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ABSTRACT
We describe a distributed, asynchronous variant of Edmonds’s

exact algorithm for producing perfect matchings of minimum

weight [Edm65a]. The development of this algorithm is driven

by an application to online error correction in quantum com-

puting, first envisioned by Fowler [FWH12]; we analyze the

performance of our algorithm as applied to this domain in a

sequel [PK].

1 INTRODUCTION
Edmonds’s now-classic results on maximum matchings lie at

the intersection of computer science, combinatorics, and inte-

ger linear programming: starting from a known polynomial-

time algorithm for producing maximum matchings in bipar-

tite graphs [CCPS09, Proposition 5.7], he showed first that a

polynomial-time modification could be used to handle a non-

bipartite graph [Edm65b], then that in the presence of edge

weights another polynomial-time modification could be used

to produce a minimum-weight representative among maxi-

mum matchings [Edm65a]. These are respectively called the

“blossom algorithm” and the “weighted blossom algorithm”.

These landmark results set in motion broad research programs

in several domains: there are theoretical consequences in both

computer science and mathematics; the algorithmic technique

itself admits both generalizations and efficiency improvements;

and it opened the door to a host of applications.

As an example of such an application, minimum-weight per-

fect matchings (MWPMs) attracted the attention of quantum

computer scientists, who showed that an MWPM solver can be

used as an approximation algorithm for decoding syndromes

appearing in quantum error correction, with approximation

ratio dependent on the physical properties of the underlying

quantum device [DKLP02]. This idea has taken such hold with

designers of quantum computers that it has appeared in a vari-

ety of surveys on the subject (see, e.g., [FMMC12, CNAA
+
20])

as a solved problem. However, in order to deploy this on a live

quantum device, Fowler showed that one must make use of a

“parallelized” MWPM solver [FWH12], and work has stopped

short of producing (or referencing) such an algorithm.

Careful consideration of the intended application indicates

that the “parallelized” implementation must actually be dis-
tributed with only local information available to each worker,

online so as to cope with a dynamic problem graph, and ideally

asynchronous to best match lab hardware. Meanwhile, though

state of the art in MWPM solvers has advanced substantially

since the ’60s, they have had other concerns top of mind: it

∗
All work was done prior to joining Amazon Web Services.

is easy to show that the worst-case complexity of an exact

solution to the matching problem on a cycle graph has runtime

polynomial in the diameter [Lin92], which has encouraged the

development of approximation algorithms instead ([WW04],

[LPR09], [LPP15], and many others).

In this paper, driven by the extra structure available on the

problem graphs in our intended application, we return to the

exact setting: we describe an exact, asynchronous distributed

blossom algorithm suitable for fulfilling Fowler’s claim and

prove its correctness. As part of extending Edmonds’s algo-

rithm to operate on alternating forests rather than trees, we

draw the reader’s attention to a new, naturally-occurring forest

operation which we call multireweight, which does not arise

during serial execution and which is crucial to the correctness

of the distributed algorithm. We also provide an implemen-

tation of the algorithm, anatevka [ana, Ale49], as part of a

simulation testbed for distributed systems described in a pre-

vious paper [PK20, aet]. We make no reference to quantum

computing outside of this introduction, since the existence and

behavior of this algorithm is entirely a matter of distributed

computing. Instead, we direct interested readers to the se-

quel paper [PK] for the further modifications necessary to the

application and the performance analysis in that context.

2 THE SERIAL ALGORITHM
Our distributed algorithm is most easily cast as a piecewise

modification of Edmonds’s serial blossom algorithm, with one

extra operation. To facilitate such a description, and to put

the unfamiliar reader at ease, we first review the details of the

serial algorithm. The inputs and output of the problem are:

Definition 1. A matching 𝑀 on a graph 𝐺 is a set of edges

with no repeated vertices. A matching is maximum when it is

of maximum cardinality. A maximum matching on𝐺 is perfect
when 𝐺 has an even number of vertices. For edge-weighted

𝐺 , a matching is said to be minimum weight if there is no

equal-sized matching with smaller edge weight sum.

The goal is to produce minimum-weight perfect matchings.

Remark 2 (Standing assumptions on 𝐺). Initially, we will as-

sume 𝐺 to be unweighted and bipartite, though we will drop

these assumptions as our discussion progresses. Between any

pair of vertices in𝐺 , we permit there to be no edges, one edge,

or several edges—but since a loop can never be a match edge,

it is harmless to assume that𝐺 is loopless. For the purposes of

our description, it is convenient to permit the case of multiple

edges, but it is not necessary: the algorithm will behave as if

there is at most one edge between any pair of vertices (viz.,

the one of least weight). In the weighted setting, one can also
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𝑟 𝑠 𝑡 𝑢 𝑣 𝑤

⇓

𝑟 𝑠 𝑡 𝑢 𝑣 𝑤

Figure 1: The graph on top illustrates an augmenting
path joining 𝑟 to𝑤 : neither 𝑟 nor𝑤 is matched, and the
edges between them alternate between not belonging
and belonging to the matching. The graph below shows
the effect of augmenting along this path: whether an
edge is or is not amember of thematching reverses, and
the size of the matching increases by one edge.

model missing edges by edges of infinite weight, so that the

entire algorithm need only be described for a complete graph.

2.1 Augment and graft
Suppose that we are given a matching 𝑀 , perhaps not yet

maximum. The core mechanism of the algorithm is to identify

an augmenting path:

Definition 3. We say that an edge is matched if it belongs

to 𝑀 or otherwise that it is unmatched, and we say that a

vertex is matched if it is the endpoint of any matched edge or

otherwise that it is unmatched. Thus, an alternating chain or

alternating path is a sequence of adjoining edges which alter-

nate between being matched and unmatched. An augmenting
path is an alternating path whose first and last vertices are

both unmatched.

With such a path in hand, one can produce a new matching

by inverting which edges in the path belong to the matching.

The number of edges in the new matching is one larger than

that of the old.

Definition 4. This inversion procedure is called augmenting
𝑀 along the augmenting path.

Example 5. See Figure 1 for a depiction of augmentation.

The meat of the algorithm is then a search for augmenting

paths, which begin and end at unmatched vertices. The data

structure which powers this is an alternating tree:

Definition 6. An alternating tree is a tree whose root is un-
matched, and whose edges alternate between unmatched and

matched as they descend from the root. We refer to the even-

and odd-depth tree vertices respectively as positive and nega-
tive, and we write 𝑇+ and 𝑇− for these subsets of vertices.1

Definition 7. The inductive operation used to assemble such

an alternating tree is called grafting.2 Let𝑀 be an intermediate

matching, and let 𝑇 be an alternating subtree of the ambient

graph 𝐺 . Select a pair of edges 𝑒 and 𝑓 , as in

𝑢 𝑣 𝑤𝑒 𝑓
,

1
Some authors refer to positive, negative, and unmatched vertices respec-

tively as outer, inner, and exposed.
2
Some authors call this operation grow [Kol09].

𝑟 𝑠 𝑡

𝑢 𝑣

𝑤 𝑥

𝑞

𝑒

𝑓 𝑔

⇓

𝑟 𝑠 𝑡

𝑢 𝑣

𝑤 𝑥

𝑞

𝑒

𝑓 𝑔

⇓

𝑟 𝑠 𝑡

𝑢 𝑣

𝑤 𝑥

𝑞

𝑒

𝑓 𝑔

Figure 2: Begin by grafting amatched edge 𝑓 along edge
𝑒 onto an alternating tree 𝑇 rooted at 𝑟 . This creates an
augmenting path (middle, red) formed from a branch
of 𝑇 and an edge 𝑔 not in 𝑇 . Then augment through
this path to produce a maximum matching. Note that
edges participating in the tree carry arrow heads (point-
ing toward the leaves), edges participating in the partial
matching are bold, and the remaining edges are dotted.

with the additional properties that

(1) 𝑢 belongs to 𝑇 , but 𝑣 and𝑤 do not.

(2) If 𝑢 has a parent in 𝑇 , the edge to that parent is in𝑀 .

(3) 𝑓 belongs to𝑀 , but 𝑒 does not.

We then define the graft of this edge pair onto𝑇 to be the union

𝑇 ′ = 𝑇 ∪ {𝑒, 𝑓 }. The first property of the edge pair ensures

that 𝑇 ′ is a tree, and the others ensure that 𝑇 ′ is alternating.

Remark 8 ([Kuh10], [CCPS09, Proposition 5.7]). Used together,
these operations make up the Hungarian algorithm, Algo-

rithm 1, for producingmaximummatchings on bipartite graphs.

Example 9. We illustrate using an alternating tree to find a

maximum matching on a bipartite graph in Figure 2.

