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This is a translation of the paper Sur Certains Groupes D’Opérateurs Unitaires by André
Weil, published in Acta Mathematica in 1964. In a broader historical context, this paper
was part of the migration from the consideration of modular forms directly as functions
to their reincarnation as modular representations—Cartan said later that Weil’s goal in
this paper was to “remove θ–functions from the picture entirely”, by wrapping them up
in this representation. Amusingly, the results of this paper would later induce Mumford
to produce θ–functions for abelian varieties in positive characteristic by extracting them
from similarly-defined representations. I embarked on reading this paper as part of an
effort to understand more of Mumford’s hand in this story, without much regard for (or,
indeed, background in) the Langlands philosophy that drove the interest in automorphic
representations.

While this translation is a good-faith effort to retain the mathematics of the original
document, I have modified the language considerably—in some instances to improve the
typesetting, and in some instances to eliminate French grammatical constructions that
English-speakers will find hard to bear (e.g., long chains of semicolons). Corrections or
clarifications are warmly welcomed.

Eric Peterson

X

Simply through repeated exposure, the manufacture of modular functions through θ-
series has ceased to surprise us, but the appearance of the symplectic group as a deus ex
machina in the celebrated work of Siegel on quadratic forms has lost none of its mystery or
excitement. The goal of this memoir and its sequel papers is to begin to shed some light on
these aspects of the theory of automorphic forms. The key player in the part of the story
which we will focus on is a certain unitary representation, not of the symplectic group
itself but of a certain central extension of it, which also appears in the analogous theorems
in the local and adelic settings. In the real setting, this representation has previously been
studied by D. Shale [Sha62], and its existence was initially discerned by I. Segal [Seg59,
Seg63] in his work on quantum mechanics. I am grateful to Segal for sharing with me his
manuscript and allowing me to reproduce his proof of the existence theorem.1

We give a rough description of the contents of this memoir and its layout.

1This is enunciated here as Theorem 1.6.3. For a different proof, see G. Mackey [Mac65].
1
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(1) We also borrow from Segal the idea of using the theory of locally compact abelian
groups as our jumping-off point. In Section 1, the fundamental theorems con-
cerning the unitary representation in question are stated for a locally compact
abelian group without further restrictions and hypotheses.2

(2) In Section 2, we apply the theory developed in Section 1 to the special case of
finite-dimensional vector spaces over local fields and over adelic rings to give a
proof of the law of quadratic reciprocity, similar to the one found in the final
chapter of Hecke’s classic text on algebraic number fields.3

(3) In Section 3, we concern ourselves with the tame behavior of the unitary repre-
sentation constructed in Section 1: by again specializing to the local and adelic
case, we give a detailed analysis of the continuity of this representation which
cannot be accessed in the general setting. Using this, we obtain a further unitary
representation of the “metaplectic group”, which except in characteristic 2 is a
central extension of the symplectic group by a torus T .

(4) In Section 4, we will see that this can be reduced to a (typically nontrivial) ex-
tension of the symplectic group by {±1} (i.e., the cohomology class which deter-
mines the extension for the metaplectic group is non-null and of order 2). Though
this will not be of further use, it is an interesting enough fact in its own right that
we have included it here anyway.

(5) Finally, in Section 5 we apply our results to the setting of involutive algebras,
which in turn yields applications to classical groups. We close by announcing
a formula which generalizes the classical results of Siegel and which will be the
principal focus of the sequel memoir to this one.
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3A very simple and direct proof of Theorem 1.8.2 and Theorem 1.10.6, independent of the discussion in
Section 1, was recently obtained by P. Cartier (cf. [Car64]); together with the considerations of Section 2 of the
present memoir, and notably Proposition 2.1.2 and Proposition 2.2.2, it constitutes in certain regards the more
satisfactory method for establishing the law of quadratic reciprocity in its more general form.
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I. Groupes abéliens lo-
calement compacts

1. LOCALLY COMPACT ABELIAN GROUPS

1.
In this chapter, we will study certain phenomena concerning generic locally compact

abelian groups G, and we will place no further restrictions on G save for a passage where
the results would be without interest unless G were also isomorphic to its dual. Once
the general theory is estalished, all of our intended applications will fall into one of the
following cases:

Local case: G is a vector space X of finite dimension over a field k, which is itself
locally compact and nondiscrete.

Adelic case: G is of the form XA = Xk ⊗ Ak , where Ak is the ring of adeles of a
global field k (i.e., k is either an algebraic number field or the field of algebraic
functions of dimension 1 over a finite field) and where Xk is a finite dimensional
vector space over k.

We note that in either of these two cases, G is isomorphic to its own dual. Throughout,
we will denote the group law on such a locally compact abelian group additively.

1.1. Basic definitions. We begin by recalling some basic definitions. Let T be the multi-
plicative group of those numbers t such that t t = 1. A character of G is then a morphism
χ : G→ T . If G and H are locally compact abelian groups, then a bicharacter of G×H
is a continuous function f : G ×H → T such that for fixed y ∈ H the formula f (−, y)
gives a character of G, and for fixed x ∈G the formula f (x,−) gives a character of H .

Definition 1.1.1. A continuous function f : G → T will be called a character of G of
second degree if the function

(x, y) 7→ f (x + y) f (x)−1 f (y)−1

is a bicharacter of G×G, or equivalently if for any x, y, z ∈G the function f satisfies

1=
f (x + y) f (y + z) f (z + x)
f (x + y + z) f (x) f (y) f (z)

.

We will always use G∗ to denote the Pontryagin dual4 of G (whose group law we also
denote additively), and for x ∈ G, x∗ ∈ G∗, we denote by 〈x, x∗〉 the value on x of the

4This is also known as the character group of G.
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character of G which corresponds to x∗. We will also identify the bidual (G∗)∗ of G with
G itself such that we have5

〈x, x∗〉= 〈x∗, x〉.

If x 7→ α(x) is a morphism from G to H , its dual α∗ is the morphism from H ∗ to G∗ such
that for every x ∈G and y ∈H ∗,

〈α(x), y∗〉= 〈x,α∗(y∗)〉.

Every bicharacter of G×H can be written uniquely in the form

f (x, y) = 〈x,α(y)〉G = 〈y,α∗(x)〉H ,

where α is a morphism α : H → G∗, and α∗ : G → H ∗ is its dual. If G = H , α is self-
dual if and only if f is symmetric in x and y. In this case, we say that α : G → G∗ is
symmetric. Additionally, one says that the character f of second degree is nondegenerate
if the symmetric morphism ρ : G→G∗ associated to f is an isomorphism.6

If f is a character of G of the second degree, one has

(1) f (x + y) f (x)−1 f (y)−1 = 〈x,ρ(y)〉,

where ρ : G→G∗ is a morphism determined by f .

Definition 1.1.2. We will say that Equation (1) holds by saying that f is associated to ρ
or, equivalently, that ρ is associated to f .

Let X2(G) denote the multiplicative group of characters of G of second degree. The
function f 7→ ρ is a homomorphism from X2(G) to the additive group of symmetric
morphisms from G to G∗, whose kernel is the multiplicative group X1(G) of characters
of G. One can say more in the case that multiplication by 2 is an automorphism of G
(e.g., when G is of local or adelic type over a field k of characteristic not equal to 2): if
ρ : G → G∗ is a symmetric morphism, it is associated to the character of second degree
fρ(x) = 〈x, 2−1ρ(x)〉. If in this setting one denotes by X ◦2 (G) the subgroup of X2(G)
formed by these fρ, there is then a splitting

X2(G) =X ◦2 (G)×X1(G),

and X ◦2 (G) is isomorphic to the additive group of symmetric morphisms from G→G∗.
2. One of the main tools for working with locally compact abelian groups is the general

theory of Fourier transforms. A Haar measure on G is a measure on G which is invariant
under G–translations; such a measure always exists and is unique up to scale. Given such
a Haar measure d x, the Fourier transformF relative to this choice carries a function Φ
on G to a function Φ∗ =F (Φ) on G∗ by the formula

Φ∗(x∗) =
∫

Φ(x) · 〈x, x∗〉d x

5One can also make the identification so that 〈x, x∗〉 = 〈−x∗, x〉, and while this would be convenient in
many ways, it is ultimately too jarring.

6In order for such characters to exist, it is of course necessary that G is abstractly isomorphic to G∗, but it
is not sufficient.
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whenever this integral makes sense directly, and by a suitable continuous extension when
it does not. There is also a unique measure d x∗ on G∗, the dual of d x, such that the
transformationF−1 inverse toF is given by the formula

Φ(x) =
∫

Φ∗(x∗) · 〈x,−x∗〉d x∗.

Using this dual measure, we have Plancherel’s formula
∫

|Φ(x)|2d x =
∫

|Φ∗(x∗)|2d x∗.

It is clear that, for all c > 0, the Haar measure on G∗ dual to c ·d x is c−1d x∗. This remark
can also be expressed as follows. Recall first that if G and H are locally compact groups
endowed with Haar measures, the modulus of an isomorphism α : G→H is the number
|α|= d (xα)/d x as defined by the formula

∫

F (y)d y = |α|
∫

F (xα)d x,

where F ∈ L1(H ) is an arbitrary integrable function.

Lemma 1.1.3. Let G and H be two locally compact abelian groups, respectively endowed
with Haar measures d x and d y. Let G∗ and H ∗ be their duals, respectively endowed with
the Haar measures d x∗ and d y∗ each dual to d x and d y. If α : G→ H is an isomorphism,
then α∗ : H ∗→G∗ is an isomorphism and |α∗|= |α|.7

Proof. Set m = |α|. By transport of structure, α transformes d x into a Haar measure
d ′y on H , and one sees also that d ′y = m−1d y. It follows that α∗ transforms (d ′y)∗

into d x∗, which is md y∗. Thus, α∗ transforms d y∗ into m−1d x∗, from which the result
follows. �

3.1.2. Matrix presentations. Let σ be an automorphism of G×G∗. Writing z = (x, x∗),
we can also write σ in “matrix form”:

(x, x∗) 7→ (x, x∗) ·
�

α β
γ δ

�

= (α(x)+ γ (x∗),β(x)+δ(x∗)) ,

where

α : G→G, β : G→G∗, γ : G∗→G, δ : G∗→G∗

are morphisms of the various indicated types. The dual automorphism σ∗ of G∗×G is
then presented as

σ∗ =
�

α∗ γ ∗

β∗ δ∗

�

.

Let η be the twist isomorphism from G ×G∗ to G∗ ×G, given explicitly by η(x, x∗) =
(−x∗, x) or by the matrix presentation8

η=
�

0 1
−1 0

�

.

7If G =H , one generally takes d x = d y, and then this value |α| is independent of the choice of d x.
8We will denote by 1 the identity of a group, without reference to which group is meant.
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The formula

(2) σ I = ησ∗η−1 =
�

δ∗ −β∗
−γ ∗ α∗

�

defines an automorphism of G × G∗, and Lemma 1.1.3 applied to Equation (2) gives
|σ I | = |σ |. The assignment σ 7→ σ I gives an involutive anti-automorphism of the group
of automorphisms of G×G∗.

We will denote by F the standard bicharacter of (G×G∗)× (G×G∗) given by

F(z1, z2) = 〈x1, x∗2 〉
�

z1 = (x1, x∗1 ),
z2 = (x2, x∗2 ).

�

(3)

An automorphismσ of G×G∗ is called symplectic if it preserves the bicharacter F(z1, z2)F(z2, z1)
−1—

i.e., if
F(z1σ , z2σ) ·F(z2σ , z1σ)

−1 = F(z1, z2) ·F(z2, z1)
−1,

where z1, z2 ∈ (G×G∗). We denote by Sp(G) the group formed by these automorphisms.
One immediately sees that in order for σ to be symplectic, it is necessary and sufficient

that σσ I = 1. As |σ I |= |σ |, it follows that every symplectic automorphism is of modulus
1. The relation σσ I = 1 shows in particular that β∗α = α∗β and δ∗γ = γ ∗δ, so that
β∗α : G → G∗ and δ∗γ : G∗ → G are both symmetric morphisms. Using σ Iσ , one
deduces similar claims about β∗δ and γ ∗α.

4. 1.3. The standard unitary representation and its automorphisms. For every element
w = (u, u∗) ∈G×G∗, we wrote U (w) for the operator which amalgamates a function Φ
on G with u and u∗ in the only nontrivial linear manner:

(U (w)Φ)(x) = Φ(x + u) · 〈x, u∗〉.

(We will often simply write U (w)Φ(x) for this quantity.) The operators U (w) are unitary
when considered as automorphisms of L2(G), and for w1, w2 ∈G×G∗ there is the relation

U (w1)U (w2) = F(w1, w2)U (w1+w2),

where F is again the bicharacter from Equation (3). From this we see that the operators
t · U (w) for w ∈ G × G∗, t ∈ T form a group, where the multiplication on the set
G×G∗×T is given by

(4) (w1, t1) · (w2, t2) = (w1+w2,F(w1, w2)t1 t2).

Let us denote this group by A(G) (which is locally compact using the evident topology on
this underlying set). The function (w, t ) 7→ t ·U (w) thus defines a unitary representation
of A(G). Denoting this group of unitary operators by A(G), there is an isomorphism

A(G)→A(G),

(w, t ) 7→ t ·U (w)

which is an isomorphism of topological groups if we use the “strong” topology on A(G)
(cf. 35. ). The center of the group A(G) is evidently formed by the elements (0, t ), which
we identify with the group T itself. It is also clear that (w, t ) 7→ w is a homomorphism
from A(G) to G×G∗, which permits us to identify A(G)/T with G×G∗.

5. Let us now consider the group of automorphisms of A(G), B(G). An automorphism
s ∈ B(G) of A(G) induces two further automorphisms: one of the center T ≤ A(G),
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which can be either t 7→ t or t 7→ t ; and one on the quotient A(G)/T =G×G∗, which
we denote by σ . Let B0(G) ≤ B(G) be the subgroup of those automorphisms which
induce the identity on the center T of A(G).9 An element s ∈ B0(G) can be written

(5) (w, t )s = (σ(w), f (w)t ),

where σ is the induced automorphism on G×G∗ and f : G×G∗→ T is some continuous
function. That f participates in an automorphism of A(G) is equivalent to the equation

(6) f (w1+w2) f (w1)
−1 f (w2)

−1 = F(σ(w1),σ(w2))F(w1, w2)
−1.

In particular, f is a character of G×G∗ of second degree. Moreover, since this formula
is symmetric in w1 and w2, it follows that σ is symplectic. Henceforth, we will denote
this entire situation by s = (σ , f ) when s is an automorphism of A(G) and f and σ are
its component functions as defined by Equation (5).

In these terms, the group law on B0(G) is given by

(σ , f ) · (σ ′, f ′) = (σ ′ ◦σ , f ′′),

where f ′′ is defined for w ∈G×G∗ by the formula

(7) f ′′(w) = f (w) f ′(σ(w)).

The mapping s 7→ σ which extracts the component on the quotient by the center of A(G)
gives a homomorphism B0(G) → Sp(G). Applying Equation (6) to a generic element
(1, f ) of its kernel, we find that f is a character of G and that there exist a ∈G, a∗ ∈G∗

with
f (u, u∗) = 〈u,a∗〉 · 〈a, u∗〉.

From this, we see that (1, f ) is the interior automorphism of A(G) corresponding to the
element (−a,a∗, 1). The kernel of s 7→ σ thus consists of interior automorphisms of
A(G), hence the image is isomorphic to A(G)/T ∼=G×G∗.

We can make the right-hand side of Equation (6) still more explicit by turning to the
matrix presentations from Section 1.2. Putting σ in its matrix form, we define

f ′(u, u∗) = f (u, u∗) · 〈γ (u∗),−β(u)〉,

and in terms of f ′ Equation (6) becomes

f ′(u1+ u2, u∗1 + u∗2 ) = f ′(u1, u∗1 ) f
′(u2, u∗2 ) · 〈u1,β∗(α(u2))〉 · 〈δ

∗(γ (u∗1 )), u∗2 〉.

Set g (u) = f ′(u, 0) and h(u∗) = f ′(0, u∗), and by taking u2 = 0, u∗1 = 0 in the above, we
are led to the following conclusions:

(1) f ′(u, u∗) = g (u) · h(u∗).
(2) The functions g and h satisfy the relations

g (u1+ u2) = g (u1)g (u2) · 〈u1,β∗(α(u2))〉,
h(u1+ u2) = h(u∗1 )h(u

∗
2 ) · 〈δ

∗(γ (u∗1 )), u∗2 〉.

Otherwise said, these are characters of G and of G∗ of second degree, respectively
associated to the symmetric morphisms β∗ ◦α : G→G∗ and δ∗ ◦ γ : G∗→G.

9We will be primarily concerned with B0(G) from here on, although some of our results could be extended
to all of B(G).
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(3) Finally, one then has

f (u, u∗) = g (u)h(u∗)〈γ (u∗),β(u)〉.

There are more precise results when x 7→ 2x is an automorphism of G, which we
recount for completeness. From the results of Section 1.1, it follows that to every sym-
plectic automorphism σ there corresponds an element (σ , f ) of B0(G) given by

g (u) = 〈u, 2−1β∗(α(u))〉, h(u) = 〈2−1δ∗(γ (u∗)), u∗〉.

Moreover, these formulas define a monomorphism Sp(G) → B0(G), and B0(G) is the
semidirect product of this subgroup Sp(G) and the group of interior automorphisms of
A(G), which we have in turn shown to be isomorphic to G×G∗.

6. 1.4. Matrix presentations for symplectic automorphisms. Let s = (σ , f ) be an ele-
ment of B0(G) as before, and write σ in the matrix form as in Section 1.2. We will now
consider what can be deduced from imposing different conditions on the matrix compo-
nents of σ .

Let us consider first the diagonal case, where β = 0 and γ = 0. The symplectic con-
dition σσ I = 1 then gives δ = α∗−1, from which it follows that the right-hand side of
Equation (6) is constant at 1. We are able to satisfy Equation (6) for this choice of σ
by taking f = 1, and our generic s therefore differs from this standard automorphism
(σ , 1) by at most an interior automorphism. We record this construction by defining a
monomorphism d0 from automorphisms α of G to B0(G) by

d0(α) =
��

α 0
0 α∗−1

�

, 1
�

.

Now consider the antidiagonal case, where α = 0 and δ = 0. Since σ is an automor-
phism of G ×G∗, we must have that β : G → G∗ and γ : G∗ → G are isomorphisms.
Then σσ I = 1 givesβ=−γ ∗−1, and we may similarly verify that Equation (6) can be sat-
isfied by taking f (u, u∗) = 〈u,−u∗〉, from which we draw similar conclusions. To record
this fact, we define an element of B0(G) for each isomorphism γ : G∗→G by

d ′0(γ ) =
��

0 −γ ∗−1

γ 0

�

, 〈u,−u∗〉
�

.

As a final special case, we also consider the nontrivial Jordan block form where α= 1,
δ = 1, and γ = 0. The equation σσ I = 1 then reduces to β=β∗, and the formulas from
Section 1.3 show that any f satisfying Equation (6) must be of the form

f (u, u∗) = g (u)h(u∗),

where h is a character of G∗ and g is a character of G of second degree associated to β.
Using these observations to solve Equation (6) leads to the following formula, where f is
a character of G of second degree and ρ : G→G∗ is the symmetric morphism associated
to f :

t0( f ) =
��

1 ρ
0 1

�

, f
�

.
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The map t0 : X2(G)→ B0(G) is a monomorphism. Of course, we can also define lower-
triangular operators of the same flavor: for f ′ a character of G∗ of second degree with
associated symmetric morphism ρ′ : G∗→G,

t ′0( f
′) =

��

1 0
ρ′ 1

�

, f ′
�

defines a monomorphism t ′0 : X2(G
∗)→ B0(G).

If f is a character of G of second degree, and α is an automorphism of G, we will
write10

f α(x) = f (α−1(x)).

With this notation, we have

d0(α)
−1 t0( f )d0(α) = t0( f

α), d0(α)t
′
0( f
′)d0(α)

−1 = t ′0( f
′α∗).

If α is as above and γ : G∗→G is an isomorphism, then one has

d ′0(α ◦ γ ) = d ′0(γ )d0(α), d ′0(γ ◦α
∗−1) = d0(α)d

′
0(γ ).

The first of these relations shows that the image of d ′0 in B0(G), if it is not empty, is a
right-coset for the image of d0 in B0(G). More generally, using Equation (6) one observes
that if an element s ∈ B0(G) is of the form (σ , 1), the bicharacter F is invariant under σ .
As 1×G∗ ≤G×G∗ is the set of those z1 such that the function F(z1,−) is constant at 1,
and G × 1 ≤ G ×G∗ is the set of those z2 such the function F(−, z2) is constant at 1, it
follows that σ is diagonal and s = d0(α). Equation (7) then shows that for two elements
s = (σ , f ) and s ′′ = (σ ′′, f ′′) of B0(G) which belong to the same right-coset for the image
of d0, it is necessary and sufficient that f = f ′′.

7.1.5. Matrix decomposition when γ is invertible. Let s ∈ B0(G) be an automorphism,
(σ , f ) its components, and γ the lower-left matrix component of σ . We denote by Ω0(G)
the set of those s ∈ B0(G) such that γ : G∗→G is an isomorphism.11

Proposition 1Proposition 1.5.1. The set Ω0(G) is the set of those elements s ∈ B0(G) of the form

(8) s = t0( f1)d
′
0(γ )t0( f2),

where γ : G∗→G is an isomorphism and where f1 and f2 are characters of G of second degree.
Every element of Ω0(G) can be uniquely expressed in this way.

