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1. Introduction

Chromatic homotopy, the confluence of stable homotopy and the geometry of formal groups, uses the

following dictionary to interpret some of its basic tools:

Spectrum Name Geometric counterpart

MU complex cobordism moduli stack of formal groups,

BP Brown-Peterson theory moduli stack of p-typical formal groups,

E(n) Johnson-Wilson theory open substack of formal groups of height at most n,

K(n) Morava K-theory geometric point of this stack,

En Morava E-theory universal deformation of this point.

The homology theory K(n)∗ is particularly popular among those interested in computations, in large part

because π∗K(n) is a field and because it comes with a Künneth isomorphism:

K(n)∗X × Y = K(n)∗X ⊗π∗K(n) K(n)∗Y.

These properties fuel many arguments involving the decomposition of spaces, where more complex homology

theories would instead have nontrivial spectral sequences obstructing similar results.

In the 1960s, Ravenel and Wilson [8] computed K(n)∗K(Z, q) for all n and q, using the Künneth iso-

morphism to show that the functor K(n)∗ took the ring object K(Z, ∗) to a π∗K(n)-coalgebraic ring

K(n)∗K(Z, ∗) and then analyzing the addition and multiplication maps. Our primary goal this summer

was to compute the Morava E-theory of this same ring K(Z, ∗) by studying Lubin and Tate’s construc-

tion [6] of the universal deformation of the Honda formal group spf K(n)∗BU(1) and interleaving it with

Ravenel and Wilson’s work.

The author would like to thank Matt Ando and Neil Strickland for suggesting the project and for su-

pervising the actual work, Doug Ravenel and Steve Wilson for their original work with Hopf rings and the

above-referenced paper in particular, and Adam Hughes and Jon Irons for proofreading this document.

2. Past work

The entire rest of this paper rests on the argument of Ravenel and Wilson [8]; the first step in the project

was to interpret their work, which we will sketch here. Suppose E and F are both ring spectra satisfying

E∗(Ω
∞−nF × Ω∞−mF ) ∼= E∗Ω

∞−nF ⊗ E∗Ω∞−mF.

Then E∗Ω
∞−∗F forms a π∗E-coalgebraic ring, sometimes called a “Hopf ring.” This means that we have

maps

E∗(Ω
∞−nF )⊗ E∗(Ω∞−nF )

∗−→ E∗Ω
∞−nF,

E∗(Ω
∞−nF )⊗ E∗(Ω∞−mF )

◦−→ E∗Ω
∞−n−mF

induced from the unstable addition and multiplication maps on the ring spectrum F . The existence of

so many operations allows us to describe large chunks of a Hopf ring using just a few elements, a useful

calculational technique.
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Thanks to Morava K-theory’s Künneth isomorphism, we can set E = K(n) and F = HG in the above.

Ravenel and Wilson calculate that K(n)∗K(Z/pj , ∗) is the free K(n)∗-Hopf ring on K(n)∗K(Z/pj , 1), which

is in turn calculated as the K(n)-homology of the homotopy fiber of the map

CP∞ pj−→ CP∞.

This is dual to the jth iterate of the p-series in cohomology, which is well-understood by construction; Morava

K-theory is designed to support the equality [p]K(n)(x) = vnx
pn over the coefficient ring π∗K(n) = Fp[v±1

n ].

Therefore, up to a unit we have

[pj ]K(n)(x) = xp
jn

.

Analyzing this map yields the following calculation: K(n)∗K(Z/pj , 1) is a free π∗K(n)-module on elements

ai ∈ K(n)2iK(Z/pj , 1) for 0 ≤ i < pnj , with coproduct

ψ(ai) =

i∑
k=0

ak ⊗ ai−k.

The algebra structure is generated by the elements a(i) = api , subject to the relation

a∗p(n+i−1) = a(i),

up to a unit.

The statement that K(n)∗K(Z/pj , ∗) is the free Hopf ring on K(n)∗K(Z/pj , 1) can be interpreted one

degree at a time to recover the calculation of K(n)∗K(Z/pj , q) for individual q. As notation, for I be a

multi-index of length q consisting of nonnegative integers less than nj, we write

aI = a(I1) ◦ · · · ◦ a(Iq).

Because of the freeness, we have the relations

a(i) ◦ a(k) = −a(k) ◦ a(i),

a(i) ◦ a(i) = 0,

a(i) ◦ a(k) = 0 if i < n and k < n(j − 1),

a(i) ◦ a(k) = a(i−n) ◦ a(k+n) up to a unit, if n ≤ i and k < n(j − 1).