2.2 Contract and expand blossom
We now trade the bipartite assumption for two new tree op-

erations. Consider the situation of Figure 3. The alternating

tree 𝑇 is “maximally grafted”, but no edge emanating from its

positive vertices reaches an unmatched vertex outside of𝑇 , so

the algorithm of Algorithm 1 cannot make progress. Nonethe-

less, an augmenting path exists: starting at 𝑟 , one can proceed
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Algorithm 1: Hungarian algorithm

Data: Bipartite graph 𝐺 , intermediate matching𝑀

Result:Maximum matching on 𝐺

while true do
𝐺𝐿 ∪𝐺𝑅 ← a vertex 2–coloring of 𝐺 ;

𝑇 ← an unmatched vertex in 𝐺𝐿 ;

while true do
if there is an 𝑒 = (𝑣,𝑤) with 𝑣 ∈ 𝑇 ∩𝐺𝐿 ,
𝑤 ∈ 𝐺𝑅, ∉ 𝑀 then

augment 𝑇 along 𝑒;

break;

else if there is an 𝑒 = (𝑣,𝑤) with 𝑣 ∈ 𝑇 ∩𝐺𝐿 ,
𝑤 ∈ 𝐺𝑅 ∩𝑀 then
𝑚 ← match edge for𝑤 ;

graft𝑚 onto 𝑇 using 𝑒;

else
return;

end
end

end

down the lower branch, cross vertically along 𝑒 to the upper

branch, walk backwards through the tree to𝑢, and finally cross

𝑓 to 𝑞. These cycles, where an edge not in 𝑇 joins two of its

positive vertices, are the essential new complication of the

non-bipartite case. Edmonds’s first fundamental observation

was that all of the vertices within such a cycle are well-suited

to constructing an augmenting path, and the second was that

incorporating this into the search algorithm permits one to

use it on an arbitrary graph.

Definition 10. Let𝑀 be an intermediate matching on𝐺 , and

let 𝑣 ∈ 𝐺 be a vertex. By an alternating cycle rooted at 𝑣 , we
mean an odd-length alternating path 𝐶 ⊆ 𝐺 of distinct edges

leading from 𝑣 and returning to 𝑣 .3 We say that we contract a
blossom from 𝐶 when we contract (the full subgraph spanned

by) 𝐶 to a point to produce a new graph 𝐺 ′ = 𝐺/𝐶 . We refer

to the vertex 𝐵 in 𝐺 ′ which is the image of 𝐶 as the blossom
or the macrovertex.4 The graph 𝐺 ′ inherits a matching 𝑀 ′,
defined through three cases:

(1) If 𝑣 is matched in𝑀 , 𝐵 inherits that match in𝑀 ′.
(2) The matched edges in 𝑀 internal to 𝐶 are discarded, as

they’ve been contracted out of 𝐺 ′.
(3) All other matched edges in 𝑀 do not interact with 𝐶 , so

𝑀 ′ inherits them verbatim.

Example 11. In Figure 4 we illustrate macrovertex contraction.

Remark 12. Note that, even if 𝐺 is singly edged (i.e., is not a

multigraph), this need not be the case for the derived graph

𝐺 ′ after contracting a cycle 𝐶 ⊆ 𝐺 to a macrovertex 𝐵 ∈ 𝐺 ′.
If there are two distinct vertices 𝑐, 𝑐 ′ ∈ 𝐶 both with edges to

a third vertex 𝑑 ∉ 𝐶 , then 𝐵 inherits two distinct edges with

target 𝑑 .

3
In particular,𝐶 begins and ends with unmatched edges, lest 𝑣 participate

in two matched edges.

4
Some authors refer instead to the alternating cycle as the blossom.

𝑟 𝑠 𝑡

𝑢 𝑣

𝑤 𝑥

𝑞

𝑓

𝑒

Figure 3: A non-bipartite scenario, where edge 𝑒 joins
two positive vertices. From the view of Algorithm 1, it
is illegal to augment along the edge 𝑓 because 𝑢 is not
positive, hence the path through𝑇 to its root 𝑟 is not al-
ternating. However, the edge 𝑒 could be used to produce
an augmenting path, in red.

Definition 13. Conversely, suppose that we are given an

intermediate matching 𝑁 ′ on a graph 𝐺 ′, where 𝐺 ′ was origi-
nally contracted from a graph 𝐺 along an alternating cycle 𝐶 .

The matching 𝑁 ′ can then always be lifted to a matching 𝑁 on

𝐺 , called the expansion of 𝑁 ′ along 𝐶 . Namely, note that the

macrovertex participates in at most one matched edge in 𝑁 ′,
which can be identified uniquely with an edge in 𝐺 incident

on some vertex𝑤 ∈ 𝐶 . By rotating the alternating pattern of

matches within 𝐶 so that the successive pair of unmatched

edges is joined at 𝑤 , and otherwise inheriting the matched

edges from 𝑁 ′, we obtain a matching on 𝑁 .

Example 14. We illustrate match expansion in Figure 5.

Remark 15 ([Edm65b], [CCPS09, Theorem 5.10]). As promised,

we use these operations to extend Algorithm 1 to cover non-

bipartite graphs. We also modify the termination condition:

given a maximally-grafted alternating tree 𝑇 ⊆ 𝐺 , if it does
not admit any exiting edges along which we may augment,

we additionally search for unmatched edges between positive

vertices in𝑇 . If such an edge is present, then we use it to form a

minimum alternating cycle𝐶 within𝑇 , and contract that cycle

to form a new graph 𝐺 ′ with matching 𝑀 ′. By contracting

𝑇 along 𝐶 , we also produce a new alternating tree 𝑇 ′ in 𝐺 ′,
and we proceed to run the matching algorithm from this new

state.
5
When this recursion returns, we either lift the modified

matching on𝐺 ′ to a modified matching on𝐺 (via macrovertex

expansion) and restart the outer loop, or we proceed to try the

next unmatched vertex as a root.

Remark 16. Representing a contracted graph in memory is

somewhat onerous. In particular, the algorithm described in

Remark 15 may involved nested contractions, where a vertex

becomes contracted into amacrovertex, which in turn becomes

contracted into another macrovertex, and so on. We defer

discussion of this point to Section 3.4, where we will describe

it in full in the setting most relevant to this paper.

5
Some authors call this the derived graph and derived state.
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𝑟 𝑠 𝑡

𝑢 𝑣

𝑤 𝑥

𝑞

𝑓𝐵

⇓

𝑟 𝑠 𝑡

𝑢 𝑣

𝑤 𝑥

𝑞

𝑓𝐵

Figure 4: Continuing from Figure 3, we contract the cy-
cle formed by the edge 𝑒 into a macrovertex 𝐵. This
causes 𝑓 to be attached to a positive vertex in 𝐺 ′, and
hence it participates in an augmenting path. Note that
edges in the contracted cycle are curved solid lines.

2.3 Reweight
Finally, Remark 15 can be extended to produce maximum

matchings of minimum weight by housing it in a “primal-dual

update” scheme [DFF56]. Speaking very loosely, the dual step

sorts the edges not yet considered by the amount of weight

their participation would incur, and the primal step consists

of Remark 15 as applied to these minimally-sifted graphs.

Definition 17. The internal weight of a (macro)vertex is a

numeric value managed by the dual step. The adjusted weight
of an edge is its weight after subtracting the internal weights

of its two endpoints and those of any macrovertices to which

they belong. The weightless subgraph 𝐺◦ is then the maximal

subgraph with the same vertices but retaining only edges of

adjusted weight zero.

Remark 18 ([CCPS09, Theorem 5.20]). The internal weight of

a vertex may be negative. However, if the edge weights of a

graph are all nonnegative, then so are the algorithm’s internal

weights and adjusted edge weights.

Definition 19. Let 𝐺 be an edge-weighted graph with inter-

nal vertex weights, 𝑀 an intermediate matching on 𝐺◦, and
𝑇 an alternating tree in 𝐺◦. The reweighting of 𝑇 is an update

to the internal weights of 𝐺 given by increasing the internal

weights of the positive vertices 𝑇+ and decreasing the internal

weights of the negative vertices 𝑇− by the amount given by

the minimum of the following three sets:

𝑡

𝑢 𝑣

𝑤 𝑥

𝑝

𝑟

𝐵

⇓

𝑡

𝑢 𝑣

𝑤 𝑥

𝑝

𝑟

Figure 5: Beginning with a scenario similar to that of
Figure 4, but with 𝐵 in a negative position, we demon-
strate the effect of macrovertex expansion. The edges
within the cycle are tagged as matched edges so as to
provide an alternating path from the root to the leaf,
and edges not along that path are ejected from the tree.

Graft/augment candidates The adjusted edge weights of

edges in 𝐺 joining vertices in 𝑇+ to vertices not in 𝑇 .

Contract candidates The adjusted edge weights of edges in

𝐺 , scaled down by half, joining vertices in 𝑇+ to each other.

Expand candidates The internal weights of vertices in 𝑇−
which are macrovertices.

This enlarges 𝐺◦ while maintaining the weightlessness of 𝑇 .

The edge-weighted blossom algorithm is then given by

applying the non-bipartite blossom algorithm to 𝐺◦, with the

additional step that the alternating subtree should attempt a

reweight operation before the loop gives up and moves on to

the next candidate root vertex.

