior by starting from β(1, 1). Specifically for the sample
mean µ and the number of shots N , the conjugate prior
beta distribution is given by

β(1 +Nµ0, 1 +N −Nµ0). (H1)

We assign the mean (µ) and standard deviation (σ) based

on this distribution. Then we compute ⟨ÔL(0)ÔL(t)⟩ =
1− 2µ and σ⟨ÔL(0)ÔL(t)⟩ = 2σ.

Once we have computed the value of ⟨ÔL(0)ÔL(t)⟩ and
σ⟨ÔL(0)ÔL(t)⟩ = 2σ we fit to an exponential decay model.

In the model fitting the points are weighed by the inverse
of their standard deviation. For the fit to the ẐL observ-
able we include no offset in the exponential fit. For the
fit to the X̂L observable we allow for a constant offset
in the exponential fit since the steady state parity of the
individual storage modes is non-zero at low |α2|. In prac-
tice the constant offsets are small (magnitude less than
0.03) even at |α|2 = 1 because even though the individual
storage modes have significant parity offsets the offset of
the logical observable is suppressed with distance.

2. Decoding without erasure information

An error correction experiment returns syndrome out-

comes S
(i)
t , where i denotes the index of the ancilla mea-

sured and t the time step. The syndrome takes the value

S
(i)
t = 0 when the ancilla is measured to be in the state

|g⟩ and S
(i)
t = 1 when the ancilla is measured to be in

the state |e⟩ or |f⟩. Detectors are defined by compar-
ing syndrome outcomes from subsequent rounds of error
correction

D
(i)
t1,t2 = (S

(i)
t1 + S

(i)
t2 ) mod 2. (H2)

We refer to detectors with value 0 as trivial, and detec-
tors with value 1 as non-trivial. A non-trivial detector
indicates that an error occurred. Individual physical er-
rors result in one or two nontrivial detectors.

To infer what physical error occurred from the detec-
tors we form a graph where each vertex corresponds to
a detector. Edges between detectors (or to a boundary)
indicate physical errors which can trigger the connected
detectors. Each edge e is assigned a weight we related
to the probability of the corresponding physical errors pe
by we = log((1− pe)/pe).

Given a set of non-trivial detectors, we use minimum-
weight perfect matching (MWPM) to infer the corre-
sponding physical errors. In this procedure, each non-
trivial detector is matched to another non-trivial detec-
tor or the boundary via the graph edges, and the set of
matched detectors is referred to as a matching. MWPM
returns the matching which minimizes the total weight
of the involved edges. Matching is performed using the
PyMatching package [83].

The edge weights of the error correction graph are de-
termined using the correlation based weighting procedure
of [58]. We restrict allowed edges to only those that would
arise in a simple Pauli error model: space-like edges for
data qubit errors, time-like edges for syndrome measure-
ment errors, and spacetimelike edges for data qubit errors
occurring midway through an error correction cycle. Let-
ting Pij denote the probability that detectors i and j are
simultaneously nontrivial, the weight of an edge connect-
ing detectors i and j is computed as log((1 − Pij)/Pij).
The Pij are computed from measured correlations be-
tween detectors using the first quarter of the experimen-
tal shots.

In Fig. 25(a) we show an example set of experimen-
tal syndrome measurement outcomes for the distance-
5 code. When we do not account for erasure informa-
tion, all syndromes with outcome 1 and 2 are treated as
the same syndrome outcome. Detectors are indicated by
black dots, and detection events are computed by taking
the difference of the syndrome outcomes at subsequent
rounds of the experiment. In Fig. 25(b) we show the
error correction graph where vertices correspond to de-
tection locations and edges correspond to errors which
can trigger a pair of detection events. We indicate in or-
ange the edges which correspond to an erased syndrome
though we do not yet use this information. The edges
selected by the MWPM are indicated in red. In this
case, the matching indicates that the second and third
data qubits have each suffered a net phase-flip. For this
example, we can already see that not accounting for the
erasure information can affect the decoding outcome: the
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(b) (c)Not using erasure information Using erasure information(a) Syndromes

FIG. 25. Error correction graph. (a) Syndrome outcomes for an example shot of a distance-5 repetition code run with
|α|2 = 1.5. Circles indicate detection locations and the numbers above and below denote the syndrome measurement outcomes
from which the detection event is computed. The red indicates syndromes which are classified as erasures. (b) Error correction
graph not accounting for erasures. The red vertices indicate triggered detection events. The red lines indicate the matching,
which in this case indicates as a correction that the 2nd and 3rd data qubits should be flipped. The orange edges indicate
syndromes where erasures occurred, but here this erasure information was not used to help inform the matching. (c) Modified
error correction graph taking into account the erasure information. The syndromes corresponding to erasure events are not
trusted and we instead compute detection events only using non-erased syndromes. Edge weights are combined together to
account for the higher error probability between further separated detection events. The new matching correctly disregards
erasure information and suggests a different (and correct) correction compared to the decoder without erasure information.

matching indicates that the first data qubit did not suf-
fer a net phase flip, since nontrivial detectors associated
with an erasure at the third time step are interpreted as
a phase flip.

3. Decoding with erasure information

When accounting for erasures the ancilla measurement

outcome |e⟩ is no longer treated as S
(i)
t = 1 but rather

is classified as an erasure, S
(i)
t = E. To incorporate

this erasure information in decoding we employ the fol-
lowing three step procedure. First, we generate a no-
erasure baseline matching graph where the edge weights
are computed excluding erasures. Next, on a per-shot
basis we compute new detectors that bypass the erased
syndromes. Lastly, we update the error correction graph
edges to account for the modified detectors. We now
describe each of these three steps in detail.

When we account for erasure information, the proba-
bilities of certain edges in the matching graph can change.
The main examples of this fact are the timelike edges
which correspond to syndrome measurement errors. In
the simple method of Appendix H 2, we always assign
the erasure state (|e⟩) to syndrome value 1. Thus in this
simple graph weighting an erasure event has a probability
of roughly 50% of causing a measurement error, and the
timelike edges incorporate this probability. Here instead,
to construct a no-erasure baseline graph, we compute the
edge probabilities conditioned on no erasures occurring.

For a given detector, we consider the neighborhood of
detectors directly connected to it (i.e. detectors one edge
away). We consider the shots of the experiment where
none of the detectors in the neighborhood involve an era-

sure (a detector D
(i)
t1,t2 involves an erasure if S

(i)
t1 = E or

S
(i)
t2 = E). Using only these shots, we apply the same

weighting procedure of [58] to determine the weights of
the edges involving the given detector. This procedure is
repeated for every detector in the graph. Note that we
do not allow for erasure events in the initial storage mode
measurements for state preparation or the final storage
mode parity measurements as both these measurements
use the |g⟩/|e⟩ encoding of the ancilla.

After forming the no-erasure baseline matching graph,
we update the detectors on a per-shot basis such that
detectors are formed only using non-erased syndromes.

Specifically when S
(i)
t = E, the detectors D

(i)
t−1,t and

D
(i)
t,t+1 are no longer meaningful. We instead replace

these two detectors with a single detector D
(i)
t−1,t+1. This

new detector compares the last non-erased syndrome be-
fore the erasure to the first non-erased syndrome after the
erasure. Similarly, if multiple consecutive syndromes are

erased S
(i)
t1 . . . S

(i)
t2 we replace them with a single detector

D
(i)
t1−1,t2+1.