It follows that any aI can be rearranged so that I is increasing.

Then, the reduction Z/pj+1 → Z/pj gives rise to a map rj : K(n)∗K(Z/pj+1, ∗) → K(n)∗K(Z/pj , ∗),
which, up to a unit, acts by

rj(a(I1,...,Iq)) = a(I1−n,...,Iq−n).

The inclusion Z/pj → Z/pj+1 acts up to a unit by

ij(a(I1,...,Iq)) = a(I1,I2+n,...,Iq+n).

As a corollary, since we are working p-locally, we can calculate K(n)∗K(Z, q) ∼= K(n)∗K(Z/p∞, q) by inverse

limit.

We also give a formal group interpretation of this result, following Ando and Strickland [2]. Make note

of the following two pieces of notation:

XE = specE∗X,

XE = spf E∗X = colim
Y⊆X
Y finite

specE∗Y.

Fix a finite abelian group A and write A∨ = Hom(A,C×) for its Pontryagin dual. Then, the various

characters corresponding to the elements of A give rise to a map∐
a∈A

BA
∐
Bχ−−−→ BC×,
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and applying the functor −E for a complex-oriented cohomology theory E gives a map

A∨ ×BAE ∼=

(∐
a∈A

BA

)
E

→ CP∞E ,

where A∨ denotes the associated constant group scheme. This map is an element of Hom(A∨,CP∞E ) of

groups over BAE , so is represented by a section BAE → Hom(A∨,CP∞E ); the first result of Ravenel and

Wilson is that this is an isomorphism for A = Z/pj and E = K(n). Specializing to this case, we invert this

isomorphism to get a map CP∞K(n)[p
j ] := Hom(Z/pj ,CP∞K(n)) → BZ/pjK(n). That K(Z/pj , ∗)K(n) is a ring

object means we get a map out of the free object produced by Λ∗:

Λ∗CP∞K(n)[p
j ]→ K(Z/pj , ∗)K(n).

This is the map we’ll study.

Ravenel and Wilson show that this map is an isomorphism, i.e., K(Z/pj , q)K(n) is the universal example of

a scheme equipped with an alternating map from CP∞K(n)[p
j ]q. The freeness result above exactly means that

K(Z/pj , ∗)K(n) is the free graded-commutative formal ring scheme over Z/p generated by K(Z/pj , 1)K(n),

which we’ve calculated to be CP∞K(n)[p
j ]. We may define free objects in this setting in the obvious way: since

we have colimits and tensor products of formal schemes, we can write

ΛqCP∞K(n)[p
j ] = CP∞K(n)[p

j ]⊗q/Σq,

where Σq acts with signs, and these constitute the homogenous degree pieces of the formal ring scheme.

Now, we use Cartier duality to write

K(Z/pj , q)K(n) = Hom(K(Z/pj , q)K(n),Gm).

Since the augmentation ideal in K(n)∗K(Z/pj , q) is topologically nilpotent, we know that K(Z/pj , q)K(n) is

a connected formal neighborhood of the identity element, and hence any map K(Z/pj , q)K(n) → Gm which

sends the identity to zero must factor as

K(Z/pj , q)K(n) → Ĝm → Gm.

We may then identify K(Z/pj , q)K(n) with the scheme

W (n, q) ⊆ Hom(CP∞K(n)[p
j ]q, Ĝm)

of q-variate alternating, rigid maps.

3. This summer’s work

Now we turn to (En)∗K(Z, ∗). The work of Lubin and Tate [6] describes the deformation theory of the

Honda formal group Fn = CP∞K(n) of height n over π∗K(n) = Fp[v±1
n ]. They construct a formal group Γn

over the ring

LT = π∗En = Z(p)[[v1, . . . , vn−1]][v±1
n ]

so that Γn is terminal in the category of deformations of Fn to complete, local rings in the sense that the

dashed arrow in the following diagram of pullback squares always exists uniquely:

F ′

Γn Fn

spf A

spf LT specFp[v±1
n ].

This formal group Γn is the formal group associated to the Morava E-theory, CP∞E(n).
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It is difficult to explicitly compute the full structure of Γn. Lubin and Tate’s approach to the problem is

to study deformations of formal groups G0 over schemes spf R0 to formal groups G over schemes spf R along

continuous maps R � R0 whose kernel is a square-zero ideal in R. The powers of m = 〈p, v1, . . . , vn−1〉 in

LT give rise to a sequence

LT � · · ·� LT/mr+1 � LT/mr � · · ·� Fp[v±1
n ].