Example 20. We illustrate a sample run of this algorithm in

Figure 6.

2.4 The main loop
Altogether, these operations make up the serial blossom algo-

rithm, Algorithm 2, for producing minimum-weight maximum

matchings on edge-weighted graphs.

Remark 21. To simplify the outer loop slightly, we have as-

sumed while writing Algorithm 2 that 𝐺 is fully connected

with an even number of vertices. This means that all of the
vertices will participate in a maximum (perfect) matching, and
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𝑟

𝑠

𝑡

𝑢

1

1

1

12 ⇒

𝑟, +1

𝑠

𝑡

𝑢

0

0

1

11

w

𝑟, +1

𝑠

𝑡

𝑢

0

0

1

11 ⇒

𝑟, +1

𝑠

𝑡

𝑢

0

0

1

11

w

𝑟

𝑠, +1

𝑡, +1

𝑢

0

0

0

02|0 ⇒

𝑟

𝑠, +1

𝑡, +1

𝑢

0

0

0

02|0

Figure 6: A demonstration of the weighted blossom al-
gorithm. Beginning with the root vertex 𝑟 , we first min-
imally increase its weight so some of its edges become
weightless (the densely dotted edges). We then select
one such edge along which to augment the matching.
We choose 𝑠 to be our next root, to which we graft the
previous matched edge. We are out of weightless edges
on which to act, so we minimally reweight the tree to
produce more. We choose the augmenting path 𝑢𝑡𝑟𝑠,
alongwhichwe augment to produce the finalmatching.

the objective is only to minimize the total weight. Matching

all of the vertices can be used as a stopping condition.

Theorem 22 ([Edm65a], [CCPS09, Theorem 5.16]). Algo-
rithm 2 is correct: it always terminates, and on termination it
emits a perfect matching of minimum weight. □

Remark 23. There is a variant of the algorithm in which the

main loop resets the tree 𝑇 after each primal and dual state

update, i.e., each update other than grafting. This variant is

less strict than Algorithm 2, in the sense that it admits more

execution paths: it can always recreate the state preserved

here which it has erased, but Algorithm 2 is not always able

to erase grafting decisions it has made. In trade, Algorithm 2

performs less recomputation as the state evolves, giving it

better runtime properties.

3 THE DISTRIBUTED ALGORITHM
In this section, we rebuild the serial weighted blossom algo-

rithm from Section 2 in a concurrent framework. Our intention

is to alleviate a fundamental bottleneck in the serial algorithm:

the outer loop fixes an unmatched vertex 𝑣 to use as the root

Algorithm 2: Serial blossom algorithm

Data: Edge-weighted fully-connected graph

𝐺 = (𝑉 , 𝐸) with |𝑉 | even
Result:Minimum-weight perfect matching on 𝐺

weight all the vertices in 𝐺 to 0;

while 𝐺 has unmatched vertices do
𝑇 ← an unmatched vertex in 𝐺 ;

while true do
𝑇+ ← vertices of 𝑇 of even depth;

𝑇− ← vertices of 𝑇 of odd depth;

𝐺◦ ← subgraph of weightless edges;

if there is an 𝑒 = (𝑣,𝑤) ∈ 𝐺◦ with 𝑣 ∈ 𝑇+,
𝑤 ∉ (𝑀 ∪𝑇 ) then

augment 𝑇 along 𝑒;

break;

else if there is an 𝑒 = (𝑣,𝑤) ∈ 𝐺◦ with 𝑣 ∈ 𝑇+,
𝑤 ∉ 𝑇 matched then
𝑚 ← match edge for𝑤 ;

graft𝑚 onto 𝑇 using 𝑒;

else if there is an 𝑒 = (𝑣,𝑤) ∈ 𝐺◦ with
𝑣,𝑤 ∈ 𝑇+ then
𝑎 ← nearest common ancestor of 𝑣 and𝑤 ;

𝐶 ← alternating cycle rooted at 𝑎;

contract 𝐶 into macrovertex 𝐵 using 𝑒;

else if there is a weightless macrovertex 𝐵 ∈ 𝑇−
then

expand 𝐵;

else if 𝑟 ≠ 0 for 𝑟 the candidate reweight
amount for 𝑇 then

reweight 𝑇 by 𝑟 ;

else
break;

end
end

end
while 𝐺 contains macrovertices do

𝐵 ← a macrovertex in 𝐺 ;

expand 𝐵;

end

of an alternating tree 𝑇 , and all operations proceed in view of

𝑇 . One can imagine a variant of the algorithm which instead

constructs a forest of alternating trees, and one can further

imagine a decentralized variant where each tree in the forest
6

is responsible for “managing itself”. This is the manner of

algorithm which we now describe.

We adopt the language of the DECOUPLED model of com-

puting [Lin92, CDF
+
19, DFFR19], in which we consider an

actor-based programming model [HBS73] which rides atop a

message-passing system with guaranteed, ordered delivery of

messages. In a prequel to this paper, we described a specific

such system [PK20] as well as an emulator for it [aet], and as

a companion to this paper we provide an implementation of

our algorithm within that framework [ana].

6
Indeed, each vertex in the tree.
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3.1 The distributed environment
Our preferred model of distributed computing consists of a

family of actors, called processes, each with a public address,

an interrupt table of handlers which service messages arriv-

ing at the public address, and a continuation representing

a current computational state. On each computational step,

the process walks every message received at its public ad-

dress using the message handlers, then evaluates its current

continuation, which either produces a new continuation or

terminates the process. These components are subject to some

basic guarantees:

• A non-terminated process will eventually act again.

• A message sent between processes will eventually arrive.

• Messages sent from the same originating process to the

same destination address will arrive in order.

In practice, the precise timing of these operations is influenced

by many factors (e.g., network pressure), and we assume no

guarantees about synchronicity or bounded delay. As is com-

mon in distributed graph algorithms, we will spawn a process

for each vertex in the problem graph, and their communica-

tion will run along edges in the problem graph. The job of

these processes, then, is to coordinate with one another, decide

which vertices are matched to which others, and signal when

they have finished working.

Rather than embed the problem instance directly into the

processes, we instead provide an oracle service, called the

dryad,7 which responds to API requests with details about the

problem graph. These messages are:

message-discover The dryad replies with a list of vertices

which are connected by edges to the querying vertex.

message-sprout The sender vertex announces that it has

begun to participate in the intermediate matching.

3.2 The blossom main loop
As in the serial case, the operations available to an alternating

tree are: graft an external matched edge, augment through

another alternating tree,
8
form a macrovertex from a cycle,

expand a macrovertex, reweight its vertices, and do nothing

(which we call “pass” or “hold”). We will first discuss how an

alternating tree selects among these operations, called a scan,
turning to the distributed implementation of these operations

only in subsequent sections.

Since this procedure makes use of the alternating tree struc-

ture, we will need to understand how this state is maintained

by the algorithm. We store the relevant information in the fol-

lowing slots on each blossom process, where a “blossom” may

represent a vertex or a family of (macro)vertices contracted

into a macrovertex:
9

addr The public address of the blossom. Messages sent to this

address will be handled by the blossom.
10

7
As in: a being which attends to the health and welfare of flora.

8
In the serial case, the other tree is a lone vertex, joined to a positive vertex

in the tree by an unmatched edge.

9
The convention we use going forward of having “blossom” mean either

vertex or macrovertex is our own, and differs from the one used in Section 2.

10
Unless explicitly stated, whenwe refer to blossomswe are referring to their

addresses, not the processes themselves. We use Greek letter and calligraphic

variables to distinguish addresses from other data.

id The internal name of the blossom. Blossoms also have at

their disposal a function called edge-weightwhich takes in
two ids and returns the weight of the edge between them.

match-edge The edge connecting this blossom to the blossom

to which it is matched, if any.

parent The optional edge connecting this blossom to its par-

ent in an alternating tree, if it is not the root.

children A list of edges connecting this blossom to its chil-

dren in an alternating tree, if any.

positive? Parity of the distance to the root of the alternating

tree: true if even, false if odd.

pistil If this blossom has been contracted as part of a cycle,

this holds the address of its immediate “parent” macrovertex.

petals If this blossom is a macrovertex, this stores the cyclic

list of edges which were contracted into it.

internal-weight The internal weight of the blossom.

pingable A flag indicating whether the blossom responds to

inbound ping requests (see immediately below) or it allows

them to queue for later perusal.

paused? If toggled, continue to respond to messages but take

no other actions.

dryad The address of this blossom’s dryad.

Most operations that an alternating tree might perform cor-

respond to the edges emanating from the vertices in the tree.