Next we update the edges of the matching graph to
account for the detectors that were removed. As an ex-
ample consider the case of an erasure at time t, the mean-

ingful detector D
(i)
t−1,t+1 is now responsible for detecting
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data errors between times t−1 and t+1. Since this time
is twice as long as usual, we expect that the horizon-
tal edges connecting to this detector should have roughly
twice as large probability relative to that in the baseline
no-erasure graph. Formalizing this intuition, we regard
each edge in the baseline graph as representing an in-
dependent physical error mechanism that results in non-
trivial values for the connected detectors. We construct
new edges so that this same set of physical error mech-
anisms is still accurately accounted for after detectors
have been deleted. In particular, we update the edges as
follows starting from baseline no-erasure error correction
graph:

1: for each cluster of consecutive erased detectors
C

(i)
t1,t2 ≡ {D(i)

t1,t1+1 . . . D
(i)
t2,t2+1} do

2: Add the non-erased detector D
(i)
t1,t2 to the graph

(initially with no connecting edges)

3: for each detector D ̸∈ C
(i)
t1,t2 with edges connecting

to C
(i)
t1,t2 do

4: Enumerate the the edge probabilities pe for each

edge e connecting D to C
(i)
t1,t2

5: Treating pe as probabilities of independent
events, compute the total probability podd of an
odd number of these events occurring

6: Add a new edge connecting D to the non-erased

detector D
(i)
t1,t2 with edge probability podd

7: end for
8: Remove the detectors in C

(i)
t1,t2 and associated

edges from the graph
9: end for

After this procedure, we perform MWPM on the resul-
tant graph.

In Fig. 25(c) we show the matching graph updated to
account for erasure information. The erased syndromes
indicated by the orange edges in (b) are no longer used
and the adjacent detectors are removed. Instead, each
cluster of erased detectors is replaced by a single detector
involving only non-erased syndromes. Notably, in this ex-
ample accounting for erasures alters the logical outcome.
Whereas the matching in Fig. 25(b) incorrectly indicates
that the 2nd and 3rd data qubits suffered net errors, the
matching in Fig. 25(c) correctly indicates that the 1st,
4th, and 5th data qubits suffered net errors.

An alternate way to account for erased syndromes
when decoding is to simply set the weight of the cor-
responding vertical edges to 0. This choice of weight cor-
responds to a physical error probability of 1/2, reflecting
the intuition that erased syndromes contain no useful in-
formation, just as would a syndrome measurement with
error probability p = 1/2. While the simplicity of this
alternate approach is appealing, it is not equivalent to
our approach. In particular, setting the edge weight to
0 does not account for the fact that the probability of
detecting a data error increases with the number of time
steps between consecutive non-erased syndromes.

To illustrate this effect, Fig. 26 presents a simple ex-
ample where this difference alters the minimum-weight
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FIG. 26. Comparison of erasure decoding strategies.
(a) The “naive” strategy, where an edge corresponding to
erased syndrome (orange) has its edge weight set to 0. Ver-
tices indicate detectors, with the single nontrivial detector in
red. The weights of relevant edges are specified, and the red
line indicates the minimum-weight matching. (b) Our era-
sure decoding strategy, where detectors are constructed using
only non-erased syndromes. The two we = 2.1 edges in (a),
each corresponding to error probability pe ≈ 0.11, are effec-
tively combined here into a single edge with a reduced weight
we′ ≈ 1.4. This reduced weight corresponds to roughly twice
the error probability, pe′ = 2pe(1− pe) ≈ 0.19, since two time
steps elapse between non-erased syndromes. The modifica-
tion to edge weight changes the minimum-weight matching.

matching. In the example, an erasure has occurred, and
there is a single adjacent nontrivial detector which must
be matched with either the right or left boundary. When
the erasure is accounted for by setting the corresponding
timelike edge to weight to 0, the example edge weights are
such that matching to the left boundary has lower weight.
However, when the erasure is accounted for following our
procedure, the weight of the edge connecting to the right
boundary is reduced, since this single edge encompasses
data errors over two time steps. With this modification,
matching to the right boundary then has lower weight.
While the example in Fig. 26 is contrived, we do find
that these two different erasure decoding methods result
in different logical lifetimes when applied to our experi-
mental data, with our approach yielding slightly longer
lifetimes. The difference is primarily due to shots with
multiple consecutive erasures.
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(a) (b)

FIG. 27. Detection correlations and edge weights. (a) Correlations between detection events for the distance-5 repetition
code with |α|2 = 1.5. The major ticks correspond to a time step and the minor ticks correspond to the spatial index within
the time index. (b) Edge weights as a function of |α|2. The data is averaged across all of the bulk edges in a repetition
code experiment with 135 cycles. Faint lines indicate the traces for individual edge locations while the solid lines indicate the
average. As expected we observe an increase in spacelike and diagonal edge probabilities with |α|2 since these relate to storage
mode phase-flips. The timelike edges for some of the stabilizers increase with photon number (particularly on A4). This is
due to higher order nonlinarities shifting the optimal gate length which are particularly prevalent on interactions with small
storage-ancilla detuning.

4. Correlations in detection events

In Fig. 27(a) we show the complete correlation matrix
between all of the detectors in the matching graph. De-
tectors are indexed by a single number, i = x+ (d− 1)t,
where x and t are the detector’s space and time coordi-
nates. Just off of the diagonal we observe the three corre-
lations within each time index corresponding to correla-
tions between the spatially neighboring detection events.
These correlations are caused by phase-flip errors on the
data qubits S2,S3, and S4. Next, off the diagonal we
see sizable correlations between detections of the same
spatial index but with time index offset by 1. These
detectors correspond to the timelike edges representing
syndrome measurement errors. We also observe fainter
off-diaongal correlations that connect detectors at subse-
quent time and spatial indices, corresponding to diagonal
edges of the error correction graph. These correlations
are caused by phase-flip errors that occur mid-cycle be-
tween CX gates. These major detection correlations we
observe are explained with a Pauli error model. This mo-
tivates our use of the Pauli error model to downselect on
which edges to include in the error correction graph.

5. Syndrome easurement error rate versus |α|2

In Fig. 27(b) we show the edge weights for the space-
like, timelike, and diagonal (spacetimelike) edges of the
distance-5 repetition code as a function of |α|2 (computed
from shots with 135 error correction cycles). The num-

bers reported are the average of each edge type across the
bulk time indices. The faint lines indicate the edge prob-
abilities for each spatial index of the edge type. The solid
lines indicate the average edge probability for the edge
type. We observe an increase in the spacelike edge prob-
abilities with |α|2 which is expected since these edges
predominantly originate from data qubit phase-flip er-
rors.

We also observe that the average timelike edge prob-
ability increases with |α|2. The stabilizer which exhibits
the most significant increase with |α|2 corresponds to
A4 while the A3 stabilizer shows barely any increase
with |α|2. The increase in timelike edge probability
(corresponding to syndrome extraction error) with pho-
ton number can be attributed to the higher order non-
linearities between the storage and ancilla of the form
Kga

†2a2|g⟩⟨g| and Kfa
†2a2|f⟩⟨f |. This Hamiltonian

term corresponds to higher order dispersive shifts (or
storage Kerr nonlinearities conditioned on the ancilla
state). These effects are strongest on the interactions
with the smallest storage-ancilla detuning. In our device
the smallest detuning is on the A4 stabilizer while the
largest is on A3. This explains why the syndrome ex-
traction error of A3 exhibits barely any increase while
that of A4 exhibits significant increase with |α|2. These
terms lead to a shift in the optimal gate length as pho-
ton number increases. Since we fix the gate length across
|α|2 this leads to a degradation in the measurement er-
ror. This effect could be mitigated by tuning up the gate
length separately for each photon number.
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FIG. 28. Distance-3 and 5 detection probability comparison. We compare the detection probabilities for each stabilizer
between the distance-3 and distance-5 sections (different number of cycles are used for the distance-3 and 5 experiment). On
the A4 stabilizer we observe that the detection probabilities for the distance-5 code are elevated relative to the distance-3 code
and oscillate over time. We attribute this to crosstalk from S1’s flux pump.