Proof. In one direction, if s is given as in Equation (8), then the γ matrix component
of s is indeed γ . Since γ was chosen to be invertible, s is in Ω0(G). Conversely, for an
arbitrary s = (σ , f ) ∈Ω0(G), if it is possible to satisfy Equation (8) then we will be forced
to take γ in the equation to be γ from the matrix decomposition. Coupling Equation (8)
to the matrix decomposition for σ , we can then solve for f1 and f2 in terms of the other
matrix comoponents:

f1(u) = f (u,−γ−1(α(u))), f2(u) = f (0,γ−1(u)). �

10This notation could lead to a confusing collision if α=−1. We will instead write f −(x) = f (−x).
11With assuming that G and G∗ are abstractly isomorphic, this set may be empty.
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We may also express Equation (8) directly in terms of the matrix presentation of σ .
Starting with s = (σ , f ), the characters f1 and f2 of second degree extracted from s via
Proposition 1.5.1 are associated to the symmetric homomorphisms

γ−1 ◦α, δ ◦ γ−1 : G→G∗.

This gives the following matrix decomposition:
�

α β
γ δ

�

=
�

1 γ−1 ◦α
0 1

�

·
�

0 −γ ∗−1

γ 0

�

·
�

1 δ ◦ γ−1

0 1

�

.

There is an additional important relation in the case where the component f is nonde-
generate (i.e., when the associated morphism ρ : G→G∗ is an isomorphism). Associated
to the symmetric morphism ρ−1 : G∗→G yields a character f ′ of G∗ of second degree,
given explicitly by the formula

f ′(x∗) = f (−ρ−1(x∗)).

Proposition 1.5.1 applied to t ′0( f
′) gives

t ′0( f
′) = t0( f )d

′
0(ρ
−1)t0( f

−).

On the other hand, an easy calculation also shows

t ′0( f
′) = d ′0(ρ

−1)t0( f
−1)d ′0(−ρ

−1).

Noting d ′0(ρ
−1)2 = d0(−1), we deduce a coset relation:

(9) d ′0(−ρ
−1)t0( f )d

′
0(ρ
−1)t0( f

−) = t0( f
−1)d ′0(−ρ

−1).

We may also put Equation (9) into a simpler form by using the relations of Section 1.4:

(t0( f )d
′
0(−ρ

−1))3 = 1.

In this form, we recognize our coset relation as a classical relation from the theory of
modular groups. However, it is Equation (9) that we will make literal use of later on.

8. 1.6. B0(G) ≤ Inn(U (L2(G))). In Section 1.3 we introduced a group A(G), isomorphic
to A(G), which carries an interpretation as a collection of certain unitary operators on a
function space. In this section, we will study the automorphisms of A(G) via A(G), where
we will find that each s ∈ B0(G), reinterpreted as an automorphism of A(G) rather than of
A(G), is induced by an interior automorphism of the group of all unitary operators. This
theorem is due is I. Segal [Seg63] in the case where multiplication by 2 is an automorphism
of G, and we borrow his method of proof.

It will be convenient to introduce an “averaged” variant of the operators U (w) from
Section 1.3. For a function ϕ on G×G∗, we set

U (ϕ) =
∫

U (w)ϕ(w)d w,

where w = (u, u∗) and d w = d u · d u∗ does not depend on the precise choice of Haar
measure d u on G. More explicitly, if Φ is a function on G, then U (ϕ)Φ is the function
on G defined by

(10) U (ϕ)Φ(x) =
∫

U (w)Φ(x) ·ϕ(w)d w =
∫

Φ(x + u) · 〈x, u∗〉 ·ϕ(u, u∗)d ud u∗
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where we suppose for the moment that ϕ and Φ are smooth and compactly supported, to
avoid technical fuss.

This last equation can also be written as

(11) U (ϕ)Φ(x) =
∫

K(x, y)Φ(y)d y,

where the integral kernel K is given by

K(x, y) =
∫

ϕ(y − x, u∗) · 〈x, u∗〉d u∗

or, equivalently, by

K(x, x + u) =
∫

ϕ(u, u∗)〈x, u∗〉d u∗.

Therefore, taking the Fourier transform of ϕ(u, u∗), fixing u and considering the remain-
der as a function of u∗, we obtain K(−x,−x + u). Under the conditions for which the
Fourier transform is invertible, it follows that

ϕ(u, u∗) =
∫

K(x, x + u) · 〈x,−u∗〉 · d x.

Applying Plancherel’s theorem yields
∫

|K(x, y)|2d xd y =
∫

|ϕ(u, u∗)|2d ud u∗,

which shows that the correspondence between functions ϕ on G ×G∗ and functions K
on G×G, defined by the above formulas, extends by continuity to an isomorphism

W : L2(G×G∗)→ L2(G×G),

without assumptions on compact support or smoothness.
9.Just as the group law on the operators U (w) was of interest to us in Section 1.3, the

group law on the operators U (ϕ) is of interest to us now. Take ϕ1, ϕ2 to be two functions
on G ×G∗, provisionally assumed to have compact support. Using Equation (10), we
deduce

The next three num-
bered equations are
out of order from the
original text.

U (ϕ1)U (ϕ2) =U (ϕ3),

(12) ϕ3(w) =
∫

ϕ1(w −w1)ϕ2(w1)F(w −w1, w1)d w1,

where F denotes the function defined in Equation (3). We can also express the group law
at the level of integral kernels: writing Ki =W (ϕi ), Equation (11) shows

(13) K3(x, y) =
∫

K1(x, z)K2(z, y)d z,

and we denote this operation by K3 = K1×K2. These formulas given for the group laws
above extend by continuity to the spaces L2(G ×G∗) and L2(G ×G), and we drop the
compact support hypothesis.
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A particularly simple case of all this is when K separates as K(x, y) = P (x)Q(y). In
this case, we write K = P⊗Q. If P and Q belong to L2(G), we denote their inner product
by (P,Q) =

∫

P (x)Q(x)d x, and in this notation we describe the associated function ϕ as

(14) W −1(P ⊗Q)(w) = (P, U (w)Q).

In order to make use of separability in our context, we will need the following results:

Lemme 2 Lemma 1.6.1. Take K ∈ L2(G×G). The following conditions are equivalent:

(1) The kernel K is of the form P ⊗Q with P,Q ∈ L2(G).
(2) For all K ′ ∈ L2(G×G), K ×K ′×K differs from K by a scalar factor.

Now take K = P ⊗Q and K ′ = P ′ ⊗Q ′ for P,Q, P ′,Q ′ ∈ L2(G). Again, the following
conditions are equivalent:

(1) The factors P and P ′ differ by a scalar multiple, as do the factors Q and Q ′.
(2) For all K ′′ = P ′′⊗Q ′′ with P ′′,Q ′′ ∈ L2(G), K×K ′′ and K ′×K ′′ differ by a scalar

multiple, as do K ′′×K and K ′′×K ′.

Proof. The second part is completely evident. In the first part, necessity is evident, and
sufficiency follows from setting K ′ = P ′⊗Q ′. �

We will actually need only the following consequence of this Lemma:

Lemme 3 Lemma 1.6.2. Let K 7→ K s be an automorphism of the Hilbert space L2(G ×G) which
preserves the composition law (K1,K2) 7→ K1×K2. There is then an automorphism t of the
Hilbert space L2(G) such that for P,Q ∈ L2(G),

(P ⊗Q)s = P t ⊗Q t ,

where t is the “imaginary conjugate” of t , defined by Q
t
=Q t .

Proof. Using Lemma 1.6.1, all elements (P ⊗Q)s of L2(G×G) are of the form P ′⊗Q ′.
Let us choose P0 such that ‖P0‖ = 1; since s preserves the norm, we can put (P0 ⊗ P 0)

s

in the form P ′0⊗Q ′0 with ‖P0‖= ‖Q0‖= 1. The second part of Lemma 1.6.1 shows then
that for P,Q ∈ L2(G), (P ⊗ P 0)

s and (P0 ⊗Q)s can be uniquely written as P ′ ⊗Q ′0 and
P ′0⊗Q ′. We define assignments t , u : L2(G)→ L2(G) by P t = P ′ and Q u =Q ′.

We turn to the properties of t and u. It is clear that these assignments are linear and
that P t

0 = P ′0, P
u
0 =Q ′0. Since s preserves the norm in L2(G×G), the same is true of t and

u in L2(G). We can also deduce information from how these assignments interact with
the composition law: note that P ⊗Q = (P ⊗ P 0)× (P0⊗Q), from which we deduce

(P ⊗Q)s = c · P t ⊗Q u ,

with c = (P ′0,Q ′0). Setting P = P0 and Q = Q0, we find c = 1. Because in complete
generality we have

(P ⊗Q)× (P ⊗Q) = (P,Q) · P ⊗Q,

we see that for P ′ = P t and Q ′ = Q u we also have (P ′,Q ′) = (P,Q), and it follows that
u = t . Finally, since s−1 has the same properties as s , it follows that t and u are invertible,
and hence they are automorphisms of L2(G). �
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10. We now return in earnest to our goal of describing B0(G) in terms of inner automor-
phisms. Let s = (σ , f ) be an automorphism of A(G) belonging to B0(G), and we transfer
s to an automorphism of A(G) using the isomorphism in Section 1.3:

U (w)s = f (w) ·U (σ(w)).

We deduce from this an automorphism of the algebra of averaged operators U (ϕ) intro-
duced above:

U (ϕ)s =
∫

U (σ(w)) f (w)ϕ(w)d w,

which we might write as U (ϕ)s =U (ϕ s ), where ϕ s is given by

ϕ s (w) = f (σ−1(w))ϕ(σ−1(w)).

It follows that the assignment ϕ 7→ ϕ s is a unitary operator on L2(G ×G∗) and that it
preserves the composition law from Equation (12).12 We may also transport this con-
struction to the associated integral kernels: for a kernel K ∈ L2(G ×G), we set K s =
W (W −1(K)s ). This assignment K 7→ K s satisfies the hypotheses of Lemma 1.6.2, and
hence there is an automorphism t of L2(G) such that for P,Q ∈ L2(G),

(P ⊗Q)s = P t ⊗Q t .

Because we will soon make use of the inverse to the assignment t , we define s−1P = P t

to ease our notational burden. Replacing Q by Q and applying Equation (14), we find

(P, U (w)Q)s = (s−1P, U (w)s−1Q).

Using the definition of ϕ s , the left-hand side has value

(P, U (w)Q)s = f (σ−1(w)) · (P, U (σ−1(w))Q)(definition)

= (P, f (σ−1(w))U (σ−1(w))Q)((P,Q) is antilinear in Q)

= (P, f (σ−1(w))−1U (σ−1(w))Q).( f is valued in T )

Because s is unitary, the right-hand side is equal to (P, sU (w)s−1Q). Letting this relation
range over P and Q, we conclude

f (σ−1(w))−1U (σ−1(w)) = sU (w)s−1.

Replacing w by σ(w), we then have

(15) s−1U (w)s= f (w) ·U (wσ) =U (w)s .

This shows that the interior automorphism determined by s of the unitary group induces
the automorphism s on A(G).

Conversely, taking s as given, this same relation determines s as an element up to the
centralizer of A(G). However, if a unitary operator commutes with each U (w), it com-
mutes also with each U (ϕ), hence with operators formed from kernels K using Equa-
tion (11). Specializing to K = P ⊗Q, the operator defined by Equation (11) is given by

Φ 7→ (Φ,Q) · P.

12It is also easy to verify this directly.
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If the assignment Φ 7→ Φt commutes with this operator, then we additionally have

(Φ,Q) · P t = (Φt ,Q) · P.

It follows that Φ 7→ Φt is of the form Φ 7→ t ·Φ, where t is a scalar—and if this operator
is unitary, then t ∈ T . We denote by T the operators of this form; they form the center
of A(G) as well as the center of all automorphisms of L2(G). In summary, we have thus
proved the following:

Théorème 1 Theorem 1.6.3. The centralizer of A(G) in the group of all automorphisms of L2(G) is
T, which in turn is the center of both of these groups. Moreover, if B0(G) is the normal-
izer of A(G) in L2(G), then every automorphism of A(G) inducing the identity on T is the
restriction of an interior automorphism determined by an element of B0(G). Additionally,
B0(G)/T is isomorphic to B0(G), i.e., the group of automorphisms of A(G) inducing the iden-
tity on T . �

11. 1.7. The operators s are automorphisms of Schwartz space. The Fourier transform
induces an automorphism on Schwartz space S (G), which consists (somewhat impre-
cisely) of functions which are “indefinitely differentiable and rapidly decreasing”.13 We
will now see that the operators in B0(G) have the same property.

Let us recall the definition ofS (G) for a locally compact abelian group G, considering
first an “elementary” group.

Definition 1.7.1. A group G is said to be elementary when it has the form

G =Rn ×Zp ×T q × F ,

for F a finite group. A polynomial function on G is a function which can be written as a
polynomial in the R– and Z–coordinates of G. The Schwartz space S (G) is the set of
those indefinitely differentiable functions Φ on G such that, for any translation-invariant
differential operator D and polynomial P , P ·DΦ remains bounded on G. The setS (G)
acquires a topology by considering the seminorms sup |P ·DΦ|.

To tackle the general case, we consider pairs (H , H ′) of subgroups of G with the fol-
lowing properties:

(1) H is contained in a compact neighborhood of 0 (and hence is both open and
closed in G).

(2) H ′ is a compact subgroup of H and H/H ′ is isomorphic to an elementary group.

For such a pair, we form the family S (H , H ′) of continuous functions on G which are
further subject to the following three properties:

(1) Their support contained is in H .
(2) They are constant on the cosets of H ′.
(3) The induced function on H/H ′ lies in S (H/H ′).

The Schwartz space S (G) is then the union of these S (H , H ′), and we give S (G) the
“inductive limit” topology, i.e., a convex set X is a neighborhood of 0 inS (G) if for any
pair (H , H ′) the image of X ∩S (H , H ′) in S (H/H ′) is a neighborhood of 0 there.

13This space was originally introduced by L. Schwartz [Sch51, Chap. VII] in the case of Rn and by F.
Bruhat [Bru61] in general.
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With the domain of study S (G) established, we would now like to show that ev-
ery s ∈ B0(G) induces an automorphism of S (G). It suffices to show that s induces a
continuous function from S (G) to itself, which we will show by retracting the steps of
Theorem 1.6.3. We will return to writing t in favor of s−1, and we will pursue a proof
for the operator P 7→ P t . Taking Q 6= 0 in S (G), the map P 7→ P t is the composite of
the following stages:

P 7→K = P ⊗Q(a)

K 7→ ϕ =W −1K(b)

ϕ 7→ ϕ s(c)

ϕ s 7→K s =W (ϕ s )(d)

K s = P t ⊗Q t 7→ P t .(e)

It suffices to show that each step in this chain is continuous. For (a), this is immediate.
For (e), notice first that if a function K ∈ S (G ×G) is of the form P ⊗Q with P,Q ∈
L2(G×G), then it is also of the form P ⊗Q for P,Q ∈ L2(G). Moreover, for Q 6= 0 the
map P 7→ P ⊗Q is an isomorphism of S (G) onto a closed subspace of S (G×G), from
which (e) follows.

For (b) and (d), it suffices to show that W determines an isomorphism fromS (G×G∗)
to S (G ×G). The map W is the composition of the operator F(x, y) 7→ F(y − x,−x),
which evidently determines an automorphism ofS (G×G), and the partial Fourier trans-
form relative to the second factor of the product G×G∗. This remnant is an easy gener-
alization of an analogous theorem about the ordinary Fourier transform.14

12.It remains to consider (c). As an automorphism σ of G×G∗ determines an automor-
phism of S (G ×G∗), we are left (upon abbreviating G ×G∗ to G) with proving the
following:

Proposition 2Proposition 1.7.2. Let f be a character of G of second degree. Then Φ 7→ f ◦ Φ is an
automorphism of S (G).

Proof. First, we consider the elementary case: take

G =Rn ×Zp ×T q × F

for F finite. We need only show that for all differential operators D which are invariant
under translation on G, there is a polynomial function P on G such that |D f | ≤ |P |. Note
first that restricted to Rn × T q , the function f is necessarily of the form e i F (x)χ (x, y),
where x ∈Rn , y ∈ T q , F is a quadratic form on Rn and χ is a character of Rn×T q . The
rest follows by expressing f on the cosets of Rn×T q in G and considering Equation (1).

Passing to the general case, let ρ : G → G∗ be the symmetric morphism associated
to f , and select a subgroup H ≤ G contained in a compact neighborhood of 0. For
any subgroup H ′ satisfying condition (2) of the definition of S (H , H ′), it is necessary

14It is possible to prove in generality that if A and B are locally compact abelian groups and if B∗ is dual to
B , then the partial Fourier transform

S (A×B)→S (A×B∗), f (a, b ) 7→ f ′(a, b ∗) =
∫

f (a, b ) · 〈b , b ∗〉d b

is an isomorphism.
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and sufficient15 to show that the subgroup H ′∗ ≤ G∗ orthogonal to H ′ lies in a compact
neighborhood of 0. The group H ′∗ + ρ(H ) would then have the same property, and we
could then replace H and H ′ by smaller groups so that ρ(H )⊆H ′∗. Using Equation (1) of
1. , this gives f (h + h ′) = f (h) f (h ′) for each h ∈ H , h ′ ∈ H ′, from which it follows that
f gives a character of H ′, and by writing f (h ′) = 〈h ′,a∗〉 for some a∗ ∈ G∗ this formula
extends to a character of G. Replacing H ′∗ by the group generated by H ′∗ and a∗, we can
guarantee that a∗ is a member of H ′∗, from which it follows that f sends H ′ to 1 and is
constant on the cosets of H ′ in G.

Since we have finished the case where G is an elementary group, it follows by passing
to the quotient H/H ′ that Φ 7→ Φ f determines an automorphism of S (H , H ′). Using
the inductive limit topology on S (G), this concludes the proof for a generic G. �

13. 1.8. Lifts from B0(G) to B0(G). Equation (15) gives rise to a canonical projection:

π0 : B0(G)→ B0(G),

s 7→ s = (σ , f )

As we will explicitly later show in the case of groups of local type, this projection does
not generally admit a section. However, one may at least define sections on the images of
d , d ′, and t as introduced in Section 1.4.

Definition 1.8.1. Let Φ ∈ L2(G). For an automorphism α of G, we define

d0(α)Φ(x) = |α|
1
2Φ(xα).

For a character of G of second degree, we define

t0( f )Φ(x) = Φ(x) f (x).

For an isomorphism γ : G∗→G, we define

d′0(γ )Φ(x) = |γ |
− 1

2Φ∗(−xγ ∗−1),

where, as before, Φ∗ denotes the Fourier transform of Φ.

One checks without difficulty that d0, t0, and d′0 are “lifts” of those functions d0, t0,
and d ′0 defined in Section 1.4, i.e., d0 = π0 ◦ d0, t0 = π0 ◦ t0, and d ′0 = π0 ◦ d′0. Moreover,
d0 and t0 are monomorphisms into B0(G) from the group of automorphisms of G and
from the group X2(G) respectively. For α, f , and γ as above, we also have the relations

d0(α)
−1t0( f )d0(α) = t0( f

α), d′0(γα) = d′0(γ )d0(α), d′0(α
∗−1γ ) = d0(α)d

′
0(γ ).

Given these, we may therefore lift all the elements of Ω0(G) as defined in Proposi-
tion 1.5.1 into B0(G). Each s ∈Ω0(G) can be written uniquely in the form of Equation (8),
i.e.,

s = t0( f1)d
′
0(γ )t0( f2),

by which we set
r0(s) = t0( f1)d

′
0(γ )t0( f2).

15cf. [?, 9., p. 60].
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We may also make this explicit: by writing s = (σ , f ) and σ =
�

α β
γ δ

�

, we obtain

(16) r0(s)Φ(x) = |γ |
1
2

∫

Φ(xα+ x∗γ ) f (x, x∗)d x∗.

The conditions under which this formula is valid are the same as those in the formula
“defining” the Fourier transform, which in turn was used to define d′0: it holds almost
everywhere when Φ ∈ L2(G)∩ L1(G), and it holds for all x if Φ ∈ S (G), in which case
the two members define the same function on S (G).

14.Along with the elements themselves, we may also lift the relations among elements—
for instance, Equation (9). As in Section 1.5, we will consider a nondegenerate character
f of G of second degree, associated to a symmetric isomorphism ρ : G → G∗. For the
moment, we will use s and s′ to denote the operators stemming from the left- and right-
hand sides of Equation (9) by replacing d ′0 and t0 with d′0 and t0 respectively. Select a
function Φ (which for now we take to be continuous and of compact support), and set

Φ1(x) = Φ ∗ f :=
∫

Φ(u) f (x − u)d u.

An easy calculation shows that sΦ and s′Φ are given by

sΦ(x) = |ρ|Φ∗1(ρ(x)), s′Φ(x) = |ρ|
1
2Φ∗(ρ(x)) · f (x)−1.

These operators are both unitary, and it follows that Φ 7→ Φ ∗ f is continuous on L2(G).
Moreover, Equation (9) itself, which we can write now as π0s=π0s

′, shows that s and s′

differ only by a scalar of absolute value 1. We record this relation as s = γ ( f )s′, and by
substituting ρ−1(x∗) for x this gives

(17) F (Φ ∗ f ) = γ ( f )|ρ|−
1
2F (Φ) · g ,

where g is the character of G∗ of second degree associated to −ρ−1, defined by

g (x∗) = f (ρ−1(x∗))−1.

Following the usual conventions in Fourier theory, Equation (17) shows that γ ( f )|ρ|−
1
2

is the Fourier transform of f . We have therefore proven the following:

Théorème 2Theorem 1.8.2. Let f be a nondegenerate character of G of second degree, associated to a
symmetric isomorphism ρ : G→G∗. Then f possess a Fourier transformF ( f ), given by the
formula

F ( f )(x∗) = γ ( f )|ρ|−
1
2 f (ρ−1(x∗))−1,

where γ ( f ) is a scalar factor of absolute value 1.