However, the action to which an edge corresponds depends on

the states of both of the edge’s vertices: the “target” vertex may

belong to the same tree, a different tree (and at even or odd

height), or to no tree at all. To discern the appropriate action,

the (positive) source vertex sends a message-ping to a target

vertex with its half of the data, then listens for a message-pong
in reply with the calculated operation. Attached to most cal-

culated operations is the sponsoring edge, which in this con-

text is a data structure with 4 address slots: source-blossom,
source-vertex, target-vertex, and target-blossom. The
vertex-suffixed slots are self explanatory; the blossom-suffixed

slots return the address of the topmost macrovertex associated

with this vertex (if one exists), and otherwise return the vertex

address. In this way edges keep track of the vertices and top-

most blossoms associated with each endpoint of the directed

edge, which will later make it easier to manage macrover-

tex contraction and expansion. The procedure for calculating

sponsored actions and edges is described in Algorithm 3, and

the information provided by the message-ping includes:

root The root blossom of the source alternating tree.

blossom The topmost macrovertex to which the source be-

longs. If the source is not contained within a macrovertex,

this is (the address of) the source vertex itself.

weight The sum of the source vertex’s internal weight and

the internal weights of all macrovertices to which it belongs.

hold-cluster A set of roots that will have future implica-

tions on how operations are processed (see Section 3.6).
11

addr The address of the source vertex, used to build the spon-

soring edge and send a reply.

id The name of the source vertex, used to calculate the un-

derlying edge weight joining it to the recipient.

11
We call this internal-roots or internal-root-set in our implementa-

tion, but have renamed it here to more clearly link it to its intended purpose.
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Algorithm 3: message-ping handler

Data: a (target) vertex process 𝑃 , a message-ping𝑚
Result: a message-pong reply containing an action 𝑎

𝜌 ← the root of the tree to which 𝑃 belongs;

𝛽 ← the topmost macrovertex to which 𝑃 belongs;

𝑤 ← the macrovertex-adjusted internal weight of 𝑃 ;

H ← hold-cluster(𝑚);

𝑒 ← edge(blossom(𝑚), addr(𝑚), addr(𝑃), 𝛽);

𝑤𝑒 ← edge-weight(id(𝑃), id(𝑚));

𝑤 ′𝑒 ← 𝑤𝑒 −𝑤 − weight(𝑚);
if 𝑃 is matched, and match-edge(𝑃) = 𝑒 then

𝑎 ← pass;

else if 𝛽 = blossom(𝑚) then
𝑎 ← pass;

else if 𝛽 is negative then
𝑎 ← hold(𝜌);

else if 𝑤 ′𝑒 is nonzero then
if 𝜌 = root(𝑚), or 𝜌 ∈ H and root(𝑚) ∈ H then

𝑤 ′𝑒 ← 𝑤 ′𝑒/2;
end
𝑎 ← reweight(𝑤 ′𝑒);

else if 𝜌 ≠ root(𝑚), and 𝜌 is matched then
𝑎 ← graft(𝑒);

else if 𝜌 ≠ root(𝑚), and 𝜌 is unmatched then
𝑎 ← augment(𝑒);

else if 𝜌 = root(𝑚) then
𝑎 ← contract(𝑒);

end
send message-pong(𝑎) to addr(𝑚);

Remark 24. The slots on a message-ping and on a blossom

process are locally accessible during the execution of Algo-

rithm 3. But, of course, not all data that we use during the

course of an algorithm are locally computable. For example,

𝑃 might send messages to other processes to compute the ad-

dresses 𝛽 and 𝜌 (and to compute properties of their underlying

processes, e.g. whether they are matched), in Algorithm 3.

We coordinate the different possible pings within a tree

using the procedure described in Algorithm 4. This algorithm

walks over the edges attached to the vertices participating in

the tree, asking each to sponsor an operation. Because these

operations carry a preference order, in the sense that the avail-

ability of one operation can preclude the consideration of

another, we can then unify the responses into a single course

of action according to the following ordered set of rules:

(1) It is possible for an edge to recuse itself from sponsoring

an operation, typically from a misguided ping (e.g., if a

vertex should ping itself). We call this situation a pass.
Given a choice between a pass and any other option, we

will always prefer to act by the other option.

(2) A hold operation arises when the ping targets a negative

vertex. In the serial algorithm there are no interactions

between positive and negative vertices, but there are im-

plications in the distributed setting which will require us

Algorithm 4: message-scan handler
Data: a blossom process 𝐵, a message-scan𝑚
Result: (optional) a supervisor sponsoring an action 𝑎

𝜌 ← root(𝑚);

𝛽 ← blossom(𝑚) if pistil(𝐵) else addr(𝐵);
𝑤 ← weight(𝑚) + internal-weight(𝐵);
H ← hold-cluster(𝑚);

𝛼 ← addr(𝐵);

𝛿 ← dryad(𝐵);

𝐸 ← children(𝐵);

if positive?(𝐵) then
𝑎← pass;

𝐸 ← 𝐸 ∪ petals(𝐵);
else if 𝐵 is a macrovertex then

𝑎 ← expand(𝛼);

end
if positive?(𝐵) and 𝐵 is not a macrovertex then

send message-discover to 𝛿 , store response in N ;

foreach 𝜈 ∈ N do
𝑝 ← message-ping(𝜌, 𝛽,𝑤,H , 𝛼, id(𝐵));
send 𝑝 to 𝜈 , store response in 𝑎′;
𝑎 ← unify-pongs(𝑎, 𝑎′,H);

end
end
foreach 𝑒 ∈ 𝐸 do

𝜏 ← target-blossom(𝑒);

𝑠 ← message-scan(𝜌, 𝛽,𝑤,H , 𝛼);
send 𝑠 to 𝜏 , store response in 𝑎′;
𝑎 ← unify-pongs(𝑎, 𝑎′,H);

end
if addr(𝑚) then

send message-pong(𝑎) to addr(𝑚);

else if 𝐵 is still an eligible root, and 𝑎 ≠ pass then
pause 𝐵 and spawn a supervisor sponsoring 𝑎;

end

to process holds distinctly from passes (see Section 3.6).

For now, we will treat both operations the same.

(3) As seen in Algorithm 3, hold operations are initialized

with the root 𝜌 of the target vertex. The operation stores

this root in a slot called root-bucket, which is a set (of

length one, to start). Given a choice between two holds,
we instead hold with the union of the root-buckets of
each individual hold.

(4) Given a choice between a reweight and any operation

other than a reweight, we prefer the other operation.
(5) Given a choice between two reweight operations, we pre-

fer to reweight by the lesser amount.

(6) Finally, given a choice between two nontrivial operations,

we arbitrarily prefer one over the other.

Altogether, these rules define the method unify-pongs refer-

enced in Algorithm 4.

Finally, there are the matters of initiating a scan over a tree
and acting on the resulting sponsored operation. We delegate
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the responsibility of initiation to the root: each unmatched

blossom whose paused? flag is not set to true checks whether
it is a root in the forest and, if so, sends itself a message-scan,
then awaits a reply. The slot specification for a message-scan
is identical to that of a message-ping, but without an id
slot. When sending the initial message-scan to itself, the

root fills out the message slots as follows: root is the root’s

address, blossom is null, weight is zero, addr is null, and

hold-cluster is a set containing just the root’s address. If

the result of this scan is not a pass, and if the root has not

changed state since the start of the scan, it spawns a supervisor
process seeded with the result and sets its own paused? flag
to true. It is then the supervisor’s responsibility to carry out

the operation and to unpause the root when complete.

Remark 25. In our implementation, we describe the opera-

tion sponsored by an edge as a pair of an atom (pass, graft,
augment, contract, expand, hold) and a numeric value which

records the adjusted weight of the edge. In particular, we do

not use a separate atom for reweighting: a reweight directive
is instead recorded by an edge of nonzero weight. The atom is

then determined by the rules in Algorithm 3 and Algorithm 4.

3.3 Augment and graft
We turn now to modifying the grafting and augmenting oper-

ations for distributed use. These are the simplest operations,

which lets us ease into the problem while devoting extra time

to the general scaffolding we re-use in future operations.

Recall that each operation is enacted by a supervisor, which

is spawned by a root blossom at the conclusion of a scan. Each
such supervisor operation follows the same outline:

(1) Acquire (recursive) locks on the trees involved [PK20].

This has the effect of preventing all locked blossoms from

starting scans. As part of locking, we additionally set the

pingable flag to false to prevent locked blossoms from

responding to pings, in order to avoid exposing incomplete

state. If it is not possible to establish any of the locks, abort.

(2) Check the root blossoms advertised to the supervisor. If

they are no longer unmatched roots, abort.

(3) Check that the sponsored action is still valid. For most

actions (graft, augment, contract), this means sending

another message-ping to check that the edge responsible

for sponsoring the action still sponsors the same action. For

expand, this means checking that the sponsoring blossom

is still a negative macrovertex. We will defer discussion

on checking the validity of reweight and hold to later

sections. If the sponsored action is no longer valid, abort.

(4) Enter the critical section. Send messages instructing the

locked vertices to make the appropriate state changes.

(5) Exit the critical section, release the locks, restore ping

responsiveness by setting the pingable flag to true, and
terminate the supervisor process.