FIG. 29. Detection probability comparison between X and Z basis storage mode preparation. We perform a twice
interleaved repetition code experiment with storage mode state preparation into the X and Z basis. Detection probabilities
are consistent between X and Z basis state preparation. The first and last cycles are different as expected because for Z basis
state preparation the first and last comparison are random.

6. Comparison of detection probabilities between
distance-3 and distance-5 experiments

In Fig. 28 we compare the detection probabilities for
distance-3 and distance-5 repetition code experiments.
Detection probabilities are consistent on the A1, A2, and
A3 stabilizers between the distance-3 and distance-5 ex-
periments. On the A4 stabilizer we observe that the de-
tection probabilities fluctuate and are slightly elevated
by 1-2% for the distance-5 section. We attribute this
increase to imperfect cancellation of the crosstalk from
the S1 flux pump to the A4 readout resonator (see Ap-
pendix G4). This minor increase could be mitigated by
increasing the padding of the flux pump relative to the
ancilla state preparation pulses. In the dataset of Ap-
pendix H 7 the padding was increased and these fluctua-
tions were removed.

7. Comparison of detection probabilities between
X and Z basis initialization

In this section we perform a test where we digitize
the syndrome measurements for the Z basis experiment
to confirm the detection probabilities are consistent be-
tween X and Z basis state preparation. We twice in-
terleave repetition code experiments with X and Z ba-
sis state preparation. In Fig. 29 we show the detection
probabilities for each of the stabilizers. The bulk detec-
tion probabilities are consistent between the X and Z
basis initialization. The first and final rounds detection
probabilities are different between the X and Z basis ex-
periments because the initial state of the stabilizer is non
deterministic for the Z basis experiment.

Note that this data also used a different padding
around the stabilization which mitigates the fluctuations
observed in Appendix H6.
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FIG. 30. Effective storage T1 during the repetition code experiment. Using the data from the X basis repetition code
experiment we extract the phase-flip decay of the individual storage modes during the repetition code experiments. Specifically
we fit ⟨Xi(0)Xi(t)⟩ for the individual storage modes and each photon number. We find that the storage mode phase-flip rates
are consistent between distance-3 and distance-5 experiments. We fit the phase-flip rate as a function of the storage mean
photon number to the functional form γphase-flip = κ1,eff|α|2 to determine T1,eff = 1/κ1,eff during the repetition code experiment.
We observe the expected linear dependence between the storage mode phase-flip rates and |α|2.

8. Effective storage T1s during repetition code
experiments

In addition to studying the logical performance of the
repetition code, we can also compare initial and final
states to infer the phase-flip decay rates of the individ-
ual storage modes during the repetition code experiment.
In Fig. 30 we show the individual storage mode phase-
flip rates as a function of |α|2 during the repetition code
experiment. For each storage we fit the phase-flip rates
vs. |α|2 to a linear model of γphase-flip = κ1,eff|α|2 where
κ1,eff = 1/T1,eff. The T1,eff values from different repeti-
tion codes segments are consistent to within 5% of each
other and all above 50 µs. The T1,eff extracted from the
repetition code experiment can be compared to the T1 un-
der dissipation in Appendix F 1 and the T1,eff extracted

from the CX2 phase-flip rate experiments.

9. Comparison of logical Z lifetime for the two
different initial states and with ancilla in g

For the Z basis repetition code experiment we initialize
the repetition code into both the |α⟩⊗d and |−α⟩⊗d states
(see Appendix G6). In practice the coherent states which
makes up these repetition code states are identical up to a
phase but we include both state preparations nonetheless
for completeness. In the main text we report the logical
Z lifetime averaged over these two state preparations. In
Fig. 31, we report the lifetime broken down into both of
the initial states.

In Fig. 31, we also report the logical bit-flip probability
for a control experiment where the ancilla is prepared to
|g⟩ every cycle. This experiment is useful since it gives a
baseline on the repetition code performance when errors
relating to the ancilla being in |f⟩, such as decay from
|f⟩, are removed. With the ancilla in |g⟩ a logical bit-flip

error probability of ∼ 3×10−3 is measured at |α|2 = 4 for
the distance-5 section. For the distance-3 sections logical
bit-flip error probabilities under 2 × 10−3 are measured
at |α|2 = 4.

FIG. 31. Logical bit-flip probabilities for different an-
cilla and storage initial states. Logical bit-flip probabil-
ities for the different repetition code sections, ancilla states
|g⟩ and |g⟩+ |f⟩, and storage initial states. Dotted lines cor-
respond to the storage initial state |−α⟩⊗n and solid lines
correspond to the storage initial state |α⟩⊗n. The colors enu-
merate the two distance-3 and the distance-5 sections. Lastly
the circles correspond to the ancilla being prepared in |g⟩+|f⟩
every cycle and the triangles to the ancilla being prepared in
|g⟩ every cycle.
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(b)

(c)

(a)

FIG. 32. Asymmetric phase-flip rates at low photon number. (a) Probability of individual storage modes being in
|+⟩ at the beginning and end of a repetition code logical X experiment. (b) Distribution of |+⟩ in the initial repetition code
state. We report the number of storage modes measured to have even parity from the initial storage mode measurements of
the X-basis repetition code experiment. The markers correspond to the measured probabilities while the lines correspond to
the expected probabilities from the binomial distribution and the analytic form for the steady state parity as a function of
photon number. The experimentally measured points are consistent with expectations. At low photon numbers the bit-strings
bias towards |+⟩ consistent with the storage mode |+⟩ state having a lower phase-flip decay rate than |−⟩ at low storage mean
photon number. (c) Exponential fits for the distance-3 and distance-5 sections when grouped based on the number of |+⟩ in the
initial state. At |α|2 = 1 we observe significant differences in error rates between groupings while for |α|2 = 1.5 the dispersion
between groups is suppressed.

10. Distribution of initial states in logical X
lifetime experiments

In the small |α|2 regime, where e−2|α|2 is not negligible,
typical physical error mechanisms like photon loss result
in asymmetric cat phase flips rates. That is, in the Lind-
blad dissipator γ+→−D[|−⟩⟨+|] + γ−→+D[|+⟩⟨−|], the
two phase-flip rates γ+→− and γ−→+ are not identical
to each other. For example under the single-photon loss

channel κ1D[â], we have

γ+→− = κ1|α|2 tanh |α|2

γ−→+ = κ1|α|2 coth |α|2 (H3)

Physically, this asymmetry can be understood as a con-
sequence of the fact that the even- and odd-parity cat
states have significantly different mean photon number
at small |α|2. Indeed, these states defined such that
they approach different Fock states, |+⟩ → |n = 0⟩ and
|−⟩ → |n = 1⟩, in the limit |α|2 → 0. This asymmetry in
the phase-flip rates leads to an imbalance in the popula-
tions of the even and odd cat states |±⟩ in the long-time
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limit. In particular, the steady-state populations of the
even and odd cat states are given by

Pt→∞(|+⟩) = γ−→+

γ+→− + γ−→+
=

(1 + e−2|α|2)2

2(1 + e−4|α|2)
,

Pt→∞(|−⟩) = γ+→−

γ+→− + γ−→+
=

(1− e−2|α|2)2

2(1 + e−4|α|2)
. (H4)

We show a comparison between these analytical pre-
dictions (horizontal lines) and experimentally measured
steady parities for each of the cat qubit and code distance
in Fig. 32(a).