We emphasize that this result should be understood in the following sense: the func-
tion Φ 7→ Φ ∗ f extends by continuity to L2(G), and in the context of Φ ∈ L2(G) we have
F (Φ ∗ f ) = Φ∗ ·F ( f ). By transport of structure through the isomorphism ρ : G→G∗,
we conclude also thatF (Φ f ) = Φ∗∗F ( f ). In view of Proposition 1.7.2, we see moreover
that for Φ ∈ S (G), bobth sides of the last equation are continuous functions, and hence
the equality holds not just as members of L2(G∗) but rather on-the-nose. This is also true
for the relation preceding that one. We record this as follows:
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Corollaire 1Corollary 1.8.3. In addition to the notations and hypotheses of Theorem 1.8.2, letΦ ∈S (G)
and set Φ∗ =F (Φ). For any x∗ ∈G∗, we then have

∫

(Φ ∗ f )(x) · 〈x, x∗〉d x = γ ( f )|ρ|−
1
2Φ∗(x∗) f (ρ−1(x∗))−1.

In particular, setting x∗ = 0, we obtain a formula which actually implies that of Corol-
lary 1.8.3:

Corollaire 2 Corollary 1.8.4. Retaining the notations and hypotheses of Theorem 1.8.2, for every func-
tion Φ ∈S (G) we have

∫
�
∫

Φ(x − y) f (y)d y
�

d x = γ ( f )|ρ|−
1
2

∫

Φ(x)d x.

Remark 1.8.5. The number γ ( f ), attached to characters of G of second degree via Theo-
rem 1.8.2, have enormous importance in number theory. In the case where G is of local
type, these are, as we will see later, the eighth roots of unity which appear in Gauss sums.

15. The lifting function r0 : Ω0(G) → B0(G) is not quite a homomorphism, though it
is nearly so. Take s , s ′, s ′′ to be three elements of Ω0(G) with s ′′ = s s ′; then because
r0(s)r0(s

′) has the same image as r0(s
′′) in B0(G), they therefore differ by a scalar λ(s , s ′) ∈

T . This value λ(s , s ′) records the failure of r0 to be a homomorphism, and we now focus
on its determination.

Expanding out the definition of r0, this factor is defined by

t0( f1)d
′
0(γ )t0( f2) · t0( f

′
1 )d

′
0(γ
′)t0( f

′
2 ) = λ(s , s ′)t0( f

′′
1 )d

′
0(γ
′′)t0( f

′′
2 ).

Setting f0 = f2 f ′1 , f3 = f −1
1 f ′′1 , f4 = f ′′2 f ′2

−1, we then have

(18) d′0(γ )t0( f0)d
′
0(γ ) = λ(s , s ′)t0( f3)d

′
0(γ
′′)t0( f4).

We begin by considering the operator given by the left-hand side of Equation (18). Ap-
plying it to a function Φ yields

|γ |−
1
2 |γ ′|−

1
2Ψ∗1 (γ

∗−1(−x)),

where

Ψ(x) = Φ∗(γ ′∗−1(−x)), Ψ1(x) = Ψ(x) f0(x).

However, since f0 is a character of G of second degree with associated symmetric mor-
phism

ρ= ρ2+ρ
′
1 = δ ◦ γ

−1+ γ ′−1 ◦α′ = γ ′−1 ◦ γ ′′ ◦ γ−1,

it follows that f0 is nondegenerate with Fourier transform is given by Theorem 1.8.2.
The Fourier transform Ψ∗1 is thus Ψ∗ ∗F ( f0). As Ψ∗ is given by the formula Ω∗(u∗) =
|γ ′| ·Ψ(u∗γ ′), we thus compute that the operator appearing as the left-hand side of Equa-
tion (18) applied to Φ is thus16

γ ( f0) · |γ
′′|−

1
2

∫

Φ(γ ′(u∗)) f0
�

γ ′∗(γ ′′∗−1(−x))− γ (γ ′′−1(γ ′(u∗)))
�−1 d (γ ′(u∗)).

16In producing this formula, we have used ρ= ρ∗.
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Turning to the operator determined by the right-hand side of Equation (18), the image
of Φ is seen to be17

λ(s , s ′) f3(x) · |γ
′′|−

1
2

∫

Φ(u) f4(u) · 〈u,γ ′′∗−1(−x)〉 · d u.

Observe that we have made a change of variables u = γ ′(u∗) in the final integral expres-
sion for the left-hand operator. To determine λ(s , s ′), it suffices to observe that now both
integrals take the form c1

∫

Φ(u)g1(x, u)d u and c2

∫

Φ(u)g2(x, u)d u respectively, where
c1 and c2 are constants and g1 and g2 are characters of G×G of second degree. In order
for these to determine the same element for Φ ∈ L2(G), we must have c1 = c2 and g1 = g2.
It follows that λ(s , s ′) = γ ( f0). We record this result as follows:

Théorème 3Theorem 1.8.6. Let s = (σ , f ), s ′ = (σ ′, f ′), and s ′′ = (σ ′′, f ′′) be three elements of B0(G)
such that s ′′ = s s ′. Let us write

σ =
�

α β
γ δ

�

, σ ′ =
�

α′ β′

γ ′ δ ′

�

, σ ′′ =
�

α′′ β′′

γ ′′ δ ′′

�

,

where γ , γ ′, γ ′′ : G∗→G are each isomorphisms. Then, the formula

f0(u) = f (0,γ−1(u)) f ′(u,γ ′−1(α′(−u)))

defines a nondegenerate character of G of second degree, associated to the symmetric isomor-
phism γ ′−1 ◦ γ ′′ ◦ γ−1 : G→G∗. Moreover, the operators r0(s), r0(s

′), and r0(s
′′) associated

respectively to s , s ′, and s ′′ via Equation (16) participate in the relation

r0(s)r0(s
′) = γ ( f0)r0(s

′′),

where γ ( f0) is defined by Theorem 1.8.2.

16.1.9. Θ–functions. Taking Γ to be a closed subgroup of G, we now begin to turn our
attention toward the following cases of number-theoretic interest:

Local type: G is a vector space X of finite dimension over a locally compact field k
of discrete valuation, and Γ (for a convenient choice of basis for X ) is the group
of points whose coordinates are integers in k.

Real local type: G is a vector space X of finite dimension over R or C and Γ is the
subgroup generated by a basis of G over R.

Adelic type: G is of the form XA=Xk ⊗Ak , and Γ =Xk .

Let Γ∗ be the closed subgroup of G∗ associated by duality, i.e.,

Γ∗ = {x
∗ ∈G∗ | 〈ξ , x∗〉= 1 for all ξ ∈G}.

In these three cases, there exist isomorphisms between G and G∗ which transform Γ into
Γ∗. In the local case, Γ and Γ∗ are compact with discrete quotient, and in the other two
cases they are discrete with compact quotients. One can also make the identifications

Γ∗ = (G/Γ )
∗, G∗/Γ∗ = Γ

∗.

17With enough labor, one can verify directly that these two formulas differ only by a constant factor. How-
ever, this result was already calculated above, and it is useless for our present objective, which is to expressly
determine λ(s , s ′).
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Given elements x ∈ G and x∗ ∈ G∗, we denote by ẋ and ẋ∗ their images in G/Γ and
in G∗/Γ∗ respectively. We may choose Haar measures dξ on Γ and d ẋ on G/Γ so that

d x = dξ d ẋ,

from which it follows that for any functionΦ ∈ L1(G)we have the factorization formula18

∫

G
Φ(x)d x =

∫

G/Γ

�∫

Γ

Φ(x + ξ )dξ
�

d ẋ.

For every function Φ on G and every x ∈G, it will be useful to write Φx for the function
on Γ defined by Φx (ξ ) = Φ(x + ξ ), so that we can abbreviate the above equality to

∫

Φd x =
∫
�
∫

Φx dξ
�

d ẋ.

Replacing Φ by |Φ|2, we obtain in particular

(19) ‖Φ‖2
G =

∫

G/Γ
‖Φx‖

2
Γ d ẋ,

where ‖Φ‖G and ‖Φx‖Γ denote respectively the norms in L2(G) and in L2(Γ ).
Proceeding along the lines of Section 1.1 for the definition of the Fourier transform,

we are also led to introduce the function Θ on G×G∗, defined by the formula

(20) Θ(x, x∗) =
∫

Γ

Φ(x + ξ ) · 〈ξ , x∗〉 · dξ .

In terms of Θ, the Fourier transform Φ∗ of Φ can thus be written

(21) Φ∗(x∗) =
∫

G/Γ
Θ(x, x∗) · 〈x, x∗〉 · d ẋ.

Note that if Γ is discrete, the integral defining Θ reduces to a sum. In the real local case
and adelic case, functions of this form are very important: for a particular choice of Φ,
this construction yields the classical θ–series.

17. To conclude generic properties ofΘ, it will be convenient to assume for a moment that
Φ is continuous with compact support, so thatΘ is also continuous and given explicitly by
the above integral formula. The integral formula for Θ shows that it satisfies the relation

Θ(x + ξ , x∗+ ξ ∗) =Θ(x, x∗) · 〈ξ ,−x∗〉.

By setting z = (x, x∗) and ζ = (ξ ,ξ ∗), we can use the function F from Equation (3) to
rewrite this as

(22) Θ(z + ζ ) =Θ(z)F(ζ , z)−1 (z ∈G×G∗,ζ ∈ Γ × Γ∗).

In particular, we find Θ to be invariant under translation by elements ξ ∗ ∈ Γ∗. For any
solution Θ to Equation (22) and x ∈ G, we will denote by Θx the function defined on
G∗/Γ∗ by fixing its left-coordinate at x: Θx (ẋ

∗) = Θ(x, x∗). We can then summarize
Equation (20) by saying that Θx is the Fourier transform of Φx .

18The notation is justified by the fact that the function to integrate over G/Γ in the second part, written as
a function of x ∈G, is invariant under x 7→ x+ξ for all ξ ∈ Γ , and hence can be considered in the evident sense
as a function of ẋ on G/Γ .
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Identifying G∗/Γ∗ and Γ∗ with the duals of Γ and G/Γ , we endow these groups with
the Haar measures d ẋ∗ and dξ ∗ dual to dξ and d ẋ. For z = (x, x∗), we denote by ż the
image (ẋ, ẋ∗) of z in the group

Q = (G×G∗)/(Γ × Γ∗) = (G/Γ )× (G
∗/Γ∗),

and we set d ż = d ẋd ẋ∗. Following Equation (22), |Θ| is invariant under z 7→ z + ζ for
ζ ∈ Γ×Γ∗, and can thus be considered as a function on Q. Applying Plancherel’s formula
to the Fourier dual functions Φx and Θx shows ‖Φx‖Γ = ‖Θx‖, using the measure d ẋ∗ on
L2(G∗/Γ∗).

Equation (19) would then give ‖Φ‖2
G = ‖Θ‖

2
Q if for all solutions Θ to Equation (22) we

had

‖Θ‖2
Q =

∫

Q
|Θ(z)|2d ż.

Replacing x∗ by x∗+ ξ ∗ in Equation (21), we see that for all x∗ ∈G∗, the function

ξ ∗ 7→ Φ∗(x∗+ ξ ∗)

is the Fourier transform of

ẋ 7→Θ(x, x∗) · 〈x, x∗〉.

Applying Plancherel’s formula to these functions and integrating over G∗/Γ∗, we obtain

‖Θ‖2
Q =

∫

G∗/Γ∗

�

∫

Γ∗

|Φ∗(x∗+ ξ ∗)|2dξ ∗
�

d ẋ∗.

Applying Plancherel’s formula to Φ and Φ∗, we see that the second half of this equation
is nothing other than ‖Φ∗‖2

G∗ using the measure d x∗ dual to d x—and, by consequence,
d x∗ = dξ ∗d ẋ∗, so that we may conclude ‖Θ‖2

Q =
∫

Q |Θ(z)|
2d ż and hence ‖Φ‖2

G = ‖Θ‖
2
Q .

18.With this established, we now work to remove the hypothesis that Φ be continuous of
compact support. Denote by H (G,Γ ) the Hilbert space of solutions Θ to Equation (22)
which are everywhere locally integrable on G ×G∗ and which have ‖Θ‖Q < +∞, so
that this space inherits the norm ‖Θ‖Q . The assignment Φ 7→ Θ, as defined by the in-
tegral equation in Equation (20) for Φ continuous and compactly supported, extends by
continuity to a norm-preserving linear function

Z : L2(G)→H (G,Γ ).

For a general Φ ∈ L2(G), the integral equation laid out in Equation (20) does not make
sense. However, if we further suppose that Φ ∈ L2(G)∩ L1(G), then there is a negligible
part N of G/Γ such that Φx belongs to L2(Γ ) ∩ L1(Γ ) for each ẋ 6∈ N . In this case, we
define Θ by

Θ(x, x∗) =
¨
∫

Γ
Φ(x + ξ ) · 〈ξ , x∗〉 · dξ when ẋ 6∈N ,

0 when ẋ ∈N .

This is a solution to Equation (22), and Θx is the Fourier transform of Φx whenever ẋ 6∈
N . Plancherel’s theorem applies to these functions, and it combined with Equation (19)
recovers the formula ‖Φ‖2

G = ‖Θ‖
2
Q in this less restrictive context. Moreover, if we write

Φ as a limit (in the sense of L2(G)) of a sequenceΦn of continuous functions with compact
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support, and we setΘn = Z(Φn), we see exactly thatΘ−Θn has the same norm as Φ−Φn .
This norm tends to 0 for n→+∞, and hence Θ = Z(Φ).

Conversely, let Θ ∈ H (G,Γ ) be such that |Θ| is integrable over Q—such functions
are everywhere dense in H (G,Γ ). There will be a negligible subset N ⊂ G/Γ such that
Θx belongs both to L2(G∗/Γ∗) ∩ L1(G∗/Γ∗) for ẋ in the complement of N . Since N is
negligible, we replace Θ by 0 whenever ẋ ∈ N and preserve it otherwise, and using this
new Θ we set Φ to be the function on G defined by

(23) Φ(x) =
∫

G∗/Γ∗

Θ(x, x∗)d ẋ∗.

Since |Θ| is assumed to be integrabble, Φ is everywhere locally integrable. Moreover,
by substituting x + ξ for x in Equation (23), we see that for all x, Φx is the Fourier
transform ofΘx . Based on this, we may repeat the arguments above: Plancherel’s formula
again applies to these functions, which we again combine with Equation (19) to see that
‖Φ‖2

G = ‖Θ‖
2
Q , and hence again Φ ∈ L2(G). If we write Φ as a limit (in the sense of L2(G))

of a sequence Φn of functions with compact support, we again see that Θ is the limit of
Θn = Z(Φn) in H (G,Γ ). We have thus shown that the functionΘ 7→ Φ defined on a dense
set by Equation (23) again extends continuously to a linear function on H (G,Γ )which is
inverse to Z . We therefore conclude that Z : L2(G)→H (G,Γ ) is an isomorphism.

Remark 1.9.1. Let us consider further the case of Φ ∈ S (G). It is easy to check (first
for an elementary group, then passing to the general case using the definitions recounted
in Section 1.7) that x 7→ Φx is a continuous function of G in S (Γ ). It follows directly
that the integral equation in Equation (20) is “uniformly convergent” and hence defines
a continuous solution Θ = Z(Φ) to Equation (22). As moreover the Fourier transform
relative to Γ determines a continuous isomorphism S (Γ ) → S (G∗/Γ∗), it follows that
x 7→ Θx is also a continuous function from G → S (G∗/Γ∗), hence that the integral in
Equation (23) defines a continuous function in G. Therefore, for Φ ∈ S (G), it follows
that Θ = Z(Φ) is a continuous function, and thus Equation (20) and Equation (23) are
valid everywhere (and not merely almost everywhere).

19. 1.10. The standard unitary representation on H (G,Γ ). Using the isomorphism Z ,
we can transport the unitary operators previously defined on L2(G) to this new setting
of H (G,Γ ). Though it is an abuse of notation, we will reuse the notation U (w) for the
unitary operator acting on H (G,Γ ), even though this operator would be more literally
expressed as Z · U (w) · Z−1. The benefit to this abuse of notation is the appearance of
such familiar formulas as

(24) U (w)Θ(z) =Θ(z +w)F(z, w).

In the same vein, we will reuse A(G) to denote the group formed by the operators t ·U (w)
on H (G,Γ ) for t ∈ T , and we will reuse B0(G) to denote the normalizer of A(G) in the
automorphism group of H (G,Γ ).19

Let B0(G,Γ ) denote the subgroup of B0(G) consisting of those elements s = (σ , f )
such that f is the constant function 1 on Γ × Γ∗. For every such s , we define an operator

19Of course, while it follows from the preceding formula that the operator U (w) given by Equation (24)
transforms every solution of Equation (22) into another solution of Equation (22), this fact is also self-evident.
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rΓ (s) ∈H (G,Γ ) by the formula

(25) rΓ (s)Θ(z) =Θ(σ(z)) f (z).

It can be verified immediately that this operator permutes the space of solutions of Equa-
tion (22) among itself, from which it follows that rΓ determines a unitary representation
on B0(G,Γ ). Moreover, we may combine Equation (24), Equation (25), and Equation (6)
of Section 1.3 to deduce

U (w)rΓ (s) = f (w) · rΓ (s)U (wσ),

from which it follows that rΓ (s) belongs to B0(G) and that its canonical projection into
B0(G) is s . In other terms, rΓ lifts B0(G,Γ ) to B0(G). We will denote by B0(G,Γ ) the image
of B0(G,Γ ) through rΓ , and also (by abuse of notation) the group induced from that by
transport to L2(G) through Z . Again, we will write rΓ for this function transported to
the old context, rather than the clumsier Z−1rΓZ .

Remark 1.10.1. Let us examine the first trivial case Γ = {0} and Γ∗ = G∗. Then H (G,Γ )
can be identified with L2(G), and Z can be identified with the identity function. Using
the notation of Section 1.3, the group B0(G,Γ ) becomes the group of automorphisms of
the form d0(α)t0( f ). The function rΓ lifts d0(α)t0( f ) to d0(α)t0( f ).

The second trivial case is to take Γ = G and Γ∗ = {0}. In this case, H (G,Γ ) can be
identified with L2(G∗), and Z with the Fourier transform. The group B0(G,Γ ) is then the
group of automorphisms of the form d0(α)t

′
0( f
′). Finally, rΓ is whatever function one

deduces from this by duality.

In the setting of Schwartz space, we can produce the following formula:

Théorème 4Theorem 1.10.2. For every function Φ ∈S (G) and every s ∈ B0(G,Γ ), we have

(26)
∫

Γ

Φ(ξ )dξ =
∫

Γ

sΦ(ξ )dξ .

Proof. It follows from Section 1.7 that ifΦ is a function withΦ ∈S (G), then the deduced
function Φ′ = sΦ also belongs to S (G). Then, the associated Θ–functions Θ = Z(Φ) and
Θ′ = sΘ = Z(Φ′) are continuous and can be expressed everywhere by Equation (20):

Θ(x, x∗) =
∫

Γ

Φ(x + ξ ) · 〈ξ , x∗〉 · dξ , Θ′(x, x∗) =
∫

Γ

Φ′(x + ξ ) · 〈ξ , x∗〉 · dξ .

But, if one writes s= rΓ (s) with s ∈ B0(G,Γ ), Θ′ and Θ must also satisfy Equation (25):

rΓ (s)Θ(z) =Θ(σ(z)) f (z), rΓ (s)Θ
′(z) =Θ′(σ(z)) f (z).

Equality here is initially taken in the sense of H (G,Γ ), but it is furthermore true that
pointwise equality also holds on the continuous locus of these functions. Taking z = 0,
this second pair of equalities shows Θ′(0) =Θ(0). By expressing both sides in terms of Φ
and Φ′ using the previous pair, we conclude the announced result. �

Corollaire
(unnumbered)

Corollary 1.10.3. For every function Φ ∈S (G), the formula

F : B0(G)→C,

s 7→
∫

Γ

sΦ(ξ )dξ
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defines a function invariant under left-translations.

Proof. Using Section 1.7, sΦ belongs to S (G) whenever s ∈ B0(G). Using Section 1.9,
this implies in particular that sΦ induces a function on Γ that belongs to S (Γ ), hence to
L1(Γ ). The corollary thus follows immediately from Theorem 1.10.2. �

As we will soon see, this Corollary provides one of the most powerful means available
for the construction of automorphic functions.

20. In Section 1.8, we defined a certain lifting function r0 : Ω0(G)→ B0(G). We now com-
pare this definition with the version “relative to Γ ” given above. Let Ω0(G,Γ ) denote the
set of those elements s = (σ , f ) in B0(G,Γ ) such that γ (s) : G∗ → G is an isomorphism
which furthermore induces an isomorphism of Γ∗ → Γ . This set is automatically con-
tained within both B0(G,Γ ) and Ω0(G). We will now show that on this subset, rΓ and r0
coincide.

Recall the formula Equation (8) of Proposition 1.5.1:

s = t0( f1)d
′
0(γ )t0( f2).

If s belongs to Ω0(G,Γ ), the three factors on the right-hand side then belong to B0(G,Γ ).
It therefore suffices to check that for t0( f ) ∈ B0(G,Γ ) and d ′0(γ ) ∈ B0(G,Γ ), we have the
equalities

rΓ (t0( f )) = t0( f ), rΓ (d
′
0(γ )) = d′0(γ ).

The first equality is immediate from the first assumption. For the second equality, one
sees via Equation (21) that the two operators in question differ only by a positive real
scalar factor—and, since they are unitary, this real number must be 1.

Remark 1.10.4. By writing this all out more carefully, one discovers the following: taking
γ : (G∗,Γ∗)→ (G,Γ ) to be an isomorphism,20 then γ and the isomorphism G∗/Γ∗→G/Γ
which it induces both have the same modulus, |γ |

1
2 . In particular, this gives |γ |= 1 when

Γ and Γ∗ are either both discrete or both compact.

Remark 1.10.5. Using Equation (20) for Z , Equation (23) for Z−1, and Equation (25) for
rΓ in the case where s ∈ Ω0(G,Γ ), we obtain a formula for rΓ on L2(G) which coincides
with that given by Equation (16) for r0, up to a positive factor—which is again necessarily
equal to 1.