For the graft operation, the supervisor is required to lock

the tree from which it came, as well as both blossoms partici-

pating in the isolated matched edge to be grafted.
12

The critical

section is then constituted of three pairs of set instructions:

12
In our implementation, we refer to an isolated matched edge as a barbell.

Each blossom in a barbell considers itself to be the root.

Algorithm 5: message-augment handler
Data: a blossom process 𝐵, a message-augment𝑚
Result: nothing
𝑒 ← preceding-edge(𝑚);

𝛿 ← dryad(𝐵);

if 𝑒 = match-edge(𝐵) then
match-edge(𝐵)← parent(𝐵);

else
match-edge(𝐵)← 𝑒;

end
if 𝐵 is the tree root then

send a message-sprout to 𝛿 ;

send a “done” message to addr(𝑚);

else
𝑒 ← reverse(parent(𝐵));

𝜋 ← target-blossom(parent(𝐵));

send message-augment(addr(𝑚), 𝑒) to 𝜋 ;

end

• Set positive? on both blossoms in the matched edge.

• Set parent on both blossoms in the matched edge.

• Set children on both blossoms in the (unmatched) edge

which sponsored the action.

The augment operation is more complex. After locking

both the source tree and target tree, the supervisor sends

message-augment to the two blossoms in the sponsoring edge.

This message has a slot addr containing the supervisor’s ad-
dress and a slot preceding-edge, initially containing the spon-
soring edge. This causes the blossoms to modify their matches

and forward the message-augment toward the roots of their

respective trees; details are given in Algorithm 5.
13

An ad-

ditional twist is that, when releasing the recursive lock, we

instruct all of the locked blossoms—not just the ones participat-

ing in the message-augment chain—to reset their parent and
children fields. This dissembles the tree structures, which

are no longer alternating.

3.4 Contract and expand blossom
We turn to even more complicated tree operations: first, the

construction of macrovertices; and later, their dissolution.

As indicated in the previous section, macrovertex construc-

tion follows the same general template of locking and re-

checking before entering the critical section, whose behavior

we now specify. To begin, the supervisor spawns a new blos-

som process which will serve as the macrovertex and immedi-

ately acquires a lock on it to prevent it from acting on its own

(viz., initiating a scan). It then takes the following steps:

Petal calculation The supervisor computes the paths in the

alternating tree from the sponsoring blossoms to the root,

trims edges which are common to both paths, and joins

them through the sponsoring edge. This is the minimal

alternating cycle containing the sponsoring edge, and is

13
We introduce here a function reverse to reverse the direction of an edge.

Note that the supervisor needs to reverse the sponsoring edge before sending it

via message-augment to the target tree.
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Figure 7: Illustration of the propagation of scan mes-
sages, denoted bywavy red arrows, along an alternating
tree with macrovertices. Scan messages are forwarded
first among blossoms along the edges that constitute
the alternating tree, and then each positivemacrovertex
which receives a message propagates it to the blossoms
which make up the cycle which it encloses.

used to set the petals slot on the new macrovertex.
14

The

blossoms in the cycle set their pistil to the macrovertex.

Parent calculation The final such edge trimmed above, if

any, connects to the parent of the macrovertex. The super-

visor substitutes the new macrovertex into that parent’s

children, and also sets the parent of the macrovertex.

Children calculation Where appropriate, the blossoms in

the cycle transfer the parent-child relationship of their chil-

dren to the macrovertex.

Match calculation The macrovertex inherits the match edge

of its contracted blossom which is nearest to the root, if it is

matched. The blossoms in the cycle erase their match edges.

Unpause Finally, the macrovertex is unpaused.

Remark 26. In this way, alternating trees with macrovertices

become “two-dimensional trees”: there is a parent-child re-

lation which captures potential alternating paths in the con-

tracted graph, as well as a parent-child relation which captures

the subsumption of blossoms by macrovertices. We illustrate

this structure in Figure 7.

Expansion is performed “in reverse”: all of the relations

that went into macrovertex formation are recovered whenever

they can be, and they are reverted to a neutral state otherwise.

The amounts to the following operations:

External parent calculation The parent of the macrovertex

holds an edge to the macrovertex in its list of children. The

supervisor “unwraps” the target of that edge by one layer:

it replaces the edge by an edge with target-blossom set to
the penultimate blossom ancestor of its target-vertex. It
does this by asking target-vertex to recursively message

its pistil to find the process whose pistil is equal to

14
In Figure 3, the edge 𝑒 = (𝑣, 𝑥) would sponsor a macrovertex formation,

and the two paths from the root would read as 𝑟𝑠𝑡𝑢𝑣 and 𝑟𝑠𝑡𝑤𝑥 . After trimming

the common prefix, one resulting alternating cycle is 𝑡𝑢𝑣𝑥𝑤.

target-blossom (which, if target-vertex has only been

part of one macrovertex contraction, would be itself).
15

External match calculation The match of the macrovertex

holds a pointer to the macrovertex in its match edge. In the

same fashion as external parent calculation, the supervisor

descends that edge by one layer of macrovertex contraction.

Internal match calculation The match edges within the cy-

cle are set between neighbors so that the unique cycle blos-

som receiving an external match edge does not participate

in a match within the cycle.

Internal parent and children calculation The blossom al-

gorithm makes two guarantees when expanding macrover-

tices: a macrovertex is always matched; and it either does

not participate in an alternating tree (viz., when expand-

ing a blossom at the termination of the algorithm) or, if it

does, it lies in a negative position with zero internal weight

(viz., when expanding a blossom during the bulk of the al-

gorithm). In the second case, it is thus guaranteed to have

at most one child (viz., its match) in addition to having a

single parent. Accordingly, by choosing between clockwise

and counterclockwise traversal, the supervisor can find a

unique path through the petals which continues the alternat-

ing pattern from the ambient tree. These edges are assigned

parent-child relationships, and all edges not along the path

are ejected from the tree.

3.5 Reweight
Finally, we consider the most complex of the serial algorithm’s

tree operations. Although reweighting only involves setting

values internal to a tree, the validity is influenced by an in-

determinate number of trees. It is not feasible to ensure the

validity of a reweighting operation by acquiring locks, since

pessimistically we would have to lock the entire platform. In-

stead, we perform a tentative change, then undo (or “rewind”)

if that change is interrupted or seen to be invalid.
16

The possibility of an invalid reweighting is a wrinkle unique

to the distributed setting: a change can only become invalid

if two trees, which are mutually influencing one another’s

scans, both elect to reweight at the same time. They can also

only detect this invalidity by re-scanning—which, without

intervention, would result in deadlock, as both trees refuse to

reply to inbound pings in their respective critical sections. In

light of this, we introduce a new kind of ping and new state of

ping responsiveness, called soft pings, which are used only to

establish weight validity and not to sponsor new operations.

pingable This existing flag is extended from a simple on/off

switch to three values: all, meaning the blossom responds

to all pings (replaces true); none, meaning the blossom de-

fers all ping responses (replaces false); and soft, meaning

the blossom only handles soft pings and defers others.

With this new pingability mode in place, we can define

how a supervisor checks the validity of a reweight (which we

deferred during step 3 in the supervisor outline in Section 3.3).

15
By recursively message we mean send a message to its pistil, and then

have that process send a message to its pistil, and so on.

16
The simplest form of validation is to apply Remark 18 and check for

negatively-weighted edges.
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First, the supervisor tells the source and target roots to set

themselves and their trees to only respond to soft pings.
17

Then, the supervisor instructs the source root to initiate a

soft scan (a scan that generates soft pings). If the resulting

recommendation differs from what was originally sponsored,

the supervisor aborts.

This change is sufficient to maintain consistent state, but it

can still result in livelock [Ash75]: two trees competing for the

same reweighting operation in perfect synchrony can forever

tentatively reweight, regret, rewind, and repeat. To avoid this

scenario, we use a priority scheme to break the symmetry: if

a tree in the process of reweighting receives a (soft) ping from

a higher-priority source which evidences that it has changed

its weight by too much, it aborts its own reweight in order to

make room for its superior to perform the operation instead.
18

With all this in mind, we describe steps involved in the

critical section of the reweighting operation:

(1) Set the source tree’s pingability to none.
(2) Modify the internal weights of the top-level blossoms in

the source tree: the positive blossoms are increased by the

desired amount, and negative blossoms are decreased.

(3) Set the source tree’s pingability to soft.
(4) Tell the source root to perform a soft scan to determine the

minimum edge weight emanating from this tree to another.

This message contains the same arguments as described

in Section 3.2, except addr is the supervisor’s address.
(5) If this minimum edge weight is negative, rewind.

19

Example 27. See Figure 8 for an illustration of this resolution.

Remark 28. Rather than preventing livelock through priori-

ties, an alternative strategy when two trees conflict through

simultaneous reweighting is to have each tree rewind by half

of the overshoot,
20

check again, and rewind the rest of the

way if there is still a problem. This is an imperfect form of

resolution, but it nonetheless seems to be useful in practice.

See Figure 9 for an example of this conflict resolution.