These distributions in cat state population then affect
the distribution of repetition-code initial states. Rather
than the initial states having a uniform distribution over
the 2d possible product cat states, at low |α|2 the distri-
bution is biased towards states with even cats. We show
this bias in Fig. 32(b) where we plot for each distance of
code the probability of the initial logical state containing
a given number of individual |+⟩ states. At |α|2 = 1 the
states are heavily biased towards those with higher num-
bers of |+⟩ but already at |α|2 = 1.5 the distribution is
more symmetric.

The asymmetry in error rates also means that the log-
ical error rate per cycle depends on the state of the rep-
etition code. To show this effect we group the data by
the number of |+⟩ states in the logical state. For the
distance-3 sections, we make 4 groups based on 0, 1,
2, or 3 |+⟩ states in the initial logical state. For the
distance-5 section, we make 4 groups based on 0/1, 2, 3,
4/5 |+⟩ states in the initial logical state. In Fig. 32(c)
we show the decay of ⟨XL(0)XL(t)⟩ for each grouping.
At |α|2 = 1 the decay curves for the different groupings
vary significantly. Thanks to the exponential dependence
of the steady state on the photon number, though, at
|α|2 = 1.5 the curves are almost identical. The decay
times from these groupings are shown as faded points in
Fig. 3.

When we group the data by initial state as above,
⟨XL(0)XL(t)⟩ will no longer necessarily exhibit a pure ex-
ponential decay. To see this, first consider the case where
the initial state of the repetition code is |+⟩⊗d. This ini-
tial state has a lower error rate than the steady state
of the repetition code due to the error rate asymmetry
of the underlying cat qubits. This implies that at short
times the logical error probability per cycle will be lower
than at later times (t ≫ κ1|α|2) when the cat qubits have
reached their steady state distribution. Importantly, this
temporal dependence of the error rates means that the
functional form of the decay for just one initial state at
low |α|2 is not a pure exponential. Nonetheless, we have
found that exponential fits agree well enough with the
data to allow us to indicate the spread due to the vary-
ing initial states. We compute the overall decay rate by
fitting an exponential decay to the data sampled from
the steady state distribution, which ensures a pure expo-
nential decay. Because lower-error states like |+⟩⊗d are
over represented in the steady state, bit-flip times at low

|α|2 (especially at |α|2 = 1) are biased towards higher
values. This effect benefits our distance-3 code, which
has minimal logical error at |α|2 ≈ 1, more than it does
out distance-5 code, which has minimal logical error at
|α|2 ≈ 1.5. By |α|2 = 1.5 the dispersion from this effect
collapses and the data from different groupings agree.
We note that this asymmetry in the error rates taken

to its most extreme limit is the case of a bit-flip repetition
code with a |n = 0⟩/|n = 1⟩ Fock state encoding for the
data qubits. Subject to T1 decay, the steady state is when
all the data qubits are in the ground state and do not
experience T1 errors. This is why the experiments [57,
58] apply π pulses every round to make the steady state
equally mixed between |n = 0⟩ and |n = 1⟩.

11. Explanation of distance-3 and distance-5 TX

scaling with |α|2

As shown in Fig. 3 of the main text, our repetition cat’s
logical phase-flip error per cycle scales as (|α|2)γ , where
we observe γ = 1.63(4) and γ = 1.86(3) for the two
distance d = 3 codes, and γ = 2.31(2) for the d = 5 code.
These values of γ are lower than the ideal values of 2
and 3, respectively, that one expects based on the scaling
pL ∝ (p/pth)

(d+1)/2, where pL is the logical error and pth
is the error correction threshold. However, corresponding
simulations similarly predict the lower-than-ideal scaling
(see the dashed line in Fig. 3(f), and a more detailed
discussion in Appendix I 3).
We perform additional error correction simulations to

investigate why we do not observe the ideal scaling, and
results are shown in Fig. 33. In these simulations, we
artificially set the syndrome measurement error rate to
0, and we vary the data qubit phase-flip probability
pZ = κ1|α|2T over a larger range of values than we
are able to access experimentally. We plot the logical
phase-flip probability after a fixed number of error cor-
rection rounds as a function of pZ for d = 3, 5 codes.
We find that, even in the idealized case where our ex-
periment had no syndrome measurement error, the data
qubit error probabilities are nevertheless too high to ob-
serve the ideal scaling. Indeed, the range of pZ that we
probe experimentally by varying |α|2 is approximately
pZ ∈ [5%, 17%], so good agreement with the leading-
order pL ∝ (p/pth)

(d+1)/2 scaling should not be expected.
As pZ is decreased, however, we do see the ideal scaling
emerge. Note that because we have artificially set the
syndrome measurement error rate to 0, we do not expect
agreement between the simulated γ values in Fig. 33 and
the measured values in Fig. 3 of the main text.
Non-zero syndrome measurement probability can also

have an impact on the scaling exponent γ. As discussed
in Appendix H5 and shown in Fig. 27, we observe that
some syndrome measurement error probabilities in our
experiment increase with |α|2. Because the logical error
increases monotonically with syndrome measurement er-
ror probability, this nontrivial |α|2 dependence serves to
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FIG. 33. Logical phase-flip error scaling in different
physical error regimes. We perform error correction simu-
lations (see Appendix I 3) of distance d = 3, 5 repetition codes
over a range of data qubit phase-flip error probabilities pZ ,
and with the syndrome measurement error rate artificially set
to 0. Solid lines indicate fits of the form ∝ (|α|2)γ , with the
values of the scaling exponent γ indicated next to the corre-
sponding fit line. Fit lines are drawn only over pZ values used
in the respective fits. The gray rectangle indicates values of
pZ that are accessible in our experiment by varying |α|2.

increase the measured value of γ relative to the case of
constant syndrome measurement error. Such an increase
is not necessarily undesirable; indeed, in quantum error
correction simulations one typically considers noise mod-
els where the syndrome measurement error is scaled in
proportion to data qubit error. To properly mimic such
noise models in experiment, it would generally be neces-
sary to deliberately increase the syndrome measurement
error in an |α|2-dependent way, so that pZ and syndrome
error both scale proportionately with |α|2.

Appendix I: Simulated logical performance and
error budgets

In this section, we describe the theoretical models used
to make performance projections for the logical phase-
and bit-flip errors per cycle. These projections are shown
in Fig. 3 and Fig. 4 of the main text, respectively. Then,
we describe how these models are used to produce a bud-
get for the overall logical error per cycle, shown in Fig. 5
of the main text.

1. Simulated logical phase-flip performance

To estimate the logical phase-flip performance of the
repetition code, we perform Monte Carlo simulations of
noisy syndrome measurement using a simplified circuit-
level noise model. In contrast to usual circuit-level noise
models that take as input full Pauli error channels for
each operation in the syndrome measurement circuit, our

model takes only a limited set of inputs: the probabilities
of cat phase flips, the probabilities of syndrome measure-
ment errors, and, optionally, the probability of ancilla
erasure. It suffices to work with this simplified model
because we are only interested in the logical phase-flip
error of a repetition code. In this context, we can neglect
bit-flip errors on the data and ancilla qubits, since they
do not contribute to the logical phase-flip error. More-
over, ancilla phase-flip errors do not propagate through
the CX gates to the data qubits, so all ancilla errors
can be modelled as an effective increase in the syndrome
measurement error or ancilla erasure.