We remark also that we may recover a classical formula of Poisson from these tech-
niques. Take Γ and Γ∗ to be discrete and take γ to be an isomorphism γ : (G∗,Γ∗)→ (G,Γ ).
If we set s = d ′0(γ ) and thus rΓ (s) = d′0(γ ), then Theorem 1.10.2 entails the following:

Théorème 5 Theorem 1.10.6. Let f be a character of G of second degree, taking the value 1 on all elements
of a closed subgroup Γ of G; let G∗ be the dual of G, and Γ∗ the subgroup of G∗ corresponding
to Γ ; and suppose that the symmetric morphismρ : G→G∗ associated to f is an isomorphism
ρ : (G,Γ )→ (G∗,Γ∗). Then γ ( f ) = 1.

Proof. Consider the proof of Theorem 1.8.2. There, we obtained γ ( f ) as a difference
factor between the two sides of Equation (9) after lifting them to B0(G) using d′0 and t0.
With the hypotheses of Theorem 1.10.6, all the factors of Equation (9) are in B0(G,Γ ),

20By this we mean that γ : G∗→G is an isomorphism carrying Γ∗ to Γ .
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and hence their lifts by d′0 and t0 coincide with their lifts by rΓ . As rΓ constitutes a repre-
sentation, the result follows.21 �

As we will see in Section 2, Theorem 1.10.6 applied to a group of adelic type recovers
the law of quadratic reciprocity. A more banal but still useful case is the following:

Corollaire
(unnumbered)

Corollary 1.10.7. Let f be the character of G×G∗ of second degree given by

f (x, x∗) = 〈x, x∗〉.

Then f is nondegenerate and γ ( f ) = 1.

Proof. The dual of G×G∗ can be identified in the evident manner with G∗×G, and the
morphism associated to f is that which exchanges the two factors of G×G∗. Hence, f
is nondegenerate. By substituting G ×G∗, G∗ ×G, G × {0}, and {0} ×G for G, G∗, Γ ,
and Γ∗ respectively in Theorem 1.10.6, we conclude the result. �

21.1.11. Special cases. We close this section with some remarks relevant to our cases of
interest: either Γ and Γ∗ compact, or Γ compact and open in G. We choose d x and dξ so
that Γ is of unit total volume under both measures. From this alone, it also follows that
Γ∗ has unit measure under d x∗ and dξ ∗.

Remark 1.11.1. First, let Φ be the characteristic function ϕΓ of Γ . Its image Z(ϕΓ ) is
then the characteristic function of Γ × Γ∗. Using Equation (25), Z(ϕΓ ) is invariant under
B0(G,Γ ), and this is thus also true of Φ= ϕΓ .

Remark 1.11.2. Next, we take Φ to be the characteristic function of a coset for Γ , i.e.,
Φ(x) = ϕΓ (x − a) for some fixed choice of a ∈G. We see again that Θ = Z(Φ) is then the
function ϕΓ (x−a)ϕΓ∗(x

∗), where ϕΓ∗ is the characteristic function of Γ∗. For s ∈ B0(G,Γ ),
we would like to characterize what it means forΘ (and by consequence Φ) to be invariant

under rΓ (s). Expand s as s = (σ , f ), with σ =
�

α β
γ δ

�

. The invariance of Θ is then

equivalent to (α− 1)(a) ∈ Γ , β ◦ α ∈ Γ∗, and f (a, 0) = 1. These three conditions follow
from Equation (25).

Remark 1.11.3. Let Γ ′ then be a compact open subgroup of G containing Γ . Retaining
the notation of Section 1.7, the set S (Γ ′,Γ ) is composed of those linear combinations of
functions ϕΓ (x − a) with constant coefficients and with a ∈ Γ ′. This is a complex vector
space whose dimension is equal to the finite index of Γ in Γ ′. Let s = (σ , f ) be, as above,
an element of B0(G,Γ ). Then, for every function of S (Γ ′,Γ ) to be invariant under rΓ (s),
it is necessary and sufficient that f takes the value 1 on Γ ′×Γ∗, that Γ ′ ·(α−1)⊆ Γ , and that
Γ ′ ·β⊆ Γ∗. This is the same as saying that f must take the value 1 on Γ ′× Γ∗, that σ must
induce an automorphism on Γ ′ × Γ∗, and that σ determines the identity automorphism
on the quotient (Γ ′× Γ∗)/(Γ × Γ∗).

22.Finally, we make note of some “functorial” properties. In the case of a product group
G =G1×G2, we can identify its dual as G∗ =G∗1 ×G∗2 and moreover

G×G∗ = (G1×G∗1 )× (G2×G∗2 ).
21Though it is essentially the same proof, one could also make use of Theorem 1.8.6, in which one would

investigate s , s ′ ∈ B0(G,Γ ) such that f0 = f .
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Then, ifσ1 andσ2 are respectively automorphisms of G1×G∗1 and G2×G∗2 , we may extract
an automorphism of G×G∗ which we will denote (σ1,σ2). If f1 and f2 are characters of
G1 ×G∗1 and G2 ×G∗2 respectively, both of second degree, we then extract from this a
character f = f1 ⊗ f2 on G ×G∗ of second degree. If s1 = (σ1, f1) and s2 = (σ2, f2) are
elements of B0(G1) and B0(G2) respectively, then ((σ1,σ2), f1 ⊗ f2) will be an element of
B0(G)which we denote by s1⊗ s2. Whenever it is convenient, we will identify the product
B0(G1)×B0(G2)with the group of those elements s1⊗ s2 of B0(G), and we identify B0(G1)
and B0(G2) with the factors of this group.

On the other hand, we can consider L2(G) as a “Hilbertian tensor product” of L2(G1)
and L2(G2). Thus, if s1 and s2 are automorphisms of L2(G1) and L2(G2) respectively, then
we extract from this an automorphism s1⊗ s2 of L2(G). For each of the groups G1, G2,
and G, just as in Section 1.3 we can define operators U (w1), U (w2), and U (w)which are
automorphisms respectively of L2(G1), L2(G2), and L2(G). For w = (w1, w2), we then
have

U (w) =U (w1)⊗U (w2).
It follows that (s1, s2) 7→ s1⊗ s2 determines a homomorphism

⊗ : B0(G1)×B0(G2)→ B0(G),

compatible with the canonical projections of B0(G1) to B0(G1), B0(G2) to B0(G2), and
B0(G) to B0(G). The kernel of this homomorphism is formed by those elements (t, t−1) of
the center, and it induces monomorphisms from B0(G1) and B0(G2) to B0(G). Using this
we can, whenever convenient, identify these subgroups with their images inside B0(G).

II. Application à la loi
de réciprocité quadra-
tique

2. APPLICATION TO THE LAW OF QUADRATIC RECIPROCITY

23.

2.1. Basic definitions, part II. We will now begin to investigate situations of interest to
algebraic number theorists in earnest. The notational conventions of that field are in very
mild conflict with the conventions established in Section 1, so we begin by reconciling
any such dfiferences.

For every vector space X over a field k, we will designate its linear dual by X ∗, and for
every x ∈ X and x∗ ∈ X ∗ we will denote by [x, x∗] the value of x∗ on x. For X of finite
dimension, we may identify it with its bidual (X ∗)∗ using the formula

[x, x∗] = [x∗, x].

For a linear function α : X → Y , we will denote its transpose as α∗, which is the linear
function α∗ : Y ∗→X ∗ defined by the formula

[α(x), y∗] = [x,α∗(y∗))].

Every bilinear form on X ×Y can be written as [x,α(y)], where α : Y → X ∗ is a linear
morphism. For X = Y , we say that α is symmetric if [x,α(y)] is symmetric in x and y,
i.e., if α= α∗.

We will denote by Q(X ) the vector space of quadratic forms on X . For f such a
quadratic form, we may produce a symmetric morphism ρ for which we have

f (x + y)− f (x)− f (y) = [x,ρ(y)].

We then say that f and ρ are associated to one another. The quadratic form f is said to
beb nondegenerate when ρ : X → X ∗ is an isomorphism; at the other extreme, we say
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that f is additive if ρ= 0. We will denote the subspace of Q(X ) consisting of the additive
forms by Qa(X ). If k is not of characteristic 2, then one can show that there are no
additive quadratic forms other than 0. Moreover, in this case every symmetric morphism
ρ : X →X ∗ is associated to a unique quadratic form f :22

f (x) = [x, 2−1ρ(x)].

24.Suppose that k is a local field, i.e., a locally compact non-discrete commutative field.
Such fields are either isomorphic to R, isomorphic to C, or of discrete valuation. If this
last condition holds, then if the characteristic of k is zero then k must be isomorphic to
a finite extension either ofQp (the p–adic completion of the rationals), or if it is positive
characteristic p then k must be isomorphic to the field of Laurent series in a single variable
over Fp . In the case of discrete valuation, we denote by o the ring of integers of k, by π
a prime element of o (i.e., a generator of the prime ideal p of o), and by q the number of
elements of the finite field o/p.

Once and for all, we choose a nontrivial23 character χ of the additive group of k.24

The function (x, y) 7→ χ (xy) is a bicharacter of k × k which identifies k with its own
Pontryagin dual (i.e., the dual in the sense of locally compact abelian groups). More
generally, let X be a vector space of finite dimension over k, let X ∗ be its dual, and endow
X and X ∗ with the evident topologies. We can then identify X ∗ with the Pontryagin dual
of X so that

〈x, x∗〉= χ ([x, x∗]).

This identification, which clearly depends upon the choice of χ , we make once and for
all, so that we need not distinguish between the algebraic dual and the Pontryagin dual.

If f is a quadratic form on a vector space X over k, χ ◦ f is a character of X of second
degree in the sense of Section 1.1. The morphism X → X ∗ associated to χ ◦ f is the
same as that associated to f . In particular, χ ◦ f is nondegenerate if and only if f is
nondegenerate.

Remark 2.1.1. When this is the case, we can apply Theorem 1.8.2 to extract a number
γ (χ ◦ f ) of absolute value 1. We abbreviate this value to γ ( f ), though one must remember
that this value depends upon the choice of χ . However, because |γ ( f )| = 1, it does not
depend on the choices of Haar measures which appear in its definition: when one changes
the measures, this modifies the formulas of Theorem 1.8.2 and its Corollaries only by
positive real factors, which collectively must have no effect. This remark allows us to
abandon the convention estalbished in Section 1 of always taking on the dual G∗ of a
group G the measure dual to that taken on G.

25.The remark above shows in particular that these γ–values are stable under isomor-
phism: if f ′ = f ◦α for an isomorphism α : X ′→X of vector spaces, then γ ( f ′) = γ ( f ).
We note also that γ (− f ) = γ ( f )−1, because χ ◦ (− f ) is the imaginary conjugate of χ ◦ f .
If−1 is a square in k (and k is of characteristic 2), then− f is equivalent to f . In this case,
it then follows that for any f we have γ ( f ) =±1.

Proposition 322Irrespective of the characteristic of k, one always has 2 f (x) = [x,ρ(x)].
23“Nontrivial” here means that it is not the constant function valued at 1.
24It is possible to choose χ in a “canonical” manner, but this will not be useful for us.
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Proposition 2.1.2. The function f 7→ γ ( f ) determines a character of the Witt group of the
local field k.

Proof. Let f1, f2 be nondegenerate forms on the vector spaces X1, X2, and let f be the
form given by f (x1, x2) = f1(x1) + f2(x2) on X1 ⊕X2. Then f is nondegenerate, and by
using the definition of γ in Theorem 1.8.2 it is clear that γ ( f ) = γ ( f1)γ ( f2).

Second, a nondegenerate form f corresponds to the trivial element of the Witt group
exactly when for some n it is equivalent to the form

∑n
i=1 xi xn+1 on k2n . This coincides

with the claim that f is equivalent to the form [x, x∗] on X ×X ∗ for some choice of X .
In this case, Corollary 1.10.7 shows that γ ( f ) = 1, so that γ factors through the Witt
group. �

26. 2.2. Some calculations of γ over local fields. Our goal in this Section is to make cal-
culations of the value γ ( f ) where we can. We begin this project by considering the case
where k is a local field. We will denote by qm the form qm(x) =

∑m
i=1 x2

i on the space k m ,
which is automatically nondegenerate whenever k is not of characteristic 2.

Let us first consider k =R. Over R, all nondegenerate quadratic forms are equivalent
to one of the form qa(x)− qb (y) on the space Ra ×Rb . We call the pair (a, b ) the inertia
type of the form. Proposition 2.1.2 shows that if f has inertia type (a, b ), then γ ( f ) =
γ (q1)

a−b , so that we may consider only the calculation of γ (q1) = γ (χ ◦ q1). Whatever
characterχ onRwe have chosen must be of the formχ (x) = e2πiλx for some real nonzero
λ. To calculate γ (q1), we recall the following formula from Corollary 1.8.4:

∫
�
∫

Φ(x − y) f (y)d y
�

d x = γ ( f )|ρ|−
1
2

∫

Φ(x)d x.

By selecting a particularly simple choice of Φ, such as Φ= e−πx2
, we then compute

γ (q1) =
¨

eπi/4 if λ > 0,

e−πi/4 if λ < 0.

Remark 2.2.1. In both cases, γ ( f ) is an eighth root of unity. Independent of λ, we thus
have that γ (q4) =−1 for the form q4(x), which is the norm for real quaternions.

We next consider k =C. Every complex quadratic form is equivalent to qm for some
m, and for the same reason as in the real case it suffices to determine γ (q1). Let χ0 denote
the character e2πi x on R; our chosen character χ on C is then necessarily of the form
χ (z) = χ0(λz + λz) for some λ 6= 0. For f = λ−1q1, we have χ ◦ f = χ0 ◦ f0, where
f0 is given by f0(z) = z2 + z2. On the 2–dimensional real vector space underlying C, f0
is a quadratic form of inertia type (1,1), from which it follows from the real case that
γ (χ0 ◦ f0) = 1, hence γ (χ ◦ f ) = 1, hence γ ( f ) = 1, hence γ (q1) = 1. The assignment γ is
thus constant for all nondegenerate quadratic forms on C.

27. Finally, we turn to the case where k is of discrete valuation. Before we begin, we
establish some relevant tools. For X a vector space over k, an open compact subgroup of
X which is a module over o will be called a lattice. If L is a lattice in X , its dual L∗ also
yields a lattice in X ∗. If L⊃ L′ are two lattices in X , we may define the analogueS (L, L′)
of the function space considered in Section 1.7: S (L, L′) consists of functions which are
supported on L and which are constant on cosets of L′. The union of the familiesS (L, L′)
for all possible choices of L and L′ recovers S (X ).
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Let f be a nondegenerate quadratic form on X with associated symmetric isomor-
phism ρ : X → X ∗. As the kernel of χ is an open subgroup of k, χ ◦ f has the constant
value 1 on a neighborhood of 0 in X , hence on all sufficiently small lattices. Choosing
such a small lattice L, we find that for x, y ∈ L we have χ ([y,ρ(x)]) = 1,25 and hence
ρ(L)⊂ L∗. We set L′ = ρ−1(L∗), we satisfies L′ ⊃ L. If ϕL is the characteristic function of
L, we then have

(ϕL ∗ (χ ◦ f ))(x) =
∫

L
χ ( f (x − y))d y = χ ( f (x))

∫

L
χ ([y,−ρ(x)])d y.

Depending on whether ρ(x) is or is not in L∗, the right-hand integral attains either the
value m(L) =

∫

L d y or zero, i.e.,

(27) ϕL ∗ (χ ◦ f ) = m(L)ϕL′ · (χ ◦ f ).

We now apply Corollary 1.8.4 to χ ◦ f and Φ = ϕL. It follows that γ ( f ) differs only by
a positive real factor from

∫

L′ χ ◦ f d x. We investigate this as a function of a lattice M :

g ( f , M ) =
∫

M
χ ( f (x))d x.

If M ⊃ L, this can be written

g ( f , M ) =
∑

x∈M/L

χ ( f (x))
∫

L
χ ([y,−ρ(x)])d y,

or, by setting M ′ =M ∩ L′ and using the preceding discussion,

g ( f , M ) = m(L)
∑

x∈M ′/L

χ ( f (x)).

This right-hand summation is a Gauss sum, which is moreover independent of M once M
is sufficiently large, as we required only M ⊃ L′. We therefore drop it from the notation
and write g ( f ) = g ( f , L′) for M sufficiently large, and we have thus learned

γ ( f ) = g ( f )/|g ( f )|.

This permits, if one likes, to apply the calculation of γ ( f ) to the theory of Gauss sums.
28.Leaving that aside for now, we turn instead to the following result, which is more

directly connected to our goal of quadratic reciprocity.

Proposition 4Proposition 2.2.2. Let k by the algebra of quaternions over the local field k, and let n be the
norm on k: n(z) = z · z. Then γ (n) =−1.

Proof. Pursuant to the preceding discussion, all that remains to show is that g (n, M ) is
real and negative when M is a sufficiently large lattice in k.

It is well-known that n : k× → k×, considered as a homomorphism of multiplicative
groups, is surjective with compact kernel. Moreover, for any integer v, the set Mv of
those z ∈ k such that n(z) ∈ π−vo is an ideal in k (and, indeed, a lattice), which can be
made as large as one likes by taking v sufficiently large. Let d x and d z denote the Haar
measures on the additive groups of k and k, and let the first be normalized so that o has
unit measure. As usual, for a ∈ k we define |a| to be the modulus of the homothety

25The converse is true whenever 2 is invertible in o.
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x 7→ ax. It follows that |x|−1d x is a Haar measure on the multiplicative group of k. For
c ∈ k, the modulus of the analogous homothety z 7→ c z is |n(c)|2, and hence |n(z)|−2d z
is a Haar measure on the multiplicative group of k.

Writing ϕ for the characteristic function of o on k, the lattice Mv ⊆ k can then be
written as Mv = ϕ(π

v n(z)) and hence the value g (n, Mv ) can be written as

g (n, Mv ) =
∫

χ (n(z))ϕ(πv n(z))d z.

By settingψv (x) = χ (x)ϕ(π
v x)|x|2, we can rewrite this in terms of the Haar measure on

the multiplicative group:

g (n, Mv ) =
∫

k×
ψv (n(z)) · |n(z)|

−2d z.

Let us first integrate over the cosets of kernel of n, since the integrand is constant on these
sets, giving

g (n, Mv ) = λ
∫

k×/ker n
ψv (x) · |x|

−1d x = λ
∫

k×/ker n
χ (x)ϕ(πv x)|x|d x,

where the positive real value λ is the measure of the kernel of n for the quotient measure
of |n(z)|−2d z by |x|−1d x. We may rewrite part of the integrand as

ϕ(πv x) · |x|=
+∞
∑

µ=−v
|πµ| · (ϕ(π−µx)−ϕ(π−µ−1x)).

Then, since |π|= q−1, we can then further rewrite the whole expression as

g (n, Mv ) = λ
+∞
∑

µ=−v
q−µ

�∫

πµo

χ (x)d x −
∫

πµ+1o

χ (x)d x
�

.

Take j to be the least of those integers µ such that the ideal pµ = πµo is contained in
the kernel of the character χ of k. When χ induces the constant function 1 on pµ (i.e.,
for µ ≥ j ), its integral merely computes its measure m(pµ) = q−µ. In the alternative, χ
is a nontrivial character and hence this integral vanishes. For v ≥ 1− j we thus obtain:

g (n, Mv ) =−λ ·
q1−2 j

1+ q−1
. �

Remark 2.2.3. We note that our previous computations in k = R and k = C show that
Proposition 2.2.2 is valid also in those settings.26 It is thus valid for all local fields.

Over every local field k other than C, it can be shown that there are only two classes
of nondegenerate quadratic forms in 4 variables whose discriminant is a square in k: the
form n studied above and the “trivial” form xy + z t . Proposition 2.1.2 and Proposi-
tion 2.2.2 show that the symbol γ ( f ) can be used to distinguish between these classes of
forms, as it takes the value−1 for the first and the value 1 for the second—at least, if k is not
of characteristic 2. In this case, all quadratic forms determined by x2−ay2−b z2+ab t 2 for

26Indeed, trivially so for k =C, as there is no complex quaternion algebra over.
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nonzero a, b ∈ k belong to one or the other of these two classes, depending on whether
a is the norm or not of an element of k(b

1
2 ). We record this in the formula

γ (x2− ay2− b z2+ ab t 2) =
� a

b

�

,

where
� a

b

�

denotes the norm residue symbol. Setting b = −1 and applying Proposi-
tion 2.1.2,

γ (q1)
2γ (−aq1)

2 =
� a
−1

�

,

which can also be written as

γ (aq1)
2 =

� a
−1

�

γ (q1)
2.

As all nondegenerate forms can be written as
∑

i ai x2
i under a convenient choice of basis,

we may therefore apply Proposition 2.1.2 again to conclude

(28) γ ( f )2 =
� D
−1

�

γ (q1)
2m ,

where m is the dimension of the vector space where f is defined and D is the discriminant
of f .27 We thus conclude γ ( f )4 = γ (q4)

m , where γ ( f )8 = 1 as q4 is nondegenerate of
discriminant 1. This echoes results already achieved in other settings: if −1 is a square
in k, then γ ( f ) = ±1 for any such f , and hence

�

D
−1

�

= 1 no matter what D is. In fact,
γ ( f )8 = 1 is valid even in characteristic 2, as one again has γ ( f ) =±1.

29.2.3. Calculation of γ over adelic rings and the law of quadratic reciprocity. We are
now in a position to pursue the law of quadratic reciprocity in earnest: we will assemble
it out of the local results from the preceding section, bundling them together by using
Theorem 1.10.6 in the context of a group of adelic type.

Let k be a global field, by which we mean a number field (i.e., a finite extension ofQ)
or a function field (i.e., a transcendental extension of dimension 1 over a finite field). We
will use kv to denote the completion of k at the place v, ov to denote the ring of integers
of kv each time that kv is of discrete valuation, and Ak to denote the ring of adeles of k.
For Xk a vector space (of finite dimension) over k, we set XA = Xk ⊗Ak and, for every
v, Xv = Xk ⊗ kv . If X ◦ is a basis of Xk over k, for kv of discrete valuation we denote by
X ◦v the set of those points of Xv whose coordinates in the basis X ◦ lie in ov ; this gives a
lattice in Xv . We denote by S all finite sets of completions of k, including those which
are isomorphic to R or to C. Under these conditions and with these notations, XA is the
union (and, in the sense of topological spaces, the direct limit) of the products

(29) X ◦S =
∏

v∈S

Xv ×
∏

v 6∈S

X ◦v .