3.6 Multireweight
Finally, we come to the crucial new feature that arises in the dis-

tributed algorithm. The algorithm described so far suffers from

an additional deadlock which arises not because of communi-

cation conflicts, but because of decentralized action. Where

the serial algorithm could exhaust the possibilities for a tree

to act, release the active tree, and move on to the next possi-

ble root, the decentralized algorithm builds multiple trees at

once and has no release mechanism. Since the hold operation

previously indicated that the serial algorithm should move on,

this results in a possible failure mode when handling it in the

distributed setting.

17
We additionally modify the validity checks for graft, augment, contract

to do the same before sending their verification ping.

18
It is possible, but not necessary, to employ this symmetry-breaking mech-

anism with the locks acquired by other operations.

19
This is the point at which one could only rewind halfway and check again.

In the priority-preferenced scheme, only a higher-priority vertex or a vertex

which has finalized its critical section can emit a negative-weight reply, and in

both these cases we must rewind.

20
The factor of 1/2 comes from each 1 edge being attached to 2 vertices.

𝑟 𝑠 𝑡 𝑞1 2 3

⇓

𝑟 𝑠, +1 𝑡, +2 𝑞0 −1 1

⇓

𝑟 𝑠, +1 𝑡 𝑞0 1 3

Figure 8: A demonstration of a reweight conflict. Two
vertices 𝑠 and 𝑡 both attempt to reweight according to
their local understanding of the largest value by which
they can reweight. Before exiting the critical section,
they both notice that the edge connecting themhas neg-
ative adjusted weight, which is illegal. Taking 𝑡 to have
lower priority than 𝑠, 𝑡 reverses its reweight whereas 𝑠
retains it. This repairs the violation, and the algorithm
has made progress by making the edge (𝑟, 𝑠) weightless.

𝑟 𝑠, +1/2 𝑡, +3/2 𝑞1/2 0 3/2

Figure 9: Resolving the conflict in the second step in Fig-
ure 8 by partial rewinding instead. This time the result-
ing weightless edge is (𝑠, 𝑡).

Example 29. For an example configuration, see the second

step in Figure 10. These two trees are arranged so that they

both have some positive weight on their negative vertices,

and they both have positive vertices with weightless edges

to each others’ negative vertices. This means that the trees

abut along edges that sponsor hold operations, and neither

one can perform any other operation, including a reweight.

However, the two trees could make progress if they coor-

dinated their action to simultaneously transfer weight from

their negative vertices to their positive vertices. This kind of

coordinated reweighting is what is pictured in the transition

to the third step of Figure 10.

To codify this kind of coordination, we introduce a variant

of the reweighting operation, called a multireweight, which is

triggered by the presence of a hold cluster:

Definition 30. A hold cluster is a set of trees whose scans all
elect to hold and all of whose edges sponsoring those holds
have both endpoints in the set.

21

A supervisor responding to a sponsored hold operation devi-

ates from the typical recipe described in Section 3.3. Namely,

it performs the preflight validation checks for the operation

(step 3) before locking and checking the roots (steps 1 and

2). For a hold, this validation check consists of verifying that

the tree is actually part of a nontrivial hold cluster. It does

this by messaging all the roots in the sponsoring operation’s

21
In particular, there are no valid hold clusters of size 1.
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𝑟 𝑢, +1 𝑣

𝑠, +1𝑡 𝑞

22 2

⇓

𝑟 𝑢, +1 𝑣

𝑠, +1𝑡 𝑞

22 2

⇓

𝑟, +1 𝑢 𝑣, +1

𝑠𝑡, +1 𝑞, +1

2|0

⇓

𝑟, +1 𝑢 𝑣, +1

𝑠𝑡, +1 𝑞, +1

2

Figure 10: An example of a multireweight operation. In
this graph, the edge weights are determined byManhat-
tan distance. First, 𝑟 and 𝑞 act as roots, and they each
graft the indicated matched edges onto their respective
trees. This causes a serial impasse: the only remaining
weightless edge connects two negative vertices, and nei-
ther tree can reweight alone because of the weightless
edge connecting its root to the other tree’s negative ver-
tex. However, the two trees can together perform amul-
tireweight by 1, which redistributes the internal weight
off of the negative vertices and onto the positive ones,
resulting in a weightless edge connecting the two roots
which can be augmented to produce a perfectmatching.

root-bucket to ask if they are held (and by whom), and ag-

gregates the responses. If new mutually-held trees (beyond

the root-bucket) are encountered, the message is forwarded

along to them. This has the effect of incrementally growing a

set of trees along edges which sponsor hold operations. Once

no new trees are proposed, then this set is a valid hold cluster;

however, if a new tree is proposed that sponsors a non-hold
operation, then the cluster is invalid and the supervisor aborts.

Once the supervisor has established a valid hold cluster,

and if it was spawned by the root with the highest priority

among the cluster, it proceeds through steps 1 and 2 of the

standard recipe. This locks all the trees in the hold cluster and

then checks that their roots have not changed since the spawn

of the supervisor, otherwise aborting. Then, skipping step 3

(as we performed validation already), the supervisor reaches

the multireweight critical section. Before describing the way
in which a supervisor enacts a multireweight operation, we

must first (as promised in Section 3.2) make a modification

to how holds are processed by unify-pongs. Rather than al-

ways treating it like a pass and preferring the other operation,
unify-pongs only discards a hold when its root is part of the

hold cluster, and otherwise considers it a nontrivial operation.

With this modification in place, we can finally describe the

multireweight critical section:

(1) Set the pingability of the hold cluster to soft.
(2) Perform a soft scan across the entire hold cluster. For each

root in the cluster, this soft scan resembles that of the

reweight critical section in Section 3.5, with one notable

difference: the hold-cluster slot is populated with the

hold cluster motivating our multireweight. This has the
effect of treating the trees as if they were temporarily

grafted onto a common root—the resulting sponsored ac-

tion is guaranteed to be a reweight, with weight equal to

half the distance between the closest trees in the cluster.
22

(3) Set the pingability of the hold cluster to none.
(4) Reweight the hold cluster by the weight from step 2. The

supervisor interleaves the reweight operations for each
tree in the cluster, which has the effect of reweighting the

entire cluster simultaneously.

(5) Set the pingability of the hold cluster to soft.
(6) Perform another soft scan across the entire hold cluster,

as in step 2, but no longer filling out the hold-cluster
slot. This determines the minimum weight edge between

the trees in the hold cluster and their surroundings. If this

minimum edge weight is negative, rewind the hold cluster.

Example 31. We demonstrate the multireweight operation in
Figure 10. This operation is a consequence of constructing an

alternating forest rather than a lone alternating tree. Starting

from the first step of Figure 10, we illustrate how the serial

algorithm would have progressed differently in Figure 11.

3.7 The dryad main loop
Finally, we consider the apparatus for starting and stopping

the blossom algorithm. The dryad, first mentioned in Sec-

tion 3.1 as a directory for the solver’s various components, is

a natural deposit for this responsibility. The interface that it

exposes between the solver and the outside world consists of

the following messages:

message-sow Instructs the dryad to inject a new vertex into

the solver. Carries an id which is used to refer uniquely to

the vertex and to calculate edge weights in the graph.

message-reap Sent by the dryad to match-address (a slot

on the dryad) to announce a single matched edge in the

solution, in the form of a pair of ids.

Example 32. We describe an implementation of a dryad with

some major simplifying assumptions:

22
Compare to the result in Algorithm 3 when two positive blossoms sharing

the same root elect to reweight.
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𝑟 𝑢, +1 𝑣

𝑠, +1𝑡 𝑞

22 2

⇓

𝑟, +1 𝑢 𝑣, +1

𝑠𝑡, +1 𝑞1

11 1

⇓

𝑟, +1 𝑢 𝑣, +1

𝑠𝑡, +1 𝑞, +1

𝐵1𝐵2

⇓

𝑟, +1 𝑢 𝑣, +1

𝑠𝑡, +1 𝑞, +1

Figure 11: First, taking 𝑟 as the active root, 𝑟 grafts the
two availablematch edges and reweights.While𝑞 is still
disconnected in 𝐺◦, there are two cycles available from
which it forms macrovertices 𝐵1 and 𝐵2. In 𝐺 ′, 𝐵2 (or,
equivalently, 𝑞) can be reweighted, and 𝑞 can then form
a match edge to any of 𝑟 , 𝑠, 𝑢, and 𝑣 . Finally, expanding
𝐵2 and 𝐵1 lifts the perfect matching on 𝐺 ′ to one on 𝐺 .

• The dryad is “monolithic”, meaning there is a single process

responsible for servicing the API.

• The problem graph is complete, has an even number of

vertices, and is fixed for the duration of the solver. Such a

graph is guaranteed to have a perfect matching in which all

vertices participate, simplifying the termination condition.