We determine the input parameters for this noise
model as follows. To compute the cat phase-flip probabil-
ities, we use effective storage-mode lifetimes T1,eff mea-
sured during the repetition code experiment as described
in Appendix H 8. We infer the effective syndrome mea-
surement error probabilities from the average time-like
edge weights in the matching graph. That is, we com-
pute the associated probability for each edge by inverting
the relation we = log((1−pe)/pe), where we is the weight
of edge e and pe the corresponding probability, then we
average these probabilities over all time steps. Erasure
probabilities are determined by computing the fraction
of erased syndrome measurement outcomes.

Noisy syndrome measurements generated from Monte
Carlo sampling are decoded in exactly the same man-
ner as the experiment, and the simulated logical phase-
flip times TX are plotted alongside the measured data
in Fig. 3. We observe reasonable agreement between the
two, with both simulated and measured data exhibiting
scaling exponents γ less than the ideal value of γ = 3 for
a d = 5 repetition code. As discussed in Appendix H11,
we do not expect to observe this ideal value given the
error rates in our system.

Additionally, we note that rather than explicitly mod-
elling erasures and accounting for them when decoding,
the impact of erasure detection can instead be approx-
imately accounted for implicitly, by only incorporating
the effective reduction in syndrome measurement error
probability (see Fig. 3(d)). That is, in the explicit ap-
proach syndrome measurements are incorrect with prob-
ability pmeas, erased with probability pe, and correct with
probability 1− pmeas− pe. In the implicit approach, syn-
drome measurement are incorrect with the same prob-
ability pmeas, correct with probability 1 − pmeas, and
are never erased. In the simulation results shown in
Fig. 3(f), we explicitly account for erasures to obtain the
best agreement with the experimental data, but in all
other simulations we opt to implicitly account for erasure
decoding for the sake of numerical efficiency. In Fig. 34,
we confirm that the logical phase-flip errors for these two
approaches do not significantly differ, indicating that the
main impact of erasure detection is to effectively lower
the syndrome error rate. The implicit approach performs
marginally better due to the fact that, in the explicit
case the occasional erased syndrome provides no useful
information, whereas in the implicit case all syndromes
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FIG. 34. Distance-5 erasure simulation method com-
parison. Comparison of simulated logical phase-flip error
using the explicit and implicit approaches to account for era-
sure detection described in the text. Error bars are smaller
than the plot markers.

provide nontrivial information.

2. Simulated logical bit-flip performance

To estimate the logical bit-flip error per cycle of the
repetition code, we employ a simple phenomenological
error model. This model contains contributions from two
sources: |α|2-dependent idling bit-flip probabilities (per
error correction cycle) for each cat, and additional |α|2-
independent bit-flip probabilities associated with each
CX. The values of these phenomenological probabilities
are determined from independent experiments, as de-
scribed below.

The phenomenological cat idling bit-flip probabilities
are intended to capture cat bit-flip errors caused by mech-
anisms intrinsic to the stabilized cat, such as photon loss
and dephasing. We assume these probabilities decrease
exponentially with |α|2, so that the bit-flip probability

of the ith cat is given by p
(idle)
i

(
|α|2

)
= Ae−B|α|2 . The

constants A and B are fit from measurements of the indi-
vidual cats’ bit-flip times, shown in Fig. 2(d) of the main
text.

The phenomenological CX bit-flip probabilities are in-
tended to capture additional cat bit-flip errors caused by
the application of a CX gate, including bit-flip errors that
may propagate from the ancilla transmon. We determine
the values of these CX bit-flip probabilities using the CX2

experiments described in Appendix F 7. We assume that
the measured CX2 bit-flip probability is given by a sum
of the cat idling bit-flip probability plus an additional
additive contribution associated with the two CX gates,

p
(CX2

|k⟩)

j

(
|α|2

)
= p

(idle)
i

(
|α|2

)
+ 2p

(CX|k⟩)

j . (I1)

Here, p
(CX2

|k⟩)

j

(
|α|2

)
is the measured CX2 bit-flip proba-

bility of the jth CX gate (acting on cat i) for initial an-
cilla state |k⟩ ∈ {|g⟩, |f⟩}, and the above equation defines
the the phenomenological CX bit-flip error probability

p
(CX|k⟩)

j . We fit the measured values of p
(CX2

|k⟩)

j

(
|α|2

)
us-

ing this expression to determine the value of the value of

p
(CX|k⟩)

j . To improve accuracy, the fit is performed only

over relatively large photon numbers, |α|2 ≥ 3, where
cat-idling errors are relatively small.
We compute the logical bit-flip error per cycle from

the phenomenological parameters by summing the idling
bit-flip probabilities for each cat together with the prob-
abilities for each CX, since a single bit-flip error at any
cat or CX is equivalent to a logical bit-flip error. The
logical error per cycle is thus given by∑

i

p
(idle)
i

(
|α|2

)
+

∑
j

1

2

[
p
(CX|g⟩)

j + p
(CX|f⟩)

j

]
, (I2)

where we have averaged over the CX bit-flip probabilities
for transmon states |g⟩ and |f⟩, since the transmon is
prepared in an equal superposition of these two states.
This expression is plotted alongside the measured logical
bit-flip probabilities in Fig. 4 of the main text.

3. Logical error budget

We use the simulation procedures described in the two
preceding subsections to produce an error budget for the
overall logical error per cycle of our d = 5 repetition
code. To do so, we follow the approach of Ref. [58]. We
let x denote a vector of physical error probabilities, and
we regard the overall logical error per cycle as a function
of these physical error probabilities, ϵL(x). The contri-
bution of the ith physical error mechanism to ϵL’s error
budget is then defined as

ai
∂ϵL(x)

∂xi

∣∣∣∣
x=a/2

, (I3)

where ai denotes the nominal probability observed in the
experiment of the ith error mechanism. While there are
different ways one can conceive of defining an error bud-
get, this definition has the appealing property that, if ϵL
depends at most quadratically on the physical error prob-
abilities x and ϵL(0) = 0, then the sum of the individual
error budget contributions equals the total error,∑

i

ai
∂ϵL(x)

∂xi

∣∣∣∣
x=a/2

= ϵL(a). (I4)

We construct an error budget for ϵL of our d = 5 rep-
etition code using this approach, where we consider four
different types of physical error mechanisms: idling cat
phase-flip probabilities, idling cat bit-flip probabilities,
CX bit-flip probabilities, and syndrome measurement er-
ror probabilities. It is perhaps surprising that above def-
inition of an error budget works well—meaning that the
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individual contributions sum to close to the overall error
as in Eq. (I4)—when applied to this situation. In partic-
ular, the cat phase-flip probability would be expected to
contribute beyond quadratically to ϵL, since ideally the
d = 5 code would achieve a cubic suppression of these
errors. Eq. (I4) is thus not generally expected to hold in
this situation. However, in practice we find that Eq. (I4)
holds to a good approximation, which we attribute to
the fact that our experiment does not actually exhibit
the ideal cubic scaling due to its relatively high physi-
cal error rates (see Appendix H 11). Separately, we note
that because the bit-flip mechanisms contribute linearly
to ϵL, it is not necessary to actually compute derivatives
with respect to these errors. That is, for these linear

contributions we have simply that ai
∂ϵL(x)
∂xi

∣∣
x=a/2

= ai.

The resulting error budget for ϵL is shown in Fig. 5(b)
of the main text. For the cat phase- and bit-flip prob-
abilities, as well as the CX bit-flip probabilities, we opt
to compute individual contributions from each compo-
nent (i.e. individual contributions for each cat and each
CX), in order to give a sense of the relative contributions
of these individual components. For syndrome measure-
ment, we opt to compute only an aggregate contribution,
since this type of mechanism contributes least to the over-
all budget.