All compact subsets of XA are contained in a set of the form
∏

v Cv , where Cv is a com-
pact subset of Xv for each v and where Cv = X ◦v for almost all28 v. We conclude from
this that any subgroup of XA contained in a compact neighborhood of 0 is contained in

27This value is independent of choice of basis, as a change of basis does not modify D except by a square.
28That is, for all v save for a finite number of them.
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a subgroup of the form H =
∏

v Hv , where Hv is equal to Xv each time that kv is iso-
morphic to R or to C, Hv is equal to a lattice in Xv each time kv is of discrete valuation,
and Hv = X ◦v for almost all v. Supposing that we have chosen such an H , all compact
subgroups H ′ of H such that H/H ′ is an elementary group contain an analogous sub-
group of the form H ′ =

∏

v H ′v , where H ′v is equal to {0} each time kv is isomorphic
to R or to C, H ′v is equal to a lattice of Xv contained in Hv each time kv has discrete
valuation, and Hv = X ◦v for almost all v. From this we may make deductions about the
structure of S (XA). For one, it contains all functions of the form (xv ) 7→

∏

Φv (xv ),
where Φv ∈S (Xv ) for all v, and where for almost all v the function Φv is the character-
istic function of X ◦v . For k =Q, or for k of characteristic p 6= 0, S (XA) is in fact the set
of finite linear combinations of these functions using constant coefficients.29

As in the local case, we choose once and for all a nontrivial character χ of Ak which
takes the value 1 on k. Such a character is necessarily of the form

χ (t ) =
∏

v
χv (tv ), (t = (tv ) ∈Ak ),

where for each v the character χv is a nontrivial character of kv , and where for almost
all v the lattice ov corresponds to itself by duality.30 This implies that, for almost all v,
χv reduces to the constant function 1 on ov , so that in the infinite product expression of
χ (t ) almost all the factors are 1. We will use χv to put Xv in duality with X ∗v . Hence, if
X ◦ is a basis of Xk over k and (X ∗)◦ is a basis of X ∗k over k (for example, the basis dual to
X ◦), the lattice (X ◦v )∗ in X ∗v which corresponds by duality to X ◦v is (X ∗)◦v for almost all v.

If χ is chosen as above, the bicharacter (x, y) 7→ χ (xy) of Ak ×Ak puts Ak in duality
with itself, in such a way that the discrete subgroup k of Ak is self-dual. Hence, if Xk is
as above, one can identify the linear dual X ∗A with the Pontryagin dual of XA using the
formula

〈x, x∗〉= χ ([x, x∗]), (x ∈XA, x∗ ∈X ∗A)

where [x, x∗] denotes the extension of the bilinear form on Xk×X ∗k defined in Section 2.1
to a bilinear function XA×XA→ Ak . Under this duality, the discrete subgroups Xk and
X ∗k of XA and X ∗A correspond one to the other. Otherwise said, we can take G = XA,
G∗ =X ∗A, Γ =Xk , and Γ∗ =X ∗k in Section 1.9 and Section 1.10.

30. Fix a nondegenerate quadratic form f on Xk . We may then extract the following data:

• A family of quadratic forms on the spaces Xv .
• A function x 7→ f (x) from XA to Ak .
• Characters of second degree, χv ◦ f and χ ◦ f , on Xv and on XA.

For brevity, we will write γv ( f ) and γ ( f ) in lieu of γ (χv ◦ f ) and γ (χ ◦ f ).

Proposition 5 Proposition 2.3.1. Let f be a nondegenerate quadratic form on a vector space Xk over k.
One then has

γ ( f ) =
∏

v
γv ( f ) = 1.

29For the corresponding assertion where k is an algebraic number field other thanQ, see 39. .
30Here we identify kv with its dual through χv , in the manner explained in Section 2.1.
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Proof. Theorem 1.10.6 applied to χ ◦ f , XA, and Xk yields γ ( f ) = 1. It remains to show
locality:

γ ( f ) =
∏

v
γv ( f ).

Toward that, select a fleet of functionsΦv ∈S (Xv ) for all v and withΦv the characteristic
function of X ◦v for almost all v, and set Φ be the function on XA defined by

Φ(x) =
∏

v
Φv (xv ).

We intend to apply Corollary 1.8.4 to Φ as well as to the function Φv . As noted pre-
viously, the choice of Haar measure will not affect the outcome, and so we may freely
pick the normalization of the measure mv on Xv . It will be most convenient to assume
mv (X

◦
v ) = 1 for almost all v, from which one extracts a product measure on each of the

sets X ◦S defined by Equation (29), and hence a measure on XA. Following Equation (27),
we find that for almost all v, Φv ∗ (χv ◦ f ) = Φv , from which we see γv ( f ) = 1 using
Corollary 1.8.4. Applying this to XA, we write the integrals over XA as the limit of the
corresponding integrals on the sets X ◦S , which yields the result. �

To obtain the law of quadratic reciprocities, we simply apply Proposition 2.3.1 to a
nondegenerate form of 4 variables whose discriminant is a square in k. For the form
obtained as the norm of an algebra k of quaternions over k, this gives the reciprocity law
in the form due to Hasse:

∏

v
hv (k) = 1,

where hv (k) has the value 1 or −1 depending on whether k⊗ kv is a matrix algebra or a
“true” algebra of quaternions over kv . For the form x2− ay2− b z2+ ab t 2 over a field k
of characteristic other than 2, this gives the reciprocity law in the form of Hilbert:

∏

v

� a
b

�

v
= 1.

Remark 2.3.2. Despite appearances, the proof of the law of quadratic reciprocity given
above does not differ substantially from the classical proof by Gauss, which uses theta
functions and their sums. In view of this, we note the essential role played by generalized
theta functions in the proof of Theorem 1.10.6.

Remark 2.3.3. Let us write P (k , m) for the property
∏

v γv = 1 for nondegenerate qua-
dratic forms on spaces Xk of dimension m over a field k. Following Proposition 2.1.2,
P (k , m) follows formally from P (k , 1) if k is not of characteristic 2, and from P (k , 2) if k
is of characteristic 2.

Taking k ′ to be a separable extension of k of degree d , τ to be the trace taken in k ′/k,
one then has Ak ′ = k ′⊗Ak . If χ is the character introduced above for Ak , then χ ′ = χ ◦τ
is an analogous character for Ak ′ . If f ′ is a nondegenerate quadratic form on a vector space
Xk ′ of dimension m over k ′, then τ ◦ f ′ is a nondegenerate quadratic form on the vector
space over k underlying Xk ′ . We conclude thus that P (k , md ) implies P (k ′, m).

Taking k to have characteristic 0 for example, it follows from these remarks that P (k , m)
is a formal consequence of P (Q, 1) for all m and for all algebraic number fields k. We note
also that the law of quadratic reciprocity, whether in the form of Hasse or of Hilbert, is
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contained in P (k , 4) so that, at least formally, this law is weaker than P (k , 1) if k is not of
characteristic 2 or weaker than P (k , 2) if k is of characteristic 2.

Question 2.3.4. Can one give the general reciprocity law a proof analogous to that which
we have given for the law of quadratic reciprocity?

III. Le groupe méta-
plectique (cas local et
cas adélique)

3. THE METAPLECTIC GROUP (LOCAL CASE AND ADELIC CASE)

31.

3.1. Basic definitions, part III. We return to the case that X is a finite-dimensional
vector space over an arbitrary field k. Continuing to use the notation of Section 2.1, we
will consider automorphisms z 7→ σ(z) of X ×X ∗, which as in Section 1.2 we will denote
in matrix form

σ =
�

α β
γ δ

�

.

As before, we set

σ I =
�

δ∗ −β∗
−γ ∗ α∗

�

.

On (X ×X ∗)× (X ×X ∗), we will consider the bilinear form

B(z1, z2) = [x1, x∗2 ] (z1 = (x1, x∗1 ), z2 = (x2, x∗2 ))

and we say that an automorphism σ of X ×X ∗ is symplectic if it preserves the bilinear
form B(z1, z2)− B(z2, z1), i.e., if σσ I = 1. These automorphisms form a group Sp(X ),
named the symplectic group of X .

We construct a group A(X ) by imbuing X×X ∗×k with a composition law analogous
to Equation (4):

(30) (z1, t1) · (z2, t2) = (z1+ z2,B(z1, z2)+ t1+ t2).

For σ an automorphism of X × X ∗ and f a quadratic form on X × X ∗, consider the
function

(31) (z, t ) 7→ (σ(z), f (z)+ t ). (z ∈X ×X ∗, t ∈ k)

This function is an automorphism of A(X ) if and only if σ and f satisfy the relation

(32) f (z1+ z2)− f (z1)− f (z2) = B(σ(z1),σ(z2))−B(z1, z2),

analogous to Equation (6). In this situation, we will denote by (σ , f ) the automorphism
of A(X ) defined by Equation (31). The group Ps(X ) formed by these automorphisms is
named the pseudosymplectic group of X , and the group law is given in terms of coordinates
by

(σ , f ) · (σ ′, f ′) = (σ ′ ◦σ , f ′′),
where f ′′ is the quadratic form defined by

f ′′(z) = f (z)+ f ′(σ(z)).

If Equation (32) is satisfied, the right-hand side will be symmetric in z1 and z2, which
holds if and only if σ is symmetric. Thus, the projection (σ , f ) 7→ σ defines a homo-
morphism Ps(X )→ Sp(X ). If k is not of characteristic 2, Equation (32) produces for all
σ ∈ Sp(X ) a unique quadratic form f on X ×X ∗. In this case the projection is thus an
isomorphism, and hence we may, as it suits us, identify these groups with each other. On



ON CERTAIN GROUPS OF UNITARY OPERATORS 35

the contrary, when k is of characteristic 2, we see by taking z1 = z2 in Equation (32) that σ
leaves invariant the nondegenerate quadratic form B(z, z) on X ×X ∗. Hence, (σ , f ) 7→ σ
is a homomorphism from Ps(X ) to the orthogonal group O(B) for this quadratic form.
One may verify that it is surjective and that its kernel is formed by the elements (1, f ) of
Ps(X ) where f is additive.

Remark 3.1.1. We may depart from a physical vector space Xk over k and consider the
extension X of Xk to an affine space over k, in which context these same definitions may
be given. The resulting groups Sp(X ), A(X ), and Ps(X ) are then algebraic groups defined
over k, and Sp(Xk ), A(Xk ), and Ps(Xk ) are the groups of rational points Sp(X )k , A(X )k ,
and Ps(X )k formed by those elements of Sp(X ), A(X ), and Ps(X ). We note that Ps(X )
is of dimension m(2m+ 1) if m = dim(X ), independent of the characteristic of k. One
can say (in a sense that schemes make precise) that in characteristic 2 the group Ps(X ) is
a degeneration from characteristic 0 of the symplectic group. It is well-known that the
symplectic group in any characteristic is connected, simply connected, and semisimple.
This is therefore also true for Ps(X ) when k is not of characteristic 2, but it fails when k
is of characteristic 2.

32.3.2. The standard pseudosymplectic representation and its automorphisms: local
case. We have results for Ps(X ) entirely analogous to those of Section 1.3 for B0(G),
which we rapidly lay out. We first define analogues of the four maps d , d ′, t , and t ′.

• There is a monomorphism d : Aut(X )→ Ps(X ) given by

d (α) =
��

α 0
0 α∗−1

�

, 0
�

.

• There is a function d ′ : Is(X ∗,X ) → Ps(X ), where the set Is(X ∗,X ) consists of
isomorphisms from X ∗ to X , given by

d ′(γ ) =
��

0 −γ ∗−1

γ 0

�

, [x,−x∗]
�

.

• There is a monomorphism t : Q(X ) → Ps(X ) from the additive group of qua-
dratic forms on X given by

t ( f ) =
��

1 ρ
0 1

�

, f
�

,

where ρ : X →X ∗ is the symmetric morphism associated to f .
• Similarly, there is a function t ′ : Q(X )→ Ps(X ) given by

t ′( f ′) =
��

1 0
ρ′ 0

�

, f ′
�

,

where ρ′ : X ∗→X is the symmetric morphism associated to f ′.

Between elements, we have relations analogous to those of Section 1.3:

d (α)−1 t ( f )d (α) = t ( f α), d ′(α ◦ γ ) = d ′(γ )d (α),

d (α)t ′( f ′)d (α)−1 = t ′( f ′α∗), d ′(γ ◦α∗−1) = d (α)d ′(γ ),

for α ∈Aut(X ), γ ∈ Is(X ∗,X ), and where f α is defined by f α(x) = f (α−1(x)).
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Consider the matrix expansion of an element s = (σ , f ) into σ =
�

α β
γ δ

�

. We will

use Ω(X ) to denote the set of those s ∈ Ps(X ) for which the component γ : X ∗→X is an
isomorphism. Appropriately modifying the proof of Proposition 1.5.1, one sees that all
s ∈Ω(X ) can be placed uniquely in the form

(33) s = t ( f1)d
′(γ )t ( f2),

for f1, f2 ∈Q(X ) and γ ∈ Is(X ∗,X ) is that associated to the matrix expansion of s .
We may draw from this some basic results about the schematic structures of Ps(X )

and Ω(X ). By definition, Ω(X ) is the complement of the Zariski closed subset of Ps(X )
determined by detγ (s) = 0, and hence is itself a Zariski open. Equation (33) furthermore
determines a k–isomorphism of algebraic varieties

Q(X )× Is(X ,X ∗)×Q(X )→Ω(X ).

Since Is(X ∗,X ) is nonempty, Ω(X ) is nonempty.
It follows thatΩ(X ) is the union of varieties of codimension 0 or 1 in Ps(X ). Whenever

the characteristic of k is not 2, it is in fact the union of varieties of codimension 1, hence
Ps(X ) is isomorphic to the connected group Sp(X ) andΩ(X ) is nonempty. If on the other
hand the characteristic of k is 2, one then knows that the orthogonal group O(B) has
two connected components, O+(B) and O−(B), formed respectively from the elements
σ ∈O(B) for which tr(γ ∗ ◦β) has the value 0 or 1. Denoting by Ps+(X ) and Ps−(X ) their
respective inverse images in Ps(X ), one may verify that Ω(X ) is contained in Ps+(X ) or
Ps−(X ) depending on whether the dimension of m is even or odd.31

33. We now specialize further to the case where k is a local field. As in Section 2.1, we
will suppose that we have fixed a nontrivial character χ of k, which we use to identify the
linear dual of a vector space X with its Pontryagin dual. The topology on k permits us
to consider the groups A(X ) and Ps(X ) as locally compact topological groups, and hence
we may tie the functions defined above directly to those developed in Section 1.3. The
functions

A(X )→A(X ), µ : Ps(X )→ B0(X )

(w, t ) 7→ (w,χ (t )) (σ , f ) 7→ (σ ,χ ◦ f )

are both homomorphisms. The kernel of µ is formed of those elements of the form
(1, f ) ∈ Ps(X ), where f ∈ Q(X ) satisfies χ ◦ f = 1. As the symmetric morphism from
X →X ∗ associated to χ ◦ f is the same as that associated to f , we find that f is additive.

When k is not of characteristic 2, there are no nontrivial additive forms, from which
we conclude that µ is injective. In this case, this permits us to identify Ps(X ) with its
image in B0(X ), and then the functions d , d ′, t , and t ′ defined in this section become the
restrictions of d0, d ′0, t0, and t ′0 of Section 1.1. When k is of characteristic 2, this is no
longer the case, and one can say only that the functions from this section are “compatible”,
in the evident sense, with those of Section 1.1.

34. In Theorem 1.6.3 we gave a description of B0(G) in terms of inner automorphisms, and
to do so we defined a group B0(G) of automorphisms of L2(G), as well as the canonical

31More precisely, take s = (σ , f ) ∈ Ps(X ), let σ be as above, and let r be the rank of γ . We then see that
r ≡ tr(βγ ∗) (mod 2), which gives tr(βγ ∗)≡ m (mod 2) for r = m, which implies that γ is invertible.
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projection π0 : B0(G)→ B0(G). Taking G =X to be our finite dimensional vector space
over our local field k, we define Mp(X ), the metaplectic group of X , to be the subgroup of
Ps(X )×B0(G) formed from those elements S= (s , s) such thatµ(s) =π0(s). This group is
equipped with a projection π : Mp(X )→ Ps(X ), π(s , s) = s . Because π0 is surjective, so is
π, and its kernel is given by {e}×T, where T is the group of operators Φ 7→ tΦ for t ∈ T .
To simplify bookkeeping, we freely identify this kernel with T or with T . It is contained
in the center of Mp(X ). The other projection, (s , s) 7→ s, determines a representation of
Mp(X ) in the group of automorphisms of L2(X ). For S= (s , s) ∈Mp(X ) and Φ ∈ L2(X ),
we will often write SΦ to mean the action through this projection: sΦ.

Coupling the lifting functions of Section 1.8 to the functions defined above yields more
general lifting functions from Aut(X ), Is(X ∗,X ), and Q(X ) to Mp(X ):32

d(α) = (d (α),d0(α)) (α ∈Aut(X ))

d′(γ ) = (d ′(γ ),d′0(γ )) (γ ∈ Is(X ∗,X ))

t( f ) = (t ( f ), t0(χ ◦ f )) ( f ∈Q(X )).

In the case where f ′ is an additive quadratic form33 on X ∗, we will define also a lift t′( f ′)
of t ′( f ′) to Mp(X ). The additivity of f ′ entails that χ ◦ f ′ is a character of X ∗, and there
is thus an element a ∈X such that

χ ( f ′(x∗)) = χ ([a, x∗]).

We then define t′0( f
′) to be the operator whose action on Φ ∈ L2(X ) is

t′0( f
′)Φ(x) = Φ(x − a).

One checks immediately that t ′0( f
′) =π0(t

′
0( f
′)), and hence we set

t′( f ′) = (t ′( f ′), t′0( f
′)).

The relations among d0, t0, and d′0 entail entirely analogous relations among d, t, and d′,
which we decline to write out.

As in Section 1.8, we define also a section r : Mp(X )→Ω(X ) by expanding s ∈Mp(X )
using Equation (33) and then setting

r(s) = t(r1)d
′(γ )t( f2),

or, equivalently, by writing

(34) r(s) = (s ,r0(µ(s))),

for r0 as in Section 1.8 and µ as above. It should be noted that because k is a local field,
Ω(X ) is an open subset of Ps(X ), complementary to detγ = 0, and is thus locally compact,
and again Equation (33) determines an isomorphism of k–analytic varieties

Q(X )× Is(X ∗,X )×Q(X )→Ω(X ).

If k is not of characteristic 2, this is thus a closed k–analytic subset of codimension 1
of Ps(X ), and hence Ω(X ) generates Ps(X ). If k is of characteristic 2, Ω(X ) is contained

32In the definition of d0 and of d′0, we operated under particular conventions about Haar measures on X
and X ∗ and about the definitions of |α| and |γ |. We are free to abandon these conventions, which would only
modify d0 and d′0 by positive real factors, which would leave them unitary.

33In this case and only in this case.
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in Ps+(X ) or Ps−(X ) depending on the parity of m, and in either case it generates the
relevant parent group.

Remark 3.2.1. We have already remarked thatµ is injective when k is not of characteristic
2, which thus permits us to identify Ps(X ) with its image in B0(X ). For the same reason,
we may (at least from the view of points) identify Mp(X ) with its projection to B0(X ).

35. We may also consider Mp(X ) as a topological group by using the subgroup relation
Mp(X ) ≤ Ps(X )× B0(X ) and inheriting from the topology on Ps(X ) introduced above
and the topology on B0(X ) in turn inherited from the “strong” topology of the automor-
phism group of L2(X ).34 This topology makes the projection π : Mp(X )→ Ps(X ) into a
continuous map and the representation (s , s) 7→ s of Mp(X ) in the automorphism group
of L2(X ) a continuous representation.35

The functions d0, d′0, and t0 are continuous functions from Aut(X ), Is(X ∗,X ), and
Q(X ) respectively to the group of automorphisms of L2(X ) with the strong topology. It
then follows that d, d′, and t are homeomorphisms from these same sets to their images
in Mp(X ). We can also conclude that r is a homeomorphism from Ω(X ) to its image in
Mp(X ), and hence that the function

(35) (s ,τ) 7→ τr(s) = (s ,τr0(µ(s)))

determines a homeomorphismΩ(X )×T →π−1(Ω(X )). As this last set is open in Mp(X ),
we learn that Mp(X ) is locally compact and that π : Mp(X )→ Ps(X ) is an open map.

For S ∈Mp(X ), it follows from Section 1.7 that the automorphism Φ 7→ SΦ of L2(X )
induces an automorphism on S (X ), which we now seek to show to be continuous. For
this, it suffices to show that

Ω(X )×S (X )→S (X )
(s ,Φ) 7→ r(s)Φ

is continuous. Note that Equation (33) entails a homeomorphism between Ω(X ) and
Q(X )× Is(X ∗,X )×Q(X ), and that for any γ0 ∈ Is(X ∗,X ) the map α 7→ γ0α is a homeo-
morphism from Aut(X )→ Is(X ∗,X ). It then remains to demonstrate the continuity of
the function

Q(X )×Aut(X )×Q(X )×S (X )→S (X )
( f1,α, f2,Φ) 7→ t0(χ ◦ f1)d

′
0(γ0)d0(α)t0(χ ◦ f2)Φ

which reduces to the continuity of the individual factors

Q(X )×S (X )→S (X ) Aut(X )×S (X )→S (X )
( f ,Φ) 7→ t0(χ ◦ f )Φ, (α,Φ) 7→ d0(α)Φ.

These are immediate.