• Rather than provide a separate message which installs a

plurality of vertices at once, we expect that the plurality of

message-sows arrive together.23

On initialization, the dryad reads the pending message-sows,
spawns a process for each, and waits. Each vertex process

sends a message-sprout to the dryad when it joins the partial

matching; once when every vertex makes that announcement,

23
This assumption has no effect on the functionality of the algorithm if the

entire problem is known at initialization time.

the solver has finished. The dryad then queries the vertices

for their match edges to announce the solution. If any vertex

replies that it does not have a match edge, it is because it is cur-

rently wrapped in a macrovertex. Since the solver has finished,

the dryad can safely send a directive for that macrovertex to

expand, producing matches for all of its petals. This eventu-

ally terminates, at which time the dryad announces the set of

matched edges by emitting message-reaps.

4 ANALYSIS
We now turn to the efficacy and efficiency of our variant of

the blossom algorithm.

4.1 Correctness
As our algorithm is a modification of Edmonds’s algorithm, our

proof of correctness also hews closely to his, sowe briefly recall

the steps he takes. He first analyzes the matching polytope so

as to give a combinatorial recognition principle for minimum-

weight maximum matchings [Edm65a, Section 4, Theorem

(M)]. Namely, a matching𝑀 = 𝑀0 on a graph𝐺 = 𝐺0 qualifies

when it can be extended to a sequence of graphs andmatchings

{𝑀𝑗 ⊆ 𝐺 𝑗 }𝑛𝑗=0 with the following properties:

• Each 𝐺 𝑗 is related to the next by a blossom contraction

through an alternating cycle.

• Each 𝐺 𝑗 is assigned “admissible” internal vertex weights.

• The vertex weights differ between 𝐺 𝑗 and 𝐺 𝑗+1 only at the

new macrovertex.

• The contraction edges in each 𝐺 𝑗 become weightless for

these internal weights.

• All matched edges in 𝐺𝑛 are weightless, and all unmatched

vertices in 𝐺𝑛 have zero internal weight.

To show these conditions suffice, Edmonds uses a polytope

which encodes the maximum matching problem, with the

following executive summary:

[Edm65a, Section 2] A matching gives rise to a vertex in

this polytope, and a minimum-weight maximum matching

is a polytope vertex which extremizes a linear functional

encoding the edge weights.

[Edm65a, Section 5] In general, polytope vertices can be

modeled by sequences {𝑀𝑗 ⊆ 𝐺 𝑗 } 𝑗 of the above type for
some choice of edge weights, hence are solutions to some
minimum-weight maximum matching problem.

[Edm65a, Section 6] Given a polytope vertex extremizing a

fixed edge weight functional, a sequence {𝑀𝑗 ⊆ 𝐺 𝑗 } 𝑗 for
that particular functional can be constructed.

[Edm65a, Section 7] Finally, he provides a description of a

primal-dual solver with verifiable progression toward such

a combinatorial sequence—essentially, Algorithm 2.

Since we are solving the same problem, we can reuse his recog-

nition principle as-is. In fact, we can reuse most of his proof

that his algorithm produces the desired witnessing sequence

of combinatorial steps: the sequence {𝑀𝑗 ⊆ 𝐺 𝑗 } 𝑗 is read off

from the steps in the pre-termination while loop from Algo-

rithm 2, and with the same procedure we can read off such a

sequence from the final state of the distributed algorithm. We

need only show that our algorithm makes progress toward

this same goal.
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(circlet)

(arches)

(monde)

Figure 12: The crown on a four-vertex linear graph. The
bottom vertices form the (linear, four-vertex) circlet,
the middle vertices and downward edges the arches,
and the top vertices and upward edges the monde. The
matched edges depict a regal matching extending the
matching consisting of just the rightmost circlet edge.

4.1.1 Primal correctness. For primal updates (i.e., for all steps

save reweighting), we deduce correctness of the distributed

algorithm by realizing its behavior as a special case of that

of the serial algorithm. Specifically, the primal updates in the

distributed algorithm operating on a graph 𝐺 behave like the

serial algorithm applied to a slightly larger graph ℭ𝐺 , which

we call the crown. We proceed as follows:

(1) We introduce normalizing conditions on the steps taken by

the distributed and classical algorithms. Essentially, a run

of the distributed algorithm is said to be “rooted” when its

tree operations do not interleave with one another, and a

run of the classical algorithm is said to be “good” when it

does not involve the new crown graph vertices “too much”.

(2) We show that every run of either algorithm can be modi-

fied so that the respective normalization conditions hold:

operations in the distributed algorithm can be judiciously

delayed so as to become non-interleaved, and the classical

algorithm can be discouraged from manipulating the new

vertices in the crown graph without preventing progress.

(3) In the presence of the normalization conditions, we show

that a rooted run of the distributed algorithm corresponds

exactly to a good run of the classical algorithm. We do this

by directly comparing individual steps in one algorithm

to individual steps in the other.

(4) We use this correspondence to transport Edmonds’s wit-

nessing sequence for a good run of the classical algorithm

on ℭ𝐺 to a witnessing sequence for a rooted run of the

distributed algorithm on 𝐺 . Altogether, this establishes

primal correctness.

The idea behind the construction ℭ𝐺 is to incorporate the

distributed algorithm’s supervisor processes as actual vertices

in the problem graph. This then enables us to identify the su-

pervisor actions in the distributed algorithm with the behavior

of trees rooted at these vertices in the serial algorithm. The

following definition makes this precise:

Figure 13: St. Edward’s crown [SRFR19] with spherical
monde at top connected by arches to circlet at bottom.

Definition 33. For an unweighted graph 𝐺◦, we define its
crown ℭ𝐺◦ as the following iterated pushout:

𝐺disc
◦ 𝐾𝐺disc

◦ ,𝐺disc
◦

𝐺disc
◦ Cyl(𝐺disc

◦ )

𝐺◦ ℭ𝐺◦,

where 𝐺disc
◦ is the discretization, and

Cyl(−) = (−)□{0→ 1}

is the cylinder graph, constructed using the graph “Cartesian

product”. Concretely, the vertices of ℭ𝐺◦ partition into three

sets, each separately isomorphic to the vertices of 𝐺◦: the
circlet, the arches, and themonde. For a vertex 𝑣 ∈ 𝐺◦, we refer
to the corresponding vertices in the circlet, arch, and monde

as its avatars. The edges joining these regions are as follows:

Arches–arches: None.
Arches–circlet: Each pair of avatars of 𝑣 is joined by an edge.

Arches–monde: Every arch vertex is joined to every monde

vertex by an edge.

Circlet–circlet: These are the same as the edges of 𝐺◦.
Circlet–monde: None.
Monde–monde: None.

Example 34. Figure 12 depicts the crown ℭ𝐺◦ of a four-vertex
linear graph 𝐺◦. The circlet, arches, and monde are vertically

arranged. Additionally, we illustrate a regal matching on ℭ𝐺◦
(see Definition 37) which extends a partial matching on 𝐺◦
consisting of a single edge. In Figure 13 we provide the inspira-

tion behind the naming of ℭ𝐺 , and in Figure 14 we separately

indicate how the crown is constructed as an iterated pushout.
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⌜

⌜ ⌜

Figure 14: The presentation of the crown on a four-
vertex linear graph as an iterated pushout, including
the two intermediate pushouts. Each square describes
its lower-right corner as two graphs, those in the upper-
right and lower-left, glued together along the common
subgraph in the upper-left.

We show that these conditions permit the following corre-

spondence, whose proof we briefly defer:

Theorem 35. Rooted Lamport orderings of the distributed
blossom algorithm acting on 𝐺◦ biject with good runs of the
serial blossom algorithm acting on ℭ𝐺◦, modulo the choice of
monde vertex at the start of each serial segment. This bijection
preserves the sequence of state updates.

To support this claim, we show in some Lemmas that these

conditions are not so limiting. Our first Lemma shows that by

deferring irrelevant grafting operations, we can benignly re-

ordering the events in a Lamport ordering so that the ordering

becomes rooted.

To make precise the relationship between matchings on

ℭ𝐺◦ and matchings on 𝐺◦, we need three auxiliary defini-

tions which help normalize the indeterminacy on both sides

of our purported correspondence. We begin with a condition

on distributed runs:

Definition 36. In a Lamport ordering [Lam78] of the events

of a run of the distributed algorithm, we refer to the sequence

of grafting events between two adjacent state updates, as well

as the later state update, as a segment. A segment is said to be

rooted if all of its roots belong to the set of roots which act in

its final bookending state update. The entire Lamport ordering

is said to be rooted if all of its segments are rooted.

Our intent with Definition 36 is that rooted orderings display

a kind of focused attention. Rather than many tree operations

happening in parallel in a forest, all the operations within a

maximally reasonable block of time pertain to one tree only.

Next, we have conditions for the serial runs on the crown:

Definition 37. A matching on ℭ𝐺◦ is said to be regal if all of
the vertices in the circlet and arches are matched (but perhaps

not to each other, i.e., some vertices in the arches may be

(circlet)

(arches)

(monde)

Figure 15: An alternating tree directed along the crown.

matched to vertices in the monde). The initial regal matching
is the matching where each vertex in the circlet is matched to

its avatar in the arches.