4. Logical performance estimates assuming
idealized coherence-limited, bias-preserving gates

In the conclusion of the main text, we present rough
estimates for the logical memory overhead under the ide-
alized assumption of coherence-limited, bias-preserving
cat-cat gates. In this section we provide justification for
these estimates.

The overall logical error per cycle can be roughly es-
timated as follows. Starting with the logical phase-flip
error per cycle, under the assumption coherence-limited
gates the cat phase-flip probability per error correction
cycle is simply given by pZ = |α|2Tcycle/T1. We assume
the logical phase-flip error per cycle is then ϵL,phase-flip =

A(pZ/pth)
(d+1)/2, where the threshold error per cycle is

pth ≈ 0.1 [65], and the constant A ≈ 0.1 [30, 58]. Sep-
arately, we estimate the repetition code logical bit-flip
error per cycle as ϵL,bit-flip = dTcycle/2TZ.

We discuss two examples in the main text, both of
which assume d = 11 and Tcycle = 1 µs. In the first
example we assume T1 = 300 µs, and TZ = 1 s at |α|2 =
5. This yields ϵL,phase-flip = 2.1× 10−6, ϵL,bit-flip = 5.5×
10−6 and hence ϵL = 3.8× 10−6. In the second example
we assume T1 = 1 ms, and TZ = 100 s at |α|2 = 7,
where these choices for TZ and |α|2 are determined by
extrapolating the exponential scaling measured in [23].
This yields ϵL,phase-flip = 1.1×10−8, ϵL,bit-flip = 5.5×10−8

and hence ϵL = 3.3× 10−8.

Appendix J: Simulated CX performance and error
budgets

While the phenomenological model for logical bit-flip
error per cycle in Appendix I 2 enables us to quantify
how much additional cat bit-flip error is associated with
each CX, it does not provide any insight into the physi-
cal mechanisms responsible for this error. In this section,
we thus simulate individual CX gates in order to reveal
which physical mechanisms contribute most to their bit-
flip errors. We begin by first describing the simulations
and how simulation parameters are determined. We pay
particular attention to the ancilla T1, as we find an ef-
fective enhancement of ancilla decay during gate opera-
tion that degrades CX performance. Then, we use the
simulations to quantify the tolerance of CX gates to χ
mismatches and to construct error budgets for individ-
ual gates.

1. CX simulations and parameters

We perform master equation simulations of the CX2

experiments described in Appendix F 7. These simu-
lations include the storage mode, buffer mode, tunable
coupler, and ancilla transmon. Whenever possible, we di-
rectly use measured values for Hamiltonian parameters.
For example, we use measured values for the storage-
ancilla dispersive couplings χge and χgf , the buffer-
storage nonlinear coupling strengths g2, etc. In some
cases, we do not directly measure relevant parameters,
and so we rely instead on numerical predictions (see, e.g.,
Appendices D 1 and D3). For example, we find that it is
important to incorporate the joint ancilla- and coupler-
state dependence of the storage dispersive shift and self
Kerr. We estimate the values of these parameters by
numerically diagonalizing the Hamiltonian of a lumped-
element circuit model incorporating the storage, ancilla,
and coupler. The underlying circuit parameters of the
model are chosen to reproduce a set of experimentally
measured parameters such as the mode frequencies, χge,
and χgf .
Other simulation parameters are determined by fitting

against experimental cat bit-flip data. In particular, as
described below, we sequentially determine the storage
dephasing rate, coupler heating rate, and ancilla decay
rates this way. While one could instead use directly mea-
sured values of these quantities as inputs to the simula-
tions, we find that tuning is generally required to obtain
good agreement with measured bit-flip data. Moreover,
we find that comparing the independently-measured and
tuned values provides useful physical insight, especially
in the case of ancilla decay (see Appendix J 2).
To determine the storage dephasing rate, we compare

bit-flip times of a stabilized cat against measured values,
and tune the simulated storage dephasing rate such that
we see good agreement between the two across a range
of |α|2. While we could instead use the directly mea-
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(a) (b)

FIG. 35. Comparison of simulated and measured CX2 bit-flip probabilities. Measured bit-flip values (markers) are
plotted alongside simulated values (lines) for the A4, S4 (a) and A4, S5 (b) gates. The former gate is poorly χ matched
(χge/χgf ≈ 1.3), while the latter is well matched (χge/χgf ≈ 1.0). For reference, bit-flip probabilities of stabilized cat idling
are also shown in gray.

sured value of the storage mode’s dephasing rate, the
noise spectrum of the experimental dephasing noise may
not match the white noise used in our simulations. The
cat bit-flip probabilities can be sensitive to this spectrum,
so using the measured dephasing time to determine the
the simulated white-noise dephasing rate would not nec-
essarily produce good agreement [23].

Next, we tune the coupler heating rate by comparing

simulated and measured values of p(CX2
|g⟩), the cat bit-

flip probability during CX2 experiments for initial an-
cilla state |g⟩. We assume that at sufficiently large |α|2
these probabilities are dominated by heating of the cou-
pler. We thus tune the simulated coupler heating rate so
that the simulated bit-flip probability due to this heat-
ing agrees well with the measured value at a specified
large value of |α|2. We choose |α|2 = 4, since this is the
value we will consider when constructing our CX error
budgets in order to highlight the contributions of |α|2-
independent error mechanisms. Note that ancilla heat-

ing also generally contributes to p(CX2
|g⟩). However, since

we can not easily separate out the impacts of ancilla and
coupler heating on cat bit flips, we opt to model all heat-
ing in simulation solely as coupler heating.

Finally, we tune the ancilla transmon decay rates by

comparing simulated and measured values of p(CX2
|f⟩),

analogous to how the coupler heating rate was tuned.
We discuss the tuned values in detail in the next section.

Additionally, the simulations assume that with 1%
probability the initial ancilla state |f⟩ is mistakenly pre-
pared as |e⟩. As discussed below, this state preparation
error can be a significant contributor to the budget in
cases where χ matching is poor, and so in such cases it
is important include in simulations where the ancilla is
initialized in |f⟩. The choice of 1% for the state prepara-
tion error is an approximate choice based on the amount
of state preparation error of |f⟩ as |g⟩ we observe. State
preparation error of |f⟩ as |g⟩ is quantified by character-

izing the bit-flip rate when applying cycles with only one
CX gate and initial ancilla state |f⟩. With only one CX
gate the bit-flip error probability is directly sensitive to
state preparation error. Across the interactions in the
circuit we find an average state preparation error of |f⟩
as |g⟩ of ∼ 0.7%. Based on this we roughly assume a 1%
state preparation error into |e⟩ given the lower coherence
in the |e⟩, |f⟩ manifold.
With the simulation parameters determined, we com-

pare simulated bit-flip probabilities against measured val-
ues in Fig. 35. There is general qualitative agreement,
and for some values of |α|2 the results agree quantiatively.
Recall that the coupler heating and ancilla decay rates
were tuned to ensure reasonable agreement between sim-
ulation and data only at |α|2 = 4. The fact that there
is reasonable agreement at other values of |α|2 as well
is thus a nontrivial indication that the tuned simulation
parameters are reasonable.