34This is defined by the fundamental system of neighborhoods of 1 formed by the sets

{s | ‖sΦi −Φi‖ ≤ 1,1≤ i ≤ n},

where Φ1, . . . , Φn are any finite collection of elements from L2(X ).
35This can be stated as (S,Φ) 7→ SΦ being a continuous function of Mp(X )× L2(X ) to L2(X ).
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Remark 3.2.2. When X decomposes as a direct sum X1⊕X2, the map Mp(X1)×Mp(X2)→
Mp(X ) observed in Section 1.11 is continuous. This same map also induces isomorphisms
between Mp(X1) and its image in Mp(X ), and similarly for Mp(X2). We will freely make
use of these identifications.

36.Taking k to be a field of discrete valuation and choosing for Γ a lattice L≤ X , we can
also produce an analogue of the lift rΓ defined in Section 1.10. In the notation of Section 1,
we substitute X , X ∗, L, and L∗ in place of G, G∗, Γ , and Γ∗ respectively.36 Just as we have
substituted Ps(X ) in place of B0(X ), we replace B0(X , L) (as laid out in Section 1.10) by the
subgroup Ps(X , L)≤ Ps(X ) formed by those elements s = (σ , f ) such that χ ◦ f |L×L∗

= 1
and σ |L×L∗

restricts to an automorphism. This is an open subgroup of Ps(X ), compact
whenever k is not of characteristic 2, and the homomorphismµ : Ps(X )→ B0(X ) restricts
to a map µ : Ps(X , L)→ B0(X , L).

Considering H (X , L) as a Hilbert space, Equation (25) defines a representation

rL : B0(X , L)→Aut H (X , L),

hence a representation rL ◦µ of Ps(X , L) in this same automorphism group. By transport
of structure along the isomorphism Z−1 : H (X , L)→ L2(X ), we produce representations
of B0(X , L) and of Ps(X , L) in Aut L2(X ), also written rL and rL ◦µ. Equation (25) shows
immediately that the representation rL ◦µ of Ps(X , L) is continuous when the target is
endowed with the strong topology. Let r′L be the representation

r′L : Ps(X , L)→Mp(X )

s 7→ (s ,rL(µ(s))).

This map r′L determines an isomorphism of Ps(X , L) with its image in Mp(X ), such that
(s ,τ) 7→ τr′L(s) is an isomorphism of Ps(X , L)× T onto an open subgroup of Mp(X ).
Moreover, it follows from Section 1.11 that for any Φ ∈S (X ) the function

Ps(X , L)→S (X )
s 7→ r′L(s)Φ

is locally constant.

37.3.3. The standard pseudosymplectic representation and its automorphisms: adelic
case. We now extend our analysis of the pseudosymplectic and metaplectic groups into
the adelic case. We first recall the hypotheses and notation of Section 2.3, extending them
as needed to other algebraic groups defined over the base field k.

• We will write Ps(X )v and Ps(X )v for the groups formed by the elements of the
algebraic group Ps(X ) which are rational over k and over kv respectively, and we
will also write Ps(X )A for the adelic group attached to Ps(X ).
• We will write X ◦ for a chosen basis of X and (X ∗)◦ for a chosen basis of X ∗. There

is no harm in supposing that the latter is the dual basis of the former.

36As a reminder, L∗ is the lattice in X ∗ which corresponds to L by duality, i.e., the set of those x∗ ∈X ∗ such
that χ ([x, x∗]) = 1 for any x ∈ L.
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• For kv a completion of k with discrete valuation, we will write Ps(X )◦v ≤ Ps(X )v
for the subgroup of those elements (σ , f ) such that σ induces an automorphism
of the lattice X ◦v × (X ∗)◦v and f induces on that same lattice an integer-valued
function (i.e., valued in ov ).
• We will write Ps(X )A for the union (i.e., the inductive limit) of the groups

Ps(X )◦S =
∏

v∈S

Ps(X )v ×
∏

x 6∈S

Ps(X )◦v ,

where S is the collection of all finite sets of completions of k which are required
to contain the set S∞ of those completions which are isomorphic to R or to C.

Just as in the local case of Section 3.2, there are homomorphisms

A(X )A→A(XA) µA : Ps(X )A→ B0(XA)

(w, t ) 7→ (w,χ (t )), (σ , f ) 7→ (σ ,χ ◦ f ).

The map µA is injective when k is not of characteristic 2. Using this, we then define the
metaplectic group to be the subgroup specified by

Mp(X )A= {(s , s) ∈ Ps(X )A×B0(XA) |µA(s) =π0(s)} .

Giving B0(XA) the strong topology and on Ps(X )A the usual adelic topology, we endow
the metaplectic group with the subspace topology. We will again denote the projection by
π : Mp(X )A→ Ps(X )A, which is again surjective, and its kernel is again the group {e}×T,
which will denote more simply as T.

38. We will now describe a continuous lift of an open set of Ps(X )A to Mp(X )A. As be-
fore, this will also permit us to conclude that Mp(X )A is locally compact, that it is locally
homeomorphic to Ps(X )A×T , and that π : Mp(X )A→ Ps(X )A is an open map.

To do this, for each v we setΩv =Ω(X )v , which is a nonempty open set in Ps(X )v . For
each finite set S of completions of k which contain S∞, we consider the relevant factor
of the adelic product:

ΩS =
∏

v∈S

Ωv ×
∏

v 6∈S

Ps(X )◦v .

This yields an open subset of Ps(X )◦S , hence also an open set of Ps(X )A.
We use Section 3.2 to avail ourselves of the following lifts:

• On each Ωv , there is a lift rv : Ωv →Mp(X )v .
• For each v such that kv is of discrete valuation and for each lattice L in Xv , there

is a lift r′L : Ps(Xv , L)→Mp(Xv ).

We would like to assemble these local lifts into an adelic object. As was shown in Sec-
tion 1.11, the image of Ps(Xv , L) through r′L yields a subgroup of Mp(Xv ) which leaves
invariant the characteristic function of the lattice L. For almost all v, setting L = X ◦v
shows Ps(X )◦v to be a subgroup of Ps(Xv , L). We denote by S0 the set of those comple-
tions of k for which this does not hold, and note that it is finite and contains S∞. For
v 6∈ S0, we denote by r′v the induced lift r′L on Ps(X )◦v for L=X ◦v .

On the other hand, (Φv ) be a sequence of functions belonging to L2(Xv ), and suppose
that for almost all v, Φv is the characteristic function of X ◦v , so that Φ= (Φv ) determines
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a function on XA by the formula

(36) Φ(x) =
∏

v
Φv (xv ).

Select a measure on XA according to the theory laid out in Section 2.3, so that Φ then
belongs to L2(XA). The linear span of functions of this form forms an everywhere dense
set in L2(XA); we then set for all S ⊃ S0 and all s = (sv ) ∈ΩS ,

rS (s)Φ(x) =
∏

v∈S

rv (sv )Φv (xv )×
∏

v 6∈S

r′v (sv )Φv (xv ).

As almost all the factors of the second product are equal to characteristic functions of the
lattices X ◦v , rS (s)Φ also lies in this everywhere dense set. It then follows from Section 1.11
that the function rS (s) defined above for the functions of the form Equation (36) extends
to an automorphism of L2(XA), and hence we have defined a continuous lift rS of ΩS to
Mp(X )A.

39.We are now going to show the action

Mp(XA)×S (XA)→S (XA)

(S,Φ) 7→ SΦ

is continuous. As in Section 3.2, it suffices to show that the following assignment is con-
tinuous:

ΩS ×S (XA)→S (XA)

(s ,Φ) 7→ rS (s)Φ

Collecting definitions from Section 1.7 and results from Section 2.3, we see thatS (XA)
is composed of finite linear combinations of functions of the form

(37) Φ∞(x∞)
∏

v 6∈S∞

Φv (xv ),

where Φ∞ ∈ S (X∞) belongs to the Schwartz space of X∞ =
∏

v∈S∞
Xv ,37 where Φv

belongs to S (Xv ) for all finite places v, and where for almost all v the component Φv is
equal to the characteristic function of X ◦v .

Take Φ to be a function of the form of Equation (37), and take s ∈ ΩS . Because it
preserves the characteristic function of the lattice, r′v leaves Φv invariant for almost all v.
For all v ∈ S \ S∞, the function

Ps(X )◦v →S (Xv )

sv 7→ rv (sv )Φv

is continuous—indeed, even locally constant. We may combine the local results of Sec-
tion 3.2 as applied to the product X∞ via the results of Section 1.11 so show that for
v ∈ S∞ the elements sv (resp., the elements rv (sv )) determine a “tensor product” element
s∞ ∈ Ps(X∞) (resp., an element r∞(s∞) ∈Mp(X∞)) such that

s∞ 7→ r∞(s∞)Φ∞

37At these real places v ∈ S∞, Xv is as usual a finite dimensional real vector space.



42 ANDRÉ WEIL

is a continuous assignment. It follows that

S (X∞)→
∏

v
Ωv

s∞ 7→ r∞(s∞)Φ∞
is a continuous function extended to v ∈ S∞. Taking all these results together, we con-
clude that

ΩS →S (XA)

s 7→ rS (s)Φ,

is a continuous assignment, hence that for any fixedΦ ∈S (XA), the following assignment
is also continuous:

Mp(X )A→S (XA)

S 7→ SΦ.

We complete the proof of continuity of (s ,Φ) 7→ rS (s)Φ as follows. Take K to be a
compact subset of ΩS , and take U to be a convex neighborhood of 0 in S (XA). The set
U ′ given by

U ′ = {Φ ∈S (XA) | for all s ∈K , rS (s)Φ ∈U }
is then a neighborhood of 0 in S (XA). As U ′ is convex, we may use the definition of
the topology on S (XA) as the inductive limit of those on S (H , H ′) to see that this is
equivalent to showing that, for each choice of H and H ′, U ′∩S (H , H ′) is a neighborhood
of 0 inS (H , H ′). However, for a given K , H , and H ′, there is a finite set S ′ of completions
of k which have the following properties:

(1) For all s = (sv ) ∈K and all v 6∈ S ′, we have sv ∈ Ps(X )◦v .
(2) Every function Φ ∈S (H , H ′)when expressed a linear combination of functions

of the form of Equation (37) has, for all v 6∈ S ′, Φv the characteristic function of
X ◦v .

From here, we may draw directly from Section 3.2 to conclude the proof.

40. 3.4. Theta series and the metaplectic group. We now apply the results of Section 1.9
and Section 1.10 to our case of interest: G = XA, G∗ = X ∗A, Γ = Xk , and Γ∗ = X ∗k . It
follows from those results that the homomorphism µA : Ps(X )A→ B0(XA) carries Ps(X )k
to the subgroup of B0(XA,Xk )≤ B0(XA), in the language of Section 1.10. Using the lifting
rΓ from that same Section, we can thus define a lift of Ps(X )k → B0(G) and hence a lift of
rk : Ps(X )k →Mp(X )A. We will now make this lift explicit.

It will suffice to make rk (s)Φ explicit for Φ ∈S (XA) and s ∈ Ps(X )k . We will need the
following Θ-function:

Θ(x, x∗) =
∑

ξ∈Xk

Φ(x + ξ )χ ([ξ , x∗]) (x ∈XA, x∗ ∈X ∗A).

As noted in Section 1.9, because we have taken Φ ∈ S (XA), the series on the right-hand
side is uniformly convergent on all compact subsets. As a particular case of Equation (23),
we therefore obtain

Φ(x) =
∫

X ∗A/X ∗k

Θ(x, x∗)d ẋ∗,
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where d ẋ∗ is the measure on the compact group X ∗A/X ∗k which takes the value 1 on the
entire group.

Let s = (σ , f ) be an element of Ps(X )k with matrix expansion σ =
�

α β
γ δ

�

. The

function Φ′ = rk (s)Φ is then defined for z = (x, x∗) ∈XA×X ′A by the formulas

Θ′(z) =Θ(σ(z))χ ( f (z))

Φ′(x) =
∫

Θ′(x, x∗)d ẋ∗,

or alternatively,

Φ′(x) =
∫

X ∗A/X ∗k

Θ(α(x)+ γ (x∗),β(x)+δ(x∗))χ ( f (x, x∗))d ẋ∗.

Let N ≤X ∗ be the kernel of γ , and set Y =X ∗/N . We may identify NA/Nk with a closed
subgroup of X ∗A/X ∗k and hence YA/Yk with the quotient of X ∗A/X ∗k by NA/Nk . Writing
x̄∗ for the image of ẋ∗ in this last quotient, we can thus write

Θ′(x) =
∫

Ψ(x, x̄∗)d x̄∗,

where Ψ is given by the formula

Ψ(x, x̄∗) =
∫

NA/Nk

∑

ξ∈Xk

Φ(α(x)+ γ (x∗)+ ξ )χ ([ξ ,β(x)+δ(x∗+ n)]+ f (x, x∗+ n))d ṅ.

Here, ṅ denotes the image of n ∈ NA in NA/Nk and d ṅ denotes the measure on NA/Nk
for which the total volume is 1. Similarly, d x̄∗ is the measure on YA/Yk for which YA/Yk
has total volume 1.

Using Equation (32), we then have

f (x, x∗1 + x∗2 ) = f (0, x∗1 )+ f (x, x∗2 )+ [γ (x
∗
1 ),β(x)+δ(x

∗
2 )],

and for n ∈N we thus conclude

f (x, x∗+ n) = f (0, n)+ f (x, x∗).

In particular, it follows that f (0, n) is an additive form on N . As f is rational on k, we
can define a character ϕ on X ∗A/X ∗k simply by setting ϕ(ṅ) = χ ( f (0, n)) on the generating
set n ∈NA.38

With this established, we may rewrite the expression for Ψ given above as

Ψ(x, x̄∗) =
∫

∑

ξ

Φ(α(x)+γ (x∗)+ξ )χ ([ξ ,β(x)+δ(x∗)]+ f (x, x∗))χ ([δ∗(ξ )+ξ0, n])d ṅ,

38Equivalently, ϕ is a character of X ∗A which takes the value 1 on X ∗k and which coincides with χ ( f (0, n))
on NA. This may be relaxed even further to the claim that there exists ξ0 ∈Xk such that one has

χ ( f (0, n)) = χ ([ξ0, n])

for all n ∈NA. Of course, when k is not of characteristic 2, the additive form f (0, n) on N reduces to 0, so that
one can take ξ0 = 0.
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or more simply

Ψ(x, x̄∗) =
∑

ξ∈L

Φ(α(x)+ γ (x∗)+ ξ )χ ([ξ ,β(x)+δ(x∗)]+ f (x, x∗)),

where

L= {ξ ∈Xk | δ
∗(ξ )+ ξ0 ∈N∗}

Note N∗ = γ
∗(X ∗), so that L may also be expressed as the set of those ξ ∈ Xk such that

we may find a solution ξ ∗ ∈X ∗k to

δ∗(ξ )+ ξ0 = γ
∗(ξ ∗).

As we have

σ−1 =
�

δ∗ −β∗
−γ ∗ α∗

�

,

this is equivalent to saying that σ−1(ξ ,ξ ∗) is of the form (−ξ0,ξ ∗1 ) for ξ ∗1 ∈ Xk , which
shows L to be the image of X ∗k under the function

X ∗k →Xk

ξ ∗1 7→ −α(ξ0)+ γ (ξ
∗

1 ).

Using Equation (32), we can thus write

Ψ(x, x̄∗) =
∑

ξ1∈X ∗k /Nk

Φ(α(x − ξ0)+ γ (x
∗+ ξ ∗1 ))χ ( f (x − ξ0, x∗+ ξ ∗1 )− [ξ0, x∗]).

We observe that the function

χ ( f (x, x∗)− [ξ0, x∗])

does not change if we replace x∗ by x∗+n for n ∈NA. Taking x ∈XA and y the image of
x∗ in YA=X ∗A/NA, we can thus define a function Ω on XA×YA by the formula

Ω(x, y) = Φ(α(x)+ γ (x∗))χ ( f (x, x∗)− [ξ0, x∗]).

Using the same notation, this gives

Ψ(x, x̄∗) =
∑

η∈Yk

Ω(x − ξ0, y +η)

and hence

Φ′(x) =
∫

YA

Ω(x − ξ0, y)d y,

where d y is the Tamagawa measure on YA (for which YA/Yk has measure 1). As γ ∗ de-
termines an isomorphism from Y → Z = γ (X ∗), we ultimately obtain

(38) rk (s)Φ(x) =
∫

ZA

Φ(α(x − ξ0)+ z)ψ(x − ξ0, z)d z,

where d z is the Tamagawa measure on ZA and ψ is the character of second degree of
XA×ZA defined by

ψ(x,γ (x∗)) = χ ( f (x, x∗)− [ξ0, x∗]) (x ∈XA, x∗ ∈X ∗A).

41.
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Theorem 1.10.2 will now gives us the main result of this memoir. For s ∈ Ps(X )k and
Φ ∈S (XA), this theorem gives39

(39)
∑

ξ∈Xk

Φ(ξ ) =
∑

ξ∈Xk

rk (s)Φ(ξ ),

From there—or, equivalently, using Corollary 1.10.3—we would like to deduce the fol-
lowing:

Théorème 6Theorem 3.4.1. Let Xk be a vector space of finite dimension over k, and let Φ ∈ S (XA).
For S ∈Mp(X )A, let Θ be the function on Mp(X )A defined by

Θ(S) =
∑

ξ∈Xk

SΦ(ξ ).

The function Θ is continuous and invariant under left-translations by elements of the form
rk (s), s ∈ Ps(X )k .

The invariance of Θ is evident from Equation (39), or from Corollary 1.10.3. It does
not follow from those results that Θ is continuous, which we will instead deduce from
the following lemmas.

Lemme 4Lemma 3.4.2. Let (an)n∈N be a sequence of positive real numbers. Then there exists a func-
tion ϕ ∈S (R) such that for every x,40

ϕ(x)≥ inf
n∈N
(an |x|

−n).

Proof. Set f (x) = inf(an |x|−n), take g to be a nonnegative indefinitely differentiable func-
tion on R with support contained in [−1,+1] and with unit volume, and set h = f ∗ g .
We then have

f (x − 1)≥ h(x)≥ f (x + 1), for x ≥+1,

f (x − 1)≤ h(x)≤ f (x + 1), for x ≤−1.

Moreover, for D = d/d x and p > 0, we have D p h = f ∗D p g , from which we immedi-
ately conclude that |xn D p h| is bounded for all n ≥ 0 and all p ≥ 0, hence h belongs to
S (R).

Now take h0 ∈ S (R) to be nonnegative and h0(x)≥ a0 for −2≤ x ≤+2. For any x,
we then conclude:

f (x)≤ h(x − 1)+ h(x + 1)+ h0(x). �

Lemme 5Lemma 3.4.3. Let G be a locally compact abelian group and let C be a compact subset of
S (G). Then there exists Φ0 ∈S (G) such that |Φ(x)| ≤ Φ0(x) for all Φ ∈C and x ∈G.

Proof. Every compact set ofS (G) is contained in someS (H , H ′), re-using the notation
from Section 1.7. It therefore suffices to take G to be an elementary group:

G =Rn ×Zp ×T q × F ,

39When γ : X ∗k →Xk an isomorphism, setting s = d ′(γ ) reduces this to Poisson’s formula.
40This proof was communicated to me by J. Dieudonné.
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for F finite. Let x ∈ G, and let x1, . . . , xn , y1, . . . , yp be its coordinates in Rn ×Zp ≤ G.
We set

r (x) =
n
∑

i=1

x2
i +

p
∑

j=1

y2
j ,

an = sup
x∈G
Φ∈C

|r (x)nΦ(x)|.

Using the definition of S (G), we have an < +∞ for all n. For this sequence (an), use
Lemma 3.4.2 to choose ϕ ∈S (R)with ϕ(x)≥ infn∈N(an |x|−n). The function Φ0 = ϕ ◦ r
then has the desired property. �

Proof of Theorem 3.4.1. Fixing x0 ∈ X on the left and Φ ∈ S (XA) on the right, the func-
tions

S (XA)→C Mp(X )A→S (XA)

Φ 7→ Φ(x0) S 7→ SΦ

are each continuous. From this, it follows that the terms in the series which defines Θ are
each continuous functions on Mp(X )A.

Take C to be a compact set of Mp(X )A. For Φ ∈ S (XA), the image CΦ is a compact
subset ofS (XA), and Lemma 3.4.3 shows that there existsΦ0 ∈S (XA)with |SΦ| ≤ Φ0 for
any S ∈ C . The series which defines F (S) is thus dominated term-by-term by the series
∑

Φ0(ξ ). It follows that this sum is convergent. �

Remark 3.4.4. The definition of modular functions using theta-series is naturally a par-
ticular case of the method of definition of automorphic functions which is contained in
Theorem 3.4.1.

IV. Réduction du
groupe métaplectique 4. THE METAPLECTIC GROUP AS A DOUBLE COVER

42.
Just as in the local case, the adelic metaplectic group is a central extension of the pseu-

dosymplectic group by the group T . In this section we show that (in general) this exten-
sion is not trivial, but it does always reduce to a nontrivial extension by the group with
two elements {±1}. Accordingly, this core of the metaplectic group can be viewed as a
double cover of the pseudosymplectic group.

4.1. A group-theoretic lemma. To get off the ground, we will need a lemma from pure
group theory, unrelated to our study of metaplectic groups.

Lemme 6 Lemma 4.1.1. Let G be a group, and let U be a subset of G such that for all a, b , c ∈G, we
have

U−1 ∩U a ∩U b ∩U c 6= ;.

Then G is generated by U . Moreover, let R be the set of those elements (u, u ′, u ′′) ∈U×3 such
that u ′′ = u u ′. The group G can then be identified with the group with generators U and
relations u ′′ = u u ′ for (u, u ′, u ′′) ∈ R.
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Proof. Let x ∈ G and let v ∈ U−1 ∩U x−1. One then has x = v−1(v x), v−1 ∈ U , and
v x ∈U , which justifies the first assertion.

Let G be the group explicitly presented as

G = 〈ū | u ∈U 〉
��

ū ′′ = ū ū ′ | (u, u ′, u ′′) ∈ R
�

.