Definition 38. A run of the serial algorithm on ℭ𝐺◦ is said
to be good if it satisfies the following properties:

• The initial matching is regal.

• Every macrovertex formation in which a monde vertex par-

ticipates is directly followed by an augment to another

monde vertex and an expand operation on the macrovertex.

• Trees are directed downwards along the crown: No circlet

vertex is permitted to graft an arch vertex as a child.

Our intent behind Definition 37 and Definition 38 is to limit

the roles which the new monde and arch vertices can play

in the serial algorithm, facilitating a comparison between the

distributed algorithm acting directly on 𝐺 and the serial algo-

rithm’s behavior as understood through the circlet.

Example 39. In Figure 15, we then examine an example on

the same ℭ𝐺◦ of an alternating tree directed along the crown.

The two circlet vertices without circlet matches engender two

unmatched crown vertices, at which the tree roots. Restricted

to the circlet (i.e., from the viewpoint of the distributed blossom

algorithm), this tree has found an augmenting path between

two unmatched circlet nodes, terminating with the foremost

edge. In the larger crown, this alternating tree is ready to

contract into a macrovertex, at which point it can augment

with the other unmatched monde vertex, then re-expand.

Lemma 40. Every run of the distributed algorithm admits a
rooted Lamport ordering.

Proof. Fixing any Lamport ordering of a run, we induc-

tively “smooth” it to produce a rooted ordering. Consider the

earliest segment within the run which is not rooted, and con-

sider the last grafting operation within that segment which

violates the rooted property. Because the root which is enact-

ing this graft is disjoint from all of the operations’ roots from

this point to the state update which terminates the segment,

this graft operation can be commuted to occur just after the

state update. Continuing in this way produces the desired

rooted ordering. □
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Next, we show that the good run condition is not limiting:

any partial good run which still admits progress as a run also

admits progress as a good run.

Lemma 41. Every partial good run of the serial algorithm
operating on ℭ𝐺◦ can be extended to a longer good run.

Proof. We have two objectives:

(1) We must show that a contraction which includes a monde

vertex can be followed by a monde-monde augmentation

and an expansion.

(2) We must show that an augmenting path which does not

respect the directedness property can be abbreviated to

one that does.

For the first objective, consider such a macrovertex and the

cycle used to produce it. The contracted cycle includes an arch

vertex, hence the macrovertex inherits all of its edges to the

vertices in the monde. Any edge to an unmatched monde ver-

tex can be used to perform the augmentation. The macrovertex

can then be directly expanded.

For the second objective, consider an augmenting path

which violates directedness. First, we may assume that the aug-

menting path visits the monde only at its endpoints as follows.

By regalness, the augmenting path must begin and end in the

monde, so that any intermediate visit to the monde is through

a matched vertex. As the augmenting path begins and ends at

positive vertices, there must be two adjacent monde vertices

whose intervening path begins and ends with an unmatched

edge. Select that subpath, then replace its terminating edges

with visits to the original terminating monde vertices. Second,

we may even assume that the terminating monde vertices are

the same, since any arch vertex is reachable by any monde

vertex. Together, these observations produce an alternating

cycle accessible by a crown-directed tree. □

With these Lemmas in hand, we turn to the proof of the main

correspondence between serial and distributed runs, stated as

Theorem 35.

Proof of Theorem 35. Given a rooted Lamport ordering

of a run of the distributed blossom algorithm, select a segment

for which we will construct a corresponding segment of steps

in the serial algorithm. Select an unmatched vertex from the

monde to serve as the root of the serial segment. For each

root participating in the distributed segment, graft the corre-

sponding circlet-arches matched edge to the chosen root in the

monde. Then, each non-augment maneuver in the distributed

segment corresponds to an identical maneuver in the serial

segment. Finally, an augment in the distributed segment cor-

responds on the serial side to contraction, augmentation, and

expansion. Since we have assumed an interest only in good

runs, this correspondence can also be applied in reverse. □

Corollary 42. Ignoring internal weights, the distributed
algorithm can be used to produce the same {𝑀𝑗 ⊆ 𝐺 𝑗 } 𝑗 data as
in Edmonds’s original proof [Edm65a, Section 7]. □

4.1.2 Dual correctness. Unfortunately, the dual step must be

treated more manually: the multitude of monde vertices pre-

vent us from fruitfully applying the weighted algorithm to

ℭ𝐺 . Fortunately, there is altogether less to show. Instead, let

us examine the the conditions for performing a reweight in

the distributed setting.

Positive–positive: A tree for which no more primal updates

are possible has no positive vertices connected byweightless

edges to other positive vertices, whether in this tree or in

another. Hence, this case is empty. This is as in the dual

update step of the serial weighted algorithm.

Negative–any: No edge emanating from a negative vertex

in this tree affects the reweight calculation. This is also as

in the dual update step of the serial weighted algorithm.

Positive–negative internal: An edge emanating from a pos-

itive vertex to a negative vertex in the same tree is not in-

cluded in the reweight amount calculation. This is also as

in the dual update step of the serial weighted algorithm.

Positive–negative foreign: An edge between a positive ver-

tex in this tree and a negative vertex in another constrains

the reweight amount. Since the serial algorithm uses a
tree rather than a forest, it has no concept of a “for-
eign” target and hence has no analogue of this case.

Our observation is that this last constraint is always a phantom:

even when it is weightless, (non-local) progress can always be

made. There are two subcases to this final point: according to

whether the tree in question belongs to a hold cluster.

Tree belongs to a hold cluster: The multireweighting pro-

cedure circumnavigates the weightless hold constraints. In

fact, it is guaranteed to reweight by a (nonzero) amount

giving a minimal enlargement of the weightless subgraph.

Tree does not belong to a hold cluster: The tree responsi-
ble for breaking the hold cluster is necessarily free to act

in some other way, whether by a primal update or by a

(multi)reweight of its own.

In Edmonds’s language, both subcases (hence all cases) afford

algorithmic progress.

Since the correctness of the distributed blossom algorithm

comes down only to the combinatorial properties of the primal

step, together with the ability of the second step to make

progress, we have therefore proven the following theorem:

Theorem 43. The distributed blossom algorithm is correct: it
always terminates, and upon termination it emits a minimum-
weight perfect matching. □

4.2 Timing
Theorem 44. The runtime of the distributed blossom algo-

rithm is 𝑂 (𝑛4), with 𝑛 the number of vertices in 𝐺 .

Proof. The serial algorithm does not backtrack, and using

a priority mechanism the distributed algorithm also does not
backtrack. Hence, the runtime of the distributed algorithm is

bounded by the duration of the serial run to which it corre-

sponds under Theorem 35. Since the original algorithm runs

in time𝑂 (𝑛4) and ℭ𝐺 is not asymptotically larger than𝐺 , we

learn the same for the distributed algorithm. □

Remark 45. In particular, there is never an asymptotic penalty

to using this algorithm over the (original) serial version. Of

course, modern implementations of the serial algorithm reduce
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the asymptotic runtime substantially compared to Edmonds’s

original.

5 CLOSING COMMENTS
We point out some of the stones we have left unturned.

Remark 46 (Structured data improvements to runtime). The

worst case time complexity bound given in Theorem 44 is

likely to be achievable for the algorithm presented here: when

working with a fully-connected graph, reweighting operations

rooted at high-priority nodes have a particularly bothersome

ability to prevent lower-priority reweighting operations from

succeeding. However, improvements to the serial blossom

algorithm have appeared since its invention in the 1960s [CR99,

Kol09, MV80] which more intelligently deploy data structures

to track which proposals are worth querying, lowering the

time complexity bound. It is open whether these serial blossom

variants can be imported to the distributed setting, where the

maintenance of delicate large-scale structure has the potential

to destroy locality.

Remark 47 (Geometric improvements to runtime). Our in-

tended application rests heavily on the observation that geo-

metric structure in the problem graphs can be leveraged in the

dryad to give dramatic improvements in runtime [PK]. A study

of this phenomenon is well worth pursuing, not least because

of the further application to quantum error correction.

Remark 48 (Lower bounds on runtime). It is also of interest

to find classes of problem graphs which cannot be quickly

matched, thereby putting lower bounds on the runtime of

the distributed algorithm. For instance, it is a well-known

result that 2–coloring a line takes 𝑜 (𝑛) time in the size of

the line [Lin92], which is a special case of a perfect match-

ing: given an enumeration of the vertices in the line (with no

regard for their ordering) and a perfect matching, one can pro-

duce a 2–coloring by partitioning vertices into those whose

matches are higher- or lower-valued than they are. Producing

a family of examples of this form, as well as understanding

their interactions with Remark 47, would be very valuable.

Remark 49 (Online variants). In our intended application, we

implement a dryad that supports, to a limited but extremely

useful extent, injection and ejection of nodes from an actively

running algorithm. It is of interest to understand how far this

can be pushed and what applications this unlocks.
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