2. Ancilla T1

As previously mentioned, the ancilla T1 values used in
simulation are tuned by comparing against measured bit-
flip data. Specifically, this tuning is performed by taking
the independently measured T1 values at the coupler-
off (idling) and coupler-on positions for the |e⟩ and |f⟩
states, then dividing these values by some factor β. As
shown in Fig. 36, we generally find that values β > 1 are
required to obtain good agreement. This finding suggests
that the independently measured T1 values are not repre-
sentative of the effective ancilla decay rates experienced
during gate operations.
In Fig. 37, we present further experimental investiga-

tion of the CX error mechanisms. First, in Fig. 37(a), we
verify that the large CX2 bit-flip probability for initial
ancilla state |f⟩ in comparison to |g⟩ is due to effective
decay from |f⟩ to |g⟩ over the course of the gate. In par-
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FIG. 36. Comparison of measured CX2 bit-flip prob-
ability against simulations with reduced ancilla T1.
Black markers indicated measured CX2 bit-flip probabil-
ity for the A4,S5 gate with initial ancilla state |f⟩, and
the different curves indicate corresponding simulations where
independently-measured ancilla T1 values (separately mea-
sured at both the coupler on and off positions) are scaled
down by a factor β. At large |α|2, where the impacts of ancilla
decay are most significant, reduced ancilla T1 values (β > 1)
are required to explain the measured data.

ticular, we perform a characterization of the CX2 error
rate with initial states |g⟩ and |f⟩. In these experiments
we do not apply the pulses to undo the preparation of
the the ancilla state, so ideally the ancilla should remain
in its initial state after the gate and before the readout.
This means the measurements each round allow us to
determine the ancilla state after the gate. This gives us
the capability to post-select against decay to |g⟩ for the
case when we start with the initial state |f⟩. Without
post-selection we find that the CX2 bit-flip probability is
significantly higher for initial ancilla state |f⟩ compared
to |g⟩. When we postselect and discard shots where ini-
tial ancilla state |f⟩ decayed to |g⟩ in any round, the
bit-flip probabilities are comparable between initial state
|g⟩ and |f⟩. These results indicate that the sizable differ-
ence between the bit-flip probabilities for initial state |g⟩
and |f⟩ is attributable to effective ancilla decay and not
some other mechanism associated with the ancilla being
in |f⟩.
Next, in Fig. 37(c), we investigate whether application

of the readout drive could be responsible for enhanced
ancilla decay [67]. We find that the readout drive is not
the cause: comparing measured CX2 bit-flip probabilities
with and without the readout drive applied, we find that
the probabilities do not change significantly regardless of
whether the readout drive is applied. Note that unlike
Appendix F 7, in this experiment, the ancilla unprepa-
ration is not applied each round, so that the readout is
applied with the ancilla in both |g⟩ and |f⟩.
Finally, in Fig. 37(d), we investigate whether the flux

pulses for the CX gates may lead to an enhancement of
the ancilla decay. We compare the results from three
experiments that measure the ancilla T1 in different con-

ditions. In the first experiment (solid lines), we measure
the ancilla T1 while the coupler is continuously biased to
the on position for the duration of the measurement. In
the second experiment (dashed lines), we measure the an-
cilla T1 while the coupler is pulsed to the on position for
the duration of a CX2 gate repeatedly, once every 1.6µs.
Two-photon dissipation is pulsed on while the gate is not
being applied. The shorter 1.6µs cycle duration serves to
make the time in the on position is a larger part of the
sequence. The lifetime from this pulsed experiment can
not be directly interpreted as the ancilla T1 in the on po-
sition since it combines together contributions of when
the coupler is on and off and from transients. Nonethe-
less it is a valuable signal to indicate mechanisms for T1

reduction coming from the application of the flux pulse.
We observe noticeable degradation of the |f⟩ T1 relative
to the first experiment. The third experiment (dotted
lines) is the same as the second except that the storage
is excited to |α|2 = 4 at the beginning of the experiment.
We observe degradation of the ancilla |e⟩ T1 relative to
the other experiments. A hypothesis is that these T1

reductions are due to the ancilla passing through or be-
ing biased near TLS (see Appendix F 9 for an example
of TLS in our system). Furthermore storage excitations
may shift the ancilla frequency close to that of a TLS due
to the dispersive coupling (similar to [84]). For example,
the T1 of the |e⟩ state may be reduced when adding the
storage excitation because corresponding to certain Fock
states the ancilla is shifted into a lossy frequency band.
Note that in all cases we observe temporal T1 fluctua-
tions [68] which are also not currently being taken into
account in our modeling of CX error rates.

Bearing in mind the aforementioned caveats about in-
terpreting the pulsed T1, we can ask how the measured
pulsed T1 values in Fig. 37(d) compare against the val-
ues that are needed in simulations to obtain reasonable
agreement with measured bit-flip data. The simulations
assume T1 values reduced by a factor β ≈ 2.5, relative to
the measured values without pulsing, at |α|2 = 4. For
the data in Fig. 37(d), comparing the values without
pulsing to those with pulsing with |α|2 = 4, the average
reduction is roughly β ≈ 1.5. The reduced discrepancy
suggests that the measured T1 reduction in Fig. 37(d)
is likely a contributor to the CX2 gates underperform-
ing the ideal simulations. However, temporal fluctua-
tions, caveats about interpreting the pulsed T1 values,
and TLS effects would need to be considered more care-
fully to properly quantify the discrepancy. While current
repetition code performance was not limited by ancilla
decay to |g⟩, improving the error modeling to accurately
predict CX error rates based on independently measured
quantities is an important future direction. Other error
mechanisms, such as direct double decay from |f⟩ to |g⟩,
which can be mediated by TLS (see Appendix F 9), and
the storage-photon-number-dependent ancilla T1 are also
important areas of future investigations.

As an additional consistency check, we verify that the
enhanced ancilla decay rates indicated by simulations
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FIG. 37. CX Error Rate Details. All these measurements are performed on the A4 ↔ S5 interaction (a) CX2 error rates
at |α|2 = 3.5 in a few different situations. In all these experiments readout is applied every cycle. In blue we show the bit-flip
probability per cycle when the ancilla initialized to state |f⟩. In orange we show the same experiment except that we reject
all shots of the experiment in which the ancilla decayed to |g⟩. The error rate in orange is comparable to the green which
is an experiment where the ancilla is initialized to |g⟩. (b) The short-time linear fits corresponding to the data in (a). The
markers and curves in (b) use the same color scheme as in the bars in (a). As a point of comparison a long-time exponential
fit when the ancilla is prepared to |g⟩ yields a bit-flip probability of (2.5 ± 0.2) × 10−3 (c) CX2 bit-flip times as a function of
the cat-qubit mean photon number |α|2 with and without readout. The ancilla state is not unprepared so that the ancilla is
in a superposition of |g⟩ and |f⟩ during readout. (d) Repeated measurements ancilla T1 of |e⟩ and |f⟩ under three different
conditions. In the solid curves we vary the length of one flux pulse that takes the coupler “on” position to measure the ancilla
T1 with the coupler on. In the dashed curve we measure the effective ancilla T1 when repeatedly pulsing the coupler to the
“on“ position. Specifically, during cycles of length 1.6 µs, a coupler flux pulse with a length of the CX2 gate is applied. In the
dotted curve the coupler is also repeatedly pulsed to the on position but the storage is additionally prepared into a state with
mean photon number |α|2 = 4. The measurements are repeated to show temporal variations.

and the results in Fig. 37 are consistent with the mea-
sured ancilla erasure probabilities. In particular, the an-
cilla erasure probability is equal to the probability of a
decay from |f⟩ → |e⟩ during the time span from ancilla
state preparation to approximately halfway through the
readout pulse. This duration is approximately 1.25 µs
for the CX in Fig. 37. The ancilla erasure probabil-
ity is pe ≈ 5%, implying an |f⟩ → |e⟩ decay time of
(1.25 µs/0.05)/2 = 12.5 µs, where the factor of 2 is in-
cluded because the ancilla is initialized in the equal su-
perposition (|g⟩+ |f⟩)/

√
2. This value is roughly consis-

tent with the measurements in Fig. 37(d). Moreover, the
CX2 bit-flip probability induced by ancilla double decay
can also be crudely estimated from the erasure proba-
bility by computing the probability of an ancilla dou-
ble decay |f⟩ → |e⟩ → |g⟩ over the duration of a single
CX. For initial ancilla state |f⟩ this probability is given
by (2peTCX/1.25 µs)2 ≈ 10−3, where TCX ≈ 400 ns is
the duration of the CX gate. This estimate is roughly
consistent with the measured CX2 bit-flip probability in

Fig. 37(a).