The assignment ū 7→ u determines a homomorphism h : G → G, and we would like to
show that its kernel N is trivial.

We will first show that if an element of N is of the form ū−1
0 ū1 ū2 · · · ūn , then it is ē .

For n = 1 this is trivial, and for n = 2 this follows from the definition of G, therefore we
may proceed by induction. Fixing such an element of N , let v be an element of the set

U−1 ∩U u−1
0 ∩U u−1

1 ∩U u−1
2 u−1

1 .

The elements u = v−1, u ′ = v u0, u ′′ = v u1, and u ′′′ = v u1u2 thus belong to U , hence
we have the relations

u0 = u u ′, u1 = u u ′′, u ′′u2 = u ′′′, u ′ = u ′′′u3 · · · un ,

which, using the definition of G and the inductive hypothesis, entails

ū0 = ū ū ′, ū1 = ū ū ′′, ū ′′ ū2 = ū ′′′, ū ′ = ū ′′′ ū3 · · · ūn ,

hence ū0 = ū1 · · · ūn .
We will now show that elements of N of the form ū1 · · · ūn (where n ≥ 1) must equal

ē . Our goal is to reduce to the previous case, by using the form ū−1 ū ū1 · · · ūn . Set V =
U∩U−1, and let S be the set of those elements (v, v ′, v ′′) ∈V×V×V such that v ′′ = vv ′.
We extend the function U → G over V by setting v̄ = ū−1 for v = u−1. Using the first
case, we see v̄ ′′ = v̄ v̄ ′ for (v, v ′, v ′′) ∈ S—but then the reasoning made above for U and R
applies to V and S, from which we conclude that all elements of N of the form v̄1 · · · v̄n
are equal to ē .

As all elements of G can be put in this form, this finishes the proof. �

Setting G to be an analytic group over a local field k and U the complement of a
union of analytic subvarieties of G of codimension ≥ 1, the hypotheses of Lemma 4.1.1
are satisfied. In particular, we may follow Section 3.2 and either take k to be a local field
of characteristic other than 2, X a finite dimensional vector space over k, G = Ps(X ),
U =Ω(X ); or k a local field of characteristic 2, X a vector space of even dimension over
k, G = Ps+(X ), and U =Ω(X ).

43.4.2. Reduction to the two-sheeted cover. Let k be a local field of characteristic not
equal to 2, and let X be a finite dimensional vector over k. In this case, we may identify
Ps(X )with the symplectic group Sp(X ). Recall that Mp(X ) is said to be a trivial extension
of Sp(X ) by T if there is a decomposition

Mp(X ) = Sp1(X )×T,

where Sp1(X ) is the subgroup of Mp(X ) on which π|Sp1(X )
: Sp1(X )→ Sp(X ) is an isomor-

phism. Just as in classical group theory, producing such a decomposition is equivalent to
defining a “section”, i.e., a homomorphism Mp(X )→ T which reduces to the identity on
T. Similarly, producing such a decomposition as topological groups is equivalent to pro-
ducing a continuous such section. Denoting the isomorphism (e , t ) 7→ t as θ : T→ T , the
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production of a (continuous) section is equivalent to producing a (continuous) character
of Mp(X ) which coincides with θ on T.

More generally, a character41 ϕ of Mp(X )which coincides with θn on T for some n > 0
yields a decomposition

Mp(X ) =N ·T,

where N is the kernel ofϕ. The intersection N∩T is the subgroup Tn of order n in T, and
π therefore induces a homomorphism from N → Sp(X )with kernel Tn . Moreover, ifϕ is
continuous then N is closed in Mp(X ) andπ induces on N an open homomorphism from
N to Sp(X ) of kernel Tn . This shows π to be a local isomorphism, so that N becomes an
n–sheeted cover of Sp(X ).

We will now apply our theory of the metaplectic group to construct such a character
ϕ. Following Lemma 4.1.1, if Sp(X ) is generated byΩ(X ), then the character ϕ is entirely
determined by the values ofψ= ϕ◦r onΩ(X ). Moreover, we deduce from Theorem 1.8.6
that if s ′′ = s s ′ for s , s ′, s ′′ ∈Ω(X ), we have

r(s)r(s ′) = γ ( f0)r(s
′′),

where f0 is the quadratic form on X associated to the morphism

γ (s)−1γ (s ′′)γ (s ′)−1 : X →X ∗.

For ψ is as above, it follows that

(40) ψ(s ′′) = γ ( f0)
−nψ(s)ψ(s ′).

Conversely, one concludes from Lemma 4.1.1 that ifψ : Ω(X )→ T is a function satisfying
Equation (40), there is a unique character ϕ of Mp(X )which satisfies ϕ ◦r=ψ and which
coincides with θn on T. Moreover, ϕ is continuous when ψ is continuous.

Now we consider specific cases of k, first taking k =C. Following Section 2.2, we have
γ ( f ) = 1 for all nondegenerate quadratic forms f on X . We thus satisfy Equation (40) by
taking n = 1 and ψ= 1, and hence there is a unique character of Mp(X ) which takes the
value 1 on r(Ω(X )) and which coincides with θ on T. We denote this character by ϕ1 and
its kernel by Sp1(X ). Our discussion above gives Mp(X ) = Sp1(X )×T, where Sp1(X ) is a
closed subgroup of Mp(X ), isomorphic to Sp(X ), and generated by r(Ω(X )).

For k 6= C, we will suppose first that −1 is a square in k. Applying the results of
Section 2.1, for all nondegenerate quadratic forms f on X we have γ ( f ) = ±1. We thus
satisfy Equation (40) by taking n = 2 and ψ = 1. We denote by ϕ2 the corresponding
character of Mp(X ) and by Sp2(X ) its kernel, which is a closed subgroup of Mp(X ) and is
a two-sheeted cover of Sp(X ).

Now suppose that −1 is not a square in k. Choosing a basis of X over k, for all s ∈
Ω(X ) we denote by D(s) the determinant of γ (s) in terms of this basis and its dual. By
definition of Ω(X ), we have D(s) 6= 0 for all s ∈Ω(X ). Equation (28) thus shows that we
satisfy Equation (40) by taking n = 2 and

ψ(s) =
�D(s)
−1

�

γ (q1)
2m

41Perhaps discontinuous.
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for s ∈ Ω(X ), where m denotes the dimension of X and q1 denotes the form q1(x) = x2

on k.42 As above, we denote by ϕ2 the corresponding character on Mp(X ) and by Sp2(X )
its kernel, and it has the same properties as above.

Let us now suppose that k is a local field of characteristic 2. In this case, we will denote
by Mp+(X ) the inverse image of Ps+(X ) in Mp(X ), which is an open subgroup of index 2.
How we proceed from here depends on the dimension of X .

• Taking X to be of even dimension, Lemma 4.1.1 applies to Ps+(X ) and Ω(X ),
and Section 2.1 shows γ ( f ) = ±1 for all nondegenerate forms f on X . In Equa-
tion (40), we can thus take n = 2 and ψ = 1, which defines a character ϕ2 of
Mp+(X ) which coincides with θ2 on T. Its kernel Ps+2 (X ) is a closed subgroup of
Mp+(X ) and a two-sheeted cover of Ps+(X ).
• If X is of odd dimension, we can apply the preceding to the space X ′ = X ⊕

k, which is of even dimension. The character ϕ′2 of Mp+(X ′) defined as above
induces on Mp+(X ) ≤ Mp+(X ′) (cf. Section 3.2) an analogous character ϕ2, and
we will again denote its kernel by Ps+2 (X ).
• Finally, if X is of dimension 1 on k, all elements of Ps+(X ) are of the form

d (α)t ( f ), and denoting the set of those elements of Mp(X ) of the form d(α)t( f )
by Ps+1 (X ), one checks that this gives a closed subgroup of Mp+(X ), isomorphic
to Ps+(X ), and Mp+(X ) = Ps+1 (X )×T.

44.4.3. Nontriviality of the extension. We will now show that the results of Section 4.2
are the best possible, in the following senses:

• If k is not of characteristic 2 (and, in particular, if k = C), then Mp(X ) is not a
trivial extension of Sp(X ).
• If k is of characteristic 2 and if X is not of dimension 1, then Mp+(X ) is not a

trivial extension of Ps+(X ).
• If k is of characteristic 2, if X = X1 ⊕ X2, and if there exists a character ϕ of

Mp(X ) (resp., of Mp+(X )) coinciding with θ on T, then these induce an analogous
character on Mp(X1) (resp., on Mp+(X1)).

It suffices thus to give the proof for X = k2 or X = k, depending on whether the charac-
teristic of k is or is not equal to 2.

For the sake of contradiction, let ϕ be a character of Mp(X ) (resp., of Mp+(X )), con-
tinuous or not, which coincides with θ on T (i.e., n = 1). Note that ϕ restricts to the
constant function 1 on the group of commutators of Mp(X ) (resp., of Mp+(X )). We will
consider the subgroup of Mp(X ) (resp., of Mp+(X )) formed by those elements of the form
d(α)t( f ) with α ∈Aut(X ), f ∈Q(X ). One checks easily that its group of commutators
contains all the elements of the form t( f ), and we thus haveϕ(t( f )) = 1 for any f ∈Q(X ).

For α ∈ Aut(X ) we set λ(α) = ϕ(d(α)), and for γ : X ∗ → X an isomorphism we
set µ(γ ) = ϕ(d′(γ )). We see that λ is a character of Aut(X ), and the relation d′(γα) =
d′(γ )d(α) shows that µ has the semilinearity property

µ(γα) =µ(γ )λ(α).

42The character ψ is continuous—even locally constant—on Ω(X ).
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Let f be a nondegenerate quadratic form over X with associated morphism ρ : X →X ∗.
Equation (9) then gives

d ′(−ρ−1)t ( f )d ′(ρ−1)t ( f ) = t (− f )d ′(−ρ−1)

and the definition of γ ( f ) in Section 1.8 gives

d′(−ρ−1)t( f )d′(ρ−1)t( f ) = γ ( f )t(− f )d′(−ρ−1).

Applying ϕ to both sides gives
µ(ρ−1) = γ ( f ).

Let us apply this to the case where k is not of characteristic 2 and X = k. The form f
associated to ρ is then given by f (x) = ρx2/2, hence we obtain

γ (ρx2/2) =µ(ρ−1) =µ(1)λ(ρ)−1.

By means of Proposition 2.1.2, we conclude that γ ( f ), for a form f of m variables f (x) =
∑

i ai x2
i , depends only on m and on the discriminant

∏

i ai of f , hence γ ( f ) takes the
same value on all forms of 4 variables with discriminant 1. This contradicts Proposi-
tion 2.2.2.

Let us consider the case X = k2 with k of characteristic 2. In this setting, all nondegen-
erate forms over X are equivalent to one of the form f1(x, y) = ax2+xy+b y2 for a choice
of a, b ∈ k. As all these forms are associated to the same morphism, independent of a and
b , the formula γ ( f ) = µ(ρ−1) shows that γ takes the same value for all nondegenerate
quadratic forms on X . Following Proposition 2.1.2, it follows that γ takes the same value
for all nondegenerate quadratic forms of 4 variables, which is again in contradiction with
Proposition 2.2.2 of the same chapter.

It follows that the covers Sp2(X ) and Ps+2 (X ) defined in Section 4.2 are not trivial.

Remark 4.3.1. For k = R, the existence of a nontrivial double cover of the symplectic
group is naturally a consequence of the fact that it is a connected Lie group whose funda-
mental group is Z. The unitary representation of this cover is given by

(S,Φ) 7→ SΦ (S ∈ Sp2(X ),Φ ∈ L2(X )),

which is the representation constructed and studied by D. Shale [Sha62]. For k =C, the
symplectic group is simply connected, and hence one may deduce the triviality of Mp(X )
over Sp(X ). It does not seem that the existence of these covers Sp2(X ) and their unitary
representations (S,Φ) 7→ SΦ were previously known for k of discrete valuation.

45. 4.4. Nontriviality of the extension: adelic case. The results above extend to the adelic
case, but we will not have use for these results, so we limit ourselves to just a summary.

Retaining the notation of Section 3.3, we will complete those results with some re-
marks on those sections. Given a place v, we will denote the canonical projection by

πv : Mp(Xv )→ Ps(Xv ) = Ps(X )v ,

the kernel of πv as Tv , and the character (ev , t ) 7→ t of Tv by θv . For v 6∈ S0, recall that
we previously defined a lift r′v : Ps(X )◦v → Mp(Xv ). Let Mp(X )◦v be the image of Ps(X )◦v
under r′v , which goves a closed subgroup of Mp(Xv ). For all S ⊃ S0, set

M (S) =
∏

v∈S

Mp(Xv )×
∏

v 6∈S

Mp(X )◦v .
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For every element (Sv ) ∈ M (S) there is a unique element S ∈ Mp(X )A such that for all
functions Φ ∈ L2(XA) of the form of Equation (36), one has

(41) SΦ(x) =
∏

v
SvΦv (xv ).

This formula defines an open homomorphism (Sv ) 7→ S from M (S) to the open subgroup

M p(X )◦S =π
−1(Ps(X )◦S )⊆Mp(X )A,

with kernel consisting of elements (tv ∈ Tv ) ∈ M (S) such that for any v 6∈ S, θv (tv ) = 1
holds43 and

∏

v θv (tv ) = 1.
Following Section 1.10, rv coincides with r′v on the setΩ◦v of those elements s ∈ Ps(X )◦v

such that γ (s) induces an isomorphism γ (s) : (X ∗)◦v →X ◦v . Moreover, if pv is the maximal
ideal of ov , then reduction modulo pv determines surjective homomorphisms

X ◦v →Xv , (X ∗)◦v →X
∗
v

over the finite field kv = ov/pv . We conclude that, for almost all v, reduction modulo pv
determines a surjective homomorphism

Ps(X )◦v → Ps(Xv )

which sends Ω◦v onto Ω(Xv ).
We will need to know that for all vector spaces X of finite dimension over a field k,

Ω(X )−1 ·Ω(X ) is equal to Ps(X ) or to Ps+(X ) depending on whether k is of characteristic
other than 2 or equal to 2. We will later prove this as Corollary 5.1.4. Granting this for
now, let us suppose that k is not of characteristic 2; then for almost all v, we have

Ps(Xv ) =Ω(Xv )
−1 ·Ω(Xv ).

From this we conclude that for almost all v, Ps(X )◦v = (Ω
◦
v )
−1 ·Ω◦v . For each v, Section 4.2

grants a continuous characterϕv of Mp(Xv )which coincides withθ2
v on Tv . The character

ϕv is uniquely determined by the condition that for all s ∈Ωv , we have

ϕv (rv (s)) =
�D(s)
−1

�

v
γv (q1)

2m ,

where m = dim(X ). When −1 is a square in kv , the right-hand side is equal to 1 for all
s ∈ Ωv . For almost all v, kv (

p
−1) is equal either to kv or to a nonramified quadratic

extension of kv , and in either case we have
� u
−1

�

v
= 1 for all units u ∈ ov . On the other

hand, Section 2.3 shows for almost all v that γn(q1) = 1 for almost all v, which entails
that ϕv takes the constant value 1 on rv (Ω

◦
v ) for almost all v. The map rv coincides with

r′v on Ω◦v for almost all v, and in this case one has Ps(X )◦v = (Ω
◦
v )
−1 ·Ω◦v . Hence, ϕv takes

the constant value 1 on Mp(X )◦v for almost all v. From this we have that

(Sv ) 7→
∏

v
ϕv (Sv )

is a character of M (S), equal to 1 on the kernel of the homomorphism M (S)→ Mp(X )◦S
defined in Equation (41). By passing to the quotient by the kernel and then to the in-
ductive limit determining S, this gives a continuous character ϕA of Mp(X )A which on T

43That is, for v 6∈ S, tv is the neutral element of Mp(Xv ).
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coincides with (e , t ) 7→ t 2. If we denote by Sp2(X )A the kernel of ϕA, we conclude that
Mp(X )A= Sp2(X )A ·T and that Sp2(X )A is a two-sheeted cover of Sp(X )A.

We will now show that Sp2(X )A ⊇ rk (Ps(X )k ). As Ps(X )k = Ω(X )
−1
k ·Ω(X )k , it will

suffice to show Sp2(X )A ⊇ rk (Ω(X )k ). We therefore take s ∈ Ω(X )k , for which s ∈ Ωv
for all v and s ∈ Ω◦v for almost all v. As rv coincides with r′v over Ω◦v for almost all v, it
follows that (rv (s)) lies in M (S) for S sufficiently large. On the other hand, Equation (38)
gives

rk (s)Φ(x) =
∫

X ∗A

Φ(xα+ x∗γ )χ ( f (x, x∗))d x∗,

and comparing this formula with Equation (16) (i.e., the definition of rv ) shows that
rk (s) ∈ Mp(X )A is the image of (rv (s)) ∈ M (S) through the homomorphism defined by
Equation (41). Under these conditions, we have rk (s) ∈ Sp2(X )A if and only if

∏

v ϕv (rv (s)) =
1—but this is either true evidently if −1 is a square in k or true via Proposition 2.3.1 and
the law of quadratic reciprocity.

In the case where k is of characteristic 2, we may proceed as elsewhere: we substitute
Ps+(X ) for Ps(X ); if m ≥ 3 is even, we extend X to a vector space X ′ of dimension m+1;
and case m = 1 consists of trivial results.

V. Compléments
5. COMPLEMENTS

To close this memoir, we begin to consider modules over k–algebras A rather than
modules directly over k. From our perspective, the primary complication that this in-
troduces into the theory is that our reliance on k–linear duality and biduals is no longer
sufficient to selectA –linear complements to submodules, which is a basic tool we have
rested on throughout our discussion. In this section, we give this wrinkle careful consid-
eration.

46. 5.1. Decompositions of elements in the pseudosymplectic group. We will first con-
sider a vector space X over a field k as well as its pseudosymplectic group Ps(X ). For
s = (σ , f ) ∈ Ps(X ), we consider the matrix expansion

σ =
�

α β
γ δ

�

.

We will denote the parabolic subgroup of Ps(X ) by P (X ), which consists of those s ∈ Ps(X )
for which γ = 0. We propose to write every element of Ps(X ) in a “normal” form using
the left-cosets of P (X ) in Ps(X ), which generalizes Equation (33).

Taking s = (σ , f ) ∈ P (X ) and using Equation (32), we obtain

f (x2, x∗1 + x∗2 ) = f (0, x∗1 )+ f (x2, x∗1 ).

Denoting by g and h the forms respectively induced by f on X and on X ∗, we that h is
additive and that f (x, x∗) = g (x) + h(x∗). We see immediately that t (g )−1 t ′(h)−1 s is of
the form (σ ′, 0), and by using the remarks at the end of Section 1.2 it is therefore equal to
d (λ) for some λ ∈Aut(X ). This yields

(42) s = t ′(h)t (g )d (λ)

for some h ∈Qa(X
∗), g ∈Q(X ), and λ ∈Aut(X ), and this factorization is unique.
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Now let s = (σ , f ) be an arbitrary element of Ps(X ), let N be the kernel of the attached
morphism γ , let W be a complement of N in X ∗, and let Z = γ (X ∗). The morphism γ
then induces on W an isomorphism γ : W → Z , and hence there is a quadratic form f1
on Z such that f (0, w) = f1(wγ ) for all w ∈W . Otherwise said, the formula

f0(x
∗) = f (0, x∗)− f1(x

∗γ )

defines a quadratic form f0 on X ∗ which vanishes on W . On the other hand, for n ∈ N
and x∗ ∈X ∗ we may conclude from Equation (32) that

f (0, n+ x∗) = f (0, n)+ f (0, x∗),

which implies in particular that f (0, n) is additive on N . It follows that f0(n + w) =
f (0, n) for n ∈N and w ∈W , which shows that f0 is an additive form on X ∗.

47.We will now deduce the following result:

Proposition 6Proposition 5.1.1. Let s = (σ , f ), s ′ = (σ ′, f ′) be two elements of Ps(X ) with matrix
components γ , γ ′. Then s and s ′ belong to the same left-coset of P (X ) if and only if both
X ∗γ =X ∗γ ′ and there is an f1 ∈Q(X ∗γ ) such that

x∗ 7→ f (0, x∗)− f1(x
∗γ ), x∗ 7→ f ′(0, x∗)− f1(x

∗γ ′)

are additive forms on X ∗.

Proof. Begin by choosing f1 so that the first of these forms is additive, and let us suppose
that we have s ′ = s ′′ s for an s ′′ = (σ ′′, f ′′) with γ ′′ = 0. The morphism δ ′′ is then an
automorphism of X ∗, and γ ′ = δ ′′γ , hence γ (X ∗) = γ ′(X ∗). We conclude that f ′′(0, x∗)
is an additive form. Because

f ′(0, x∗) = f ′′(0, x∗)+ f (0, x∗δ ′′),

we also have

f ′(0, x∗)− f1(x
∗γ ′) = f ′′(0, x∗)+ f (0, x∗δ ′′)− f1(x

∗δ ′′γ ),

and the right-hand side is an additive form by virtue of the definition of f1. We therefore
conclude necessity.

To show sufficiency, suppose that this condition is satisfied. We then set s ′′ = s ′ s−1,
from which we have γ ′′ = δ∗ ◦ γ ′ − γ ∗ ◦ δ ′. Let us set Z = γ (X ∗) = γ ′(X ∗), and let
j : Z → X be the induced injection. We can then write γ = j ◦ γ̄ and γ ′ = j ◦ γ̄ ′, where
γ̄ , γ̄ ′ : X ∗ → Z are morphisms of the indicated type. Let ρ1 : Z → Z∗ be the morphism
associated to f1; using Equation (32), the morphism associated to x∗ 7→ f (0, x∗) is δ∗ ◦ γ ,
and the hypothesis placed on f (0, x∗) gives

δ∗ ◦ γ = γ̄ ∗ ◦ρ1 ◦ γ̄ ,

which can be written also as

(δ∗ ◦ j − γ̄ ∗ ◦ρ1) ◦ γ̄ = 0.

When γ̄ is surjective, we thus conclude δ∗ ◦ j = γ̄ ∗ ◦ρ1. This yields j ∗ ◦δ = ρ1 ◦ γ̄ , and
by replacing f with f ′ this gives j ∗ ◦δ ′ = ρ1 ◦ γ̄ ′, hence

γ̄ ∗ ◦ρ1 ◦ γ̄
′ = δ∗ ◦ j ◦ γ̄ ′ = γ̄ ∗ ◦ j ∗ ◦δ ′.
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By consequence, δ∗ ◦ γ ′ = γ ∗ ◦δ ′, i.e., γ ′′ = 0. �

It follows that the set of left cosets of P (X )≤ Ps(X ) corresponding to those elements
s ∈ Ps(X ) for which γ is of rank r can be identified with a vector bundle on the Grassman-
nian of subspaces Z ≤X of dimension r , with fiber over Z the vector space Q(Z)/Qa(Z).

Corollaire 1 Corollary 5.1.2. Let s ∈ Ps(X ), let X1 be the image of X ∗ through γ , let X2 be a complement
to X1 in X , let γ1 : X ∗1 → X1 be an isomorphism, and let Q ′1 be a complement to Qa(X1) in
Q(X1). Then s can be written uniquely in the form

(43) s = t ′(h)t (g )d (λ)(d ′(γ1)t ( f1)⊗ e2)

with h ∈Qa(X
∗), g ∈Q(X ), λ ∈Aut(X ), and f1 ∈Q ′1, where e2 denotes the neutral element

of Ps(X2).

Proof. By setting s ′ = s , it follows from from Proposition 5.1.1 that there exists an f1 ∈
Q(X1) such that the form

x∗ 7→ f (0, x∗)− f1(γ (x
∗))

is additive. As this condition determines f1 uniquely up to an additive form, this relation
is satisfied if and only if f1 ∈Q ′1.

We thus set s ′ = d ′(γ1)t ( f1)⊗ e2. Proposition 5.1.1 shows immediately that s and s ′

belong to the same left-coset of P (X ). We can thus put s ′ s−1 into the form Equation (42)
in a unique way, which puts s into the form of Equation (43).

Conversely, suppose that s has the form of Equation (43) and define s ′ as above. Using
Corollary 5.1.2, we also see that f1 is as described above. The unicity of Equation (42)
finishes the proof. �

Corollaire 2 Corollary 5.1.3. Retain the notation and the hypotheses of Corollary 5.1.2. The element s
can be written uniquely in the form

(44) s = t (g )d (λ)(d ′(γ1)t (g1)⊗ t ′(h2))

with g ∈Q(X ), λ ∈Aut(X ), g1 ∈Q(X1), and h2 ∈Qa(X
∗
2 ).

Proof. Proceeding as in Corollary 5.1.2, but applying Equation (42) to s ′ s−1, we obtain
an expression

s = d (λ)−1 t (g )−1 t ′(h)−1(d ′(γ1)t ( f1)⊗ e2).

For x∗ = (x∗1 , x∗2 ) ∈X ∗, we may write

−h(x∗) = h1(x
∗
1 )+ h2(x

∗
2 ),

for h1 ∈Qa(X
∗
1 ) and h2 ∈Qa(X

∗
2 ). From this we conclude t ′(h)−1 = t ′(h1)⊗ t ′(h2). One

checks that we may also write t ′(h1)d
′(γ1) = d ′(γ1)t (h

′
1)with h ′1 ∈Qa(X1). It also follows

from Section 3.2 that d (λ)−1 t (g )−1 can be written in the form t (g ′)d (λ′). By writing g ,
λ, and g1 in place of g ′, λ′, and f1+ h ′1, we obtain Equation (44).

The unicity results from that of Equation (43) and from the calculation we just fin-
ished, taken in reverse. �
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If we suppose γ = 0 (or, equivalently, X1 = {0} and X2 = X ) in Corollary 5.1.2 and
Corollary 5.1.3, we recover Equation (42) (or an equivalent formula). At the other ex-
treme, the case X1 = X and X2 = {0} is equivalent to s ∈ Ω(X ), and in terms of Sec-
tion 3.2, Corollary 5.1.3 recovers Equation (33). We are also going to deduce from these
a result which we left unproven in Section 4:

Corollaire 3Corollary 5.1.4. Let X be a vector space over a field k. Then Ω(X )−1 ·Ω(X ) is equal to
Ps+(X ) or to Ps(X ), depending on whether k is or is not of characteristic 2.

Proof. Take s ∈ Ps(X ) and s ′ ∈Ω(X ). Put s ′ in the form of Equation (33)44 by writing s ′ =
t (g )d ′(γ )t (g1). The composite s ′ s belongs to Ω(X ) (i.e., the attached function γ : X ∗→
X to be an isomorphism) if and only if α(t (g1)s) is an automorphism of X . Otherwise
said, s belongs to Ω(X )−1Ω(X ) if and only if there exists f ∈ Q(X ) with α(t ( f )s) ∈
Aut(X ). Moreover, Equation (33) shows that Ω(X ) is a doubling of P (X ), and hence
Ω(X )−1 ·Ω(X ) is a union of such doublings. By putting s−1 in the form of Equation (43)
and setting s1 = d ′(γ1)t ( f1)⊗ e2, we thus see that s belongs to Ω(X )−1 ·Ω(X ) if and only
if s−1

1 does as well, or if and only if there is an f ∈ Q(X ) for which α(t ( f )s−1
1 ) is an

automorphism of X .
It is immediate that this last condition is satisfied by taking for f a form which vanishes

on X2 and such that f − f1 is nondegenerate on X1. Such a choice is always possible when k
is not of characteristic 2 as well as when k is of characteristic 2 and X is of even dimension.
As we have already observed in Section 3.2, this last condition is equivalent to s ∈ Ps+(X ),
and the conclusion follows. �

Remark 5.1.5. Suppose that k is of characteristic 2. Using Proposition 5.1.1 and the
Corollaries above, we could deduce the results recalled in Section 3.2 about Ps+(X ) and
Ps−(X ).

48.5.2. Lifts of the pseudosymplectic group to the metaplectic group. In the preceding
chapters, we made use of the Equation (33)45 to lift elements of Ω(X ) to Mp(X ). Corol-
lary 5.1.2 and Corollary 5.1.3 permit us to do the same for elements of Ps(X ), where X
is a vector space over a local field. We will apply this to the proof of the following result:

Proposition 7Proposition 5.2.1. Let X be a vector space over a local field k, let S ∈ Mp(X ), and let
s = π(S) with matrix component γ . For ξ and ξ ′ two automorphisms of X with s d (ξ ) =
d (ξ ′)s , we also have Sd(ξ ) = d(ξ ′)S, provided one of the following holds:

(1) We can write s in the form of Equation (44) with h2 = 0.
(2) There is a complement X2 of X1 = γ (X

∗) in X which is stable under ξ .

Remark 5.2.2. As h2 in Equation (44) is an additive form, case (1) always holds if k is not
of characteristic 2. Note also that the condition h2 = 0, which appears to depend on the
choice of X2 and of γ1 of ??, is in fact equivalent to the following statement, evidently
independent of X2 and γ1:

(1’) For s = (σ , f ), the kernel of f contains the kernel of γ .

44Equivalently, we may use the form of Equation (44).
45Equivalently, Proposition 1.5.1.
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Proof of Proposition 5.2.1. Taking X2 and γ1 to have been chosen as in Corollary 5.1.2, we
may place s in the form of Equation (44). There is then an element a2 ∈X2 such that, for
all x∗2 ∈X ∗2 ,

χ (h2(x
∗
2 )) = χ ([a2, x∗2 ]).

On the other hand, the relation s d (ξ ) = d (ξ ′)s gives ξ ◦γ = γ ◦ξ ′∗−1, hence ξ (X1) =X1,
i.e., X1 is stable under ξ . Using the decomposition X =X1⊕X2 to put ξ in matrix form,
we have

ξ =
�

ξ1 0
η ξ2

�

,

and (2) becomes equivalent to saying that there is some choice of X2 for which η= 0.
Taking this to be true, S differs from

S′ = t(g )d(λ)(d′(γ1)t(g1)⊗ t′(h2)) ∈Mp(X )

by a scalar factor. At the same time, the hypotheses placed on s imply that Sd(ξ ) and
d(ξ )S differ only by a scalar factor θ ∈ T . For all Φ ∈ S (X ), it follows that S′d(ξ )Φ(0)
and d(ξ ′)S′Φ(0) differ by the same scalar factor θ. By writing out the definitions of the
operators which appear in the definition of S′, we see that this is equivalent to saying that
there exists c > 0 such that

∫

Φ(ξ1(x1)−η(a2),−ξ2(a2))χ (g1(x1))d x1 = cθ
∫

Φ(x1,−a2)χ (g1(x1))d x1

for all Φ ∈S (X ). This holds if and only if ξ2(a2) = a2 and for any x1 we have

χ (g1(x1)) = θ ·χ (g1(ξ1(x1)−η(a2))).

Specializing to x1 = 0 and either to a2 = 0 in case (1) or η = 0 in case (2), this gives
θ= 1. �

Corollaire
(unnumbered)

Corollary 5.2.3. Let X be a vector space over a local field k, take G ≤Aut(X ), and suppose
either that k does not have characteristic 2 or that G is completely reducible. Let S be an
element of Mp(X ) such that s =π(S) commutes with d (ξ ) for all ξ ∈G. Then S commutes
with d(ξ ) for any ξ ∈G.

Proof. If k is not of characteristic 2, we need only apply Proposition 5.2.1 with ξ = ξ ′.
Regardless, the proof of Proposition 5.2.1 shows that X1 = γ (X

∗) is stable under G. If G
is completely reducible, X1 has a complement stable under G, and we are in case (2). �

49. 5.3. Algebras with involutions. We will now define some subgroups of the pseudosym-
plectic group which will play a large role in the applications to the arithmetic theory of
the classical groups.

LetA be an algebra over a base field k, which we will always assume to be associative,
of finite dimension over k, and endowed with a unit element 1. We will freely identify k
with its image inA via the morphism t 7→ t · 1. We will eventually writeAk in lieu of
A , particularly when we would like to consider the “adelic case”.

We will suppose moreover thatA is endowed with an involution ι, i.e., an involutive
antiautomorphism of A as an algebra over k. By definition, ι induces the identity au-
tomorphism on k ≤A . The choice of ι permits us to consider every rightA –module
Y as a left A –module via the formula t y = y t ι (t ∈ A , y ∈ Y ). In particular, for a
leftA –module X , theA –linear dual HomA (X ,As ) is naturally endowed with a right
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A –module structure, and we will denote by X ∗ this same dual with the leftA –module
structure instead. For x ∈X and x∗ ∈X ∗, we will write {x, x∗} for the value on x of the
A –linear form on X which corresponds to x∗. We thus have

{t x, u x∗}= t{x, x∗}u ι,

i.e., {x, x∗} is a sesquilinear form on X ×X ∗.
Finally, we will also suppose that A carries a trace function τ. By “trace function”,

we mean a k–linear form onA which is invariant under the involution ι and such that
(t , u) 7→ τ(t u) is a nondegenerate symmetric bilinear form on A ×A . For X a left
A –module and f a k–linear form on X , for all x ∈ X the assignment t 7→ f (t x) yields
a k–linear form onA , and there is thus a unique element F (x) ofA such that f (t x) =
τ(t F (x)) for any t . The assignment x 7→ F (x) to Riesz representatives is itself an A –
linear form on X for which f = τ ◦F , and the formula f = τ ◦F puts the k–linear forms
f on X in bijection with theA –linear forms F on X . By consequence, we may identify
X ∗ with the dual of the underlying k–vector space of X via the formula

[x, x∗] = τ({x, x∗}).

Since we are considering onlyA –modules of finite dimension over k, it follows that we
may identify all leftA –modules X with their biduals (X ∗)∗ via the formula

{x, x∗}= {x∗, x}ι.

For X and Y two leftA –modules and a morphism α : X → Y anA –module morphism,
the transpose α∗ considered as a morphism of k–vector spaces belongs to HomA (Y

∗,X ∗),
and for x ∈X , y∗ ∈ Y ∗ we have

{α(x), y∗}= {x,α∗(y∗)}.

If F is a sesquilinear form on X ×Y , there is a unique morphism α : Y →X ∗ such that

F (x, y) = {x,α(y)}= {y,α∗(x)}ι.

If X = Y , then F is Hermitian if and only if α= α∗.
We will say that a quadratic form f on the k–vector space underlying X isA –quadratic

if it can be written as f (x) = τ(F (x, x)) for F a sesquilinear (but not necessarily Hermit-
ian) form on X×X , and we will denote by QA (X ) the space of such forms. Equivalently,
QA (X ) is the set of those forms which can be written

f (x) = τ({x,λ(x)}),

where λ : X → X ∗ is a not-necessarily-symmetric morphism, and in this language, the
morphism associated to this form f is given by the formula ρ = λ+ λ∗. We denote by
QA ,a(X ) the space of additive A –quadratic forms on X . If k is not of characteristic
2, and if ρ is the symmetric morphism associated to a form f ∈ QA (X ), the form F
defined on X×X by F (x, y) = {x, 2−1ρ(y)}will be Hermitian and will satisfy the formula
f (x) = τ(F (x, x)). This gives a bijection between QA (X ) and the space of Hermitian
forms on X ×X .

The group of automorphisms of anA –module X will be denoted by AutA (X ). Like-
wise, if X and Y areA –modules, the set of isomorphisms from X to Y will be denoted
as IsA (X ,Y ). We will denote by Psk (X ) the pseudosymplectic group attached to the k–
vector space underlying X and by PsA (X ) the subgroup of Psk (X ) of those elements (σ , f )
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for which σ ∈AutA (X ⊕X ∗) and f ∈QA (X ⊕X ∗). In the notation of Section 3.2, the
morphisms d (α), d ′(γ ), t ( f ), and t ′( f ′) will belong to PsA (X ) whenever α, γ , f , and
f ′ belong respectively to AutA (X ), IsA (X

∗,X ), QA (X ), and QA (X
∗). The identities

among d , d ′, t , and t ′ of course remain valid in these subgroups.
50. In our intended applications, we will almost always assume the algebraA to be semisim-

ple. When this is so, all submodules of an A –module X possess a complement. If A
is moreover simple, then IsA (X

∗,X ) is never empty, i.e., all leftA –modules are isomor-
phic to their duals. IfA is absolutely semismimple46 and it is endowed with an involution
ι, then there always exists a trace function onA .47

WhenA is not simple, we can make use of the following result instead:

Lemme 7 Lemma 5.3.1. Take s ∈ Ps(X /A ) with matrix component γ , and set Z = γ (X ∗). In order
for Z to admit a complement in X , it is necessary and sufficient that the kernel N of γ has a
complement in X ∗. If moreover,A is semisimple, lesA –modules Z and Z∗ are isomorphic.

Proof. Let Z∗ be the orthogonal to Z in X ∗, which is the kernel of γ ∗. By the same
token, if N∗ is the orthogonal to N in X , we have N∗ = X ∗γ ∗. Let us set s = (σ , f )

with matrix expansion σ =
�

α β
γ δ

�

. We then set U to be the image of {0} × X ∗

(considered as a submodule of X×X ∗) under σ , or, equivalently, the image of X ∗ through
the morphism x∗ 7→ (γ ∗(x∗),δ(x∗)). As σ is an automorphism of X×X ∗, this determines
an isomorphism θ : X ∗→U . The set U also consists of those elements u ∈X ×X ∗ such
that σ−1(u) ∈ {0}×X ∗, or, by setting u = (y, y∗), such that δ∗(y)− γ ∗(y∗) = 0.

Set V = U ∩ ({0} × X ∗), which also has a few equivalent characterizations. As Z∗
is the kernel of γ ∗, we have V = {0} × Z∗. At the same time, we have V = θ(N ) and
N = θ−1(V ).

Let us suppose now that Z has a complement Z ′ in X . The orthogonal Z ′∗ of Z ′ in X ∗

is then a complement to Z∗ in X ∗, and X ×Z ′∗ is a complement of V in X ×X ∗. It follows
that U1 =U ∩ (X ×Z ′∗) is a complement to V in U , hence that θ−1(U1) is a complement
of N in X ∗. Let us now apply what which we have just shown for s to s−1 instead. As
γ (s−1) =−γ ∗, it follows that if N∗ has a complement in X , then Z∗ has one in X ∗. Finally,
by passing to the quotient, γ determines an isomorphism X ∗/N → Z .

On the other hand, we may identify X ∗/Z∗ with Z∗, and the above shows that Z∗
is isomorphic to V and hence to N . If A is semisimple, the fact that N and Z∗ are
isomorphic entails that X ∗/N and X ∗/Z∗ are also isomorphic, from which we have the
final assertion of the Lemma. �

51. 5.4. Parabolic subgroups andA . As in Section 5.1, we will denote by Pk (X )≤ Psk (X )
and PA (X ) ≤ PsA (X ) the subgroups whose elements s have matrix expansions with
γ = 0. Recall that all elements of Pk (X ) can be uniquely written in the form of Equa-
tion (42); for s ∈ PA (X ), the same calculation shows that s can be placed in the form
of Equation (42) with h ∈ QA ,a(X

∗), g ∈ QA (X ), and λ ∈ AutA (X ). Moreover, if
s ∈ PsA (X ) is arbitrary, the calculation made in the second part of Section 5.1 remains

46That is: its extension to the algebraic closure of k is semisimple.
47For example, one may take for τ the k–linear form which, on each simple composite ofA , induces the

“reduced trace”.
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valid, showing that f1 belongs to QA (Z) whenever W is anA –module complement to
the kernel N of γ . If we then suppose in Proposition 5.1.1 that s and s ′ belong to PsA (X ),
we may take f1 ∈QA (γ (X

∗)) whenever the kernel of γ admits a complement in X ∗—or
equivalently, following Lemma 5.3.1, each time that γ (X ∗) admits a complement in X .
Analogous remarks apply to Corollary 5.1.2 and Corollary 5.1.3. With our ultimate ap-
plications in mind, we will make use of the following result:

Proposition 8Proposition 5.4.1 (cf. Corollary 5.1.3). LetA be a k–algebra with an involution and a
trace function, let X be a left-module overA , let s ∈ PsA (X ), and take X1 = γ (X

∗). Suppose
that X2 is a complement to X1 in X and γ1 : X ∗1 →X1 is an isomorphism. We may then write
s uniquely in the form

s = t (g )d (λ)(d ′(γ1)t (g1)⊗ t ′(h2)),

with g ∈QA (X ), λ ∈AutA (X ), g1 ∈QA (X1), and h2 ∈QA ,a(X
∗
2 ). �

Remark 5.4.2. The existence of a complement X2 to X1 and, by using Lemma 5.3.1, the
existence of the isomorphism γ are assured wheneverA is semisimple.

If k is a local field, we will denote by Mpk (X ) the metaplectic group attached to the
k–vector space underlying X , and by MpA (X ) the inverse image of PsA (X ) in Mpk (X )
through the canonical projection Mpk (X )→ Psk (X ). In the adelic case, the objects Mpk (X )A)
and MpA (X )A) are defined in the same way. Applying Proposition 5.2.1 then gives the
following results:

Proposition 9Proposition 5.4.3. LetA be an algebra over a local field k, endowed with an involution ι
and a trace function. Suppose that k is not of characteristic 2 or thatA is semisimple. For X
a leftA –module and MpA (X ) its metaplectic group, every element of MpA (X ) commutes
with all elements of Mpk (X ) of the form d(ξa), where ξa is the homothety x 7→ a ·x determined
by an element a ∈A satisfying a · aι = 1.

Proof. If a is an invertible element inA , it follows from the leftA –module structure
on X ∗ that d (ξa) = (σ , 0), where σ is the automorphism (x, x∗) 7→ (ax, (aι)−1x∗) of the
underlying k–vector space of X ⊕X ∗. For a · aι = 1, σ is thus the homothety z 7→ az of
X⊕X ∗. By definition of PsA (X ), it follows that every element of PsA (X ) thus commutes
with d (ξa). We conclude the Lemma by applying case (1) of Proposition 5.2.1 if k is not
of characteristic 2 and case (2) ifA is semisimple. �

Corollaire
(unnumbered)

Corollary 5.4.4. Let Ak be the ring of adeles attached to a number field or a function field k,
and letAk be a k–algebra over k with an involution ι and a trace function. Suppose either
that k is not of characteristic 2 or thatA is semisimple.

Let Gk be the group of those elements a ∈ Ak such that a · aι = 1, and let GA be the
corresponding adelic group. Let Xk be a leftAk –module, and let XA = Xk ⊗Ak . Then, for
all S ∈ Mp(X /A )A and all a ∈ GA, the operators Φ 7→ SΦ and Φ(x) 7→ Φ(ax) in L2(XA)
commute.

Proof. It suffices to check that they commute when applied to functions Φ of the form of
Equation (36). We are thus brought back to the local case, i.e., to Proposition 5.4.3. �
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52.5.5. Teaser. To conclude, we will announce the principal result to be proven in the se-
quel memoir, which is an application of the theory presented here.

Let k be an algebraic number field, and letAk be a simple k–algebra endowed with
an involution ι. For simplicity, we will take the trace function onAk to be the reduced
trace. Without loss of generality, we may further suppose that k is the central subfield of
Ak formed by those elements which are invariant under ι.

Let Gk be the group of elements a ∈Ak such that a · aι = 1, and let GA be the corre-
sponding adelic group. Let d1a be the Haar measure on GA, normalized so that GA/Gk
has measure 1. Let Xk be a leftAk–module, and set XA = Xk ⊗Ak . For Φ ∈ S (XA), we
will demonstrate the formula

∫

GA/Gk

∑

ξ∈Xk

Φ(aξ )d1a =
∑

s
rk (s)Φ(0),

where the summation on the right-hand side runs over a complete system of represen-
tatives of left-cosets of P (Xk/Ak ) ≤ Ps(Xk/Ak ). The two expressions are absolutely
convergent and the formula holds whenever one has

dimk (Xk )> 4dimk Q(Xk/Ak ).
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