3. CX χ-matching tolerance

We use simulations to investigate the robustness of CX
gates to χmismatches. In Fig. 38, we plot simulated CX2

bit-flip probabilities for the A4, S5 gate as a function
of the mismatch, χge/χgf − 1. The bit-flip probability
remains relatively constant for mismatches |χge/χgf −
1| ≲ 0.1. This robustness to small mismatches is due to
the application of engineered dissipation after the gates
are applied in each cycle. In particular, even though
any non-zero mismatch will lead to ancilla-decay-induced
over- or under-rotations of the storage mode, these small
rotations are corrected by the engineered dissipation.
In comparison to CX2 cycles considered in Fig. 38, rep-

etition code error correction cycles exhibit approximately
twice as much robustness to χ mismatch. That is, mis-
matches |χge/χgf − 1| ≲ 0.2 do not lead to significant
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FIG. 38. χ-matching requirements. Simulated CX2 bit-
flip probabilities as a function of the χ mismatch (other pa-
rameters are held fixed at the values used for the A4, S5 gate).
Note that the tolerance to χ mismatch is lower for a CX2 gate
compared to a CX gate, as discussed in the text.

additional logical bit-flip error during repetition code op-
eration. The factor of two difference is simply due to the
fact that a CX2 gate is twice the length of a CX gate used
in repetition code operaiton. As a result, ancilla-decay-
induced over- or under-rotations of the storage mode are
twice as large in CX2 gates.

4. CX bit-flip error budgets

Finally, we produce error budgets for the average CX2

bit-flip error, (p(CX2
|g⟩) + p(CX2

|f⟩))/2, at |α|2 = 4. The
budgets are produced in the same manner as the to-
tal logical error rate budget presented in the main text,
i.e. following the approach of Ref. [58]. Notably, as dis-
cussed in Appendix I 3 this approach allows for a well-
defined error budget—where the individual contributions
to the budget sum to the total—so long as the physical
error mechanisms contribute at most quadratically to the
total error. We exploit this property here because cer-
tain logical bit-flip mechanisms, like ancilla double de-
cays from |f⟩ → |e⟩ → |g⟩ or |f⟩ → |e⟩ state-preparation
errors followed by single decay from |e⟩ → |g⟩, are ex-
pected to scale quadratically in underlying physical error
probabilities.

In Fig. 39, we present budgets for the two different CX
gates involving the ancilla A4 and storage modes S4 and
S5. The budgets for these two CX gates serve as illustra-
tive examples because the A4, S5 CX gate is very well χ
matched while the A4, S4 CX gate is not. In both cases,
we see that ancilla transmon decay is the dominant con-
tributor to the error budget (see Appendix J 2), but the
magnitude of this contribution and the total error are
quite different between the two CX gates. We attribute
these differences to difference in χ matching in the two
cases. For example, in the poorly χ matched A4, S4 CX
gate, we expect that a single |f⟩ → |e⟩ ancilla decay or
state preparation error has a non-negligible probability

FIG. 39. CX2 bit-flip error budgets. Bit-flip probabil-
ities are averaged over initial ancilla states |g⟩ and |f⟩, and
are evaluated at |α|2 = 4. For the poorly χ-matched A4, S4
CX gate, the gray dashed line indicates the predicted bit-flip
probability when the χ mismatch is artificially removed in
simulation.

of inducing a bit-flip error, consistent with the relatively
large contributions associated with these error mecha-
nisms. Indeed, we separately simulate the A4, S4 CX
gate with the χ mismatch artificially set to 0, and we
find a significant reduction in the expected bit-flip error
as indicated by the gray arrow and dashed line in the
figure.

Appendix K: Additional error correction experiment
data

We present some additional information about the rep-
etition code run reported in the main text. In Fig. 40
we report the ancilla and storage phase calibrations (see
Appendix G3) for all of the ancilla and storage modes
for each of the three loops of the experiment (see Ap-
pendix G7). In Fig. 41 we show the data and fits of the
logical X basis experiment. In Fig. 42 we report the data
and fits from the logical X basis experiment when they
are grouped by the number of |+⟩ cat states in the initial
state (see Appendix H 10). Lastly, in Fig. 43 we report
the data and fits from the logical Z basis experiments.

In Fig. 44 we provide logical memory performance from
three other characterizations taken before and after the
run reported in the main text. These runs use slightly
different parameters including no ef π pulse before the
readout and in some cases different paddings around the
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stabilization. However, each run follows the same struc-
ture of the interleaved experiments as described in Ap-
pendix G7. We observe below threshold operation of the
phase-flip correcting repetition code in all the datasets.
Additionally in all datasets we observe the distance-5
repetition code reaching logical bit-flip probabilities of

∼ 1% or less. In each dataset the minimum measured
logical error per cycle for the distance-3 and distance-5
sections are comparable. Owing to the increased protec-
tion from phase-flip errors and noise bias the distance-5
code outperforms the distance-3 when |α|2 ≳ 1.5 for all
the datasets.
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(a)

(b)

FIG. 40. Ancilla and storage phase calibrations for the repetition code experiment. We report data for each of the
three interleaved runs of the repetition code experiment as discussed in Appendix G7. (a) Ancilla phase calibrations for the
reptition code experiment. The ancilla phase is optimized to minimize the detection probability as discussed in Appendix G3.
Vertical lines indicate the fitted optimal value. (b) Storage phase calibrations for the repetition code experiment. The storage
phase is optimized to maximize the individual storage bit-flip times while running a repetition code style pulse sequence with
the ancilla prepared to |g⟩ each round (as discussed in Appendix G3). The vertical lines correspond to the selected value of
the phase which maximized the storage bit-flip time.
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FIG. 41. Fits of logical TX . The fits here correspond to the data reported in Fig. 3. The red curves are data where we do
not use erasure information and the purple curves are data where we do use erasure information.
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FIG. 42. Fits of logical TX binned by the number of |+⟩ in the initial state. The red curves are data where we do
not use erasure information and the purple curves are data where we do use erasure information. Different shades of each color
correspond to a different bin for the number of |+⟩ in the initial state. The bins are given in Appendix H 10. As discussed
in Appendix H10 we expect to see differences in error rates between different groupings due to the asymmetric phase-flip
probabilities at low |α|2.
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FIG. 43. Fits to determine logical TZ . The fits here correspond to the data reported in Fig. 4.
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FIG. 44. Example data from other experiment runs. We show the data from three other experiment runs (a,b,c) from
before and after the repetition code run reported in the main text. These experiments use different pulse sequence parameters
compared to those discussed in Appendix G5 and Appendix G6. Specifically these experiments do not use an ef π pulse
before the readout and in some cases different padding around the stabilization. In the logical phase-flip data for (a) there is
a temporal fluctuation for a few time steps at |α|2 = 2. The reported lifetime for |α|2 = 2 in (a) excludes these points in the
fit as they yield an artificially high lifetime. When performing erasure matching in these datasets, podd (see Appendix H 3) for
a list of edges over 20 is assigned a probability near 50 % .
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