Each of these connecting maps has as its kernel a square-zero maximal ideal, allowing Lubin and Tate to

study the deformations along the individual steps in the sequence.

We will mimic this approach, deforming Ravenel and Wilson’s argument along with the Honda formal

group law. Fundamental parts of their proof require that we work in characteristic p, so we will instead work

with the sequence

LT � LT/p� · · ·� LT/〈p,mr+1〉� LT/〈p,mr〉� · · ·� Fp[v±1
n ].

This sequence is inherited from the level of spectra by a sequence of maps of complex-oriented, structured

ring spectra

En → En/p =: E → · · · → E/mr+1 → E/mr → · · · → K(n).

The first map En → En/p we will deal with separately; the remainder fits the general template set out by

Lubin and Tate.

Recall the following general facts about a complex oriented spectrum R. The action of R on CP∞ is key:

R∗CP∞ and R∗CP∞ are dual Hopf algebras, and we have an isomorphism R∗CP∞ ∼= R∗[[x]], where x is a

certain class in degree 2. The comultiplication on R∗CP∞ produces a bivariate power series ∆(x), which

we notate as x +R y. Dually, R∗CP∞ is a free R∗-module on generators βi ∈ R2iCP∞. Writing β(s) for∑
i βis

i, duality of Hopf algebras determines its algebra structure to be given by

β(s) ∗ β(t) = β(s+R t).

We also have a coalgebra structure on R∗CP∞ determined by

ψ(βn) =

n∑
i=0

βi ⊗ βn−i.

In the remainder of this section, each of the following theorems will be assumed true for the spectrum

E/mr−1; we will demonstrate them in turn for E/mr. We will implicitly identify the elements of E/mr−1

with the lexically equivalent elements of E/mr. The module M is then spanned by monomials of the form

(v1, . . . , vn−1)I where I is a multi-index of length (n− 1) and weight (r − 1).

Note: To get a handle on this lifted computation, our first goal was to work out the case r = 2. We’ve

left several of those computations in footnotes to the text, although the reader should be aware that they

were done under the assumption that the follow equation held:

[p]E/m2(x) =

n∑
i=1

vix
pi .

This has since come under doubt.

3.1. (E/mr)∗BZ/pj. To computationally demonstrate that (E/mr)∗K(Z/pj , ∗) is the free Hopf ring on

(E/mr)∗BZ/pj , we must first describe this generating algebra.

Theorem 1: For k not a power of p, βk ∈ (E/mr)∗CP∞ is decomposable with respect to the ∗-product.

Proof. This is essentially identical to Ravenel and Wilson [8, Theorem 5.6]. �

It will therefore suffice to investigate the algebra generators β(k) = βpk . The case of Morava K-theory

corresponds to a previous result [8, Theorem 5.6], which states that the governing relation is of the form

β∗p(n+k−1) = vp
k

n β(k).
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Theorem 2: Write b′k,I for the element of K(n)∗CP∞ satisfying

β∗p(k) =
∑
|I|<r−1
`(I)=n−1

(v1, . . . , vn−1)Ib′k,I

with β(k) considered as an element of (E/mr−1)∗CP∞, and bk,I for the coefficients of the summands in

β∗p(k) =
∑
|I|≤r−1
`(I)=n−1

(v1, . . . , vn−1)Ibk,I

with β(k) considered as an element of (E/mr)∗CP∞. Then b′k,I = bk,I for all I with |I| < r − 1.1

Proof sketch. This follows from expanding the equality β([p]R(s)) = β(s)∗p. That we work in characteristic

p is important for manipulating this expression. When p = 0, we can rewrite the right-hand side as

β(s)∗p =

∞∑
i=0

∑
|I|=i
`(I)=p

{# of ways to reorder I}β∗Isi ≡
∞∑
i=0

β∗pi s
ip (mod p). �

The space BZ/pj appears in the fiber sequence

BZ/pj δ−→ CP∞ pj−→ CP∞.

Converting the fiber itself to a fibration gives a fiber sequence

S1 → BZ/pj δ−→ CP∞.

Because π1CP∞ = 0, the fibration δ is an oriented spherical fibration, which yields a Gysin sequence of the

form

(E/mr)∗BZ/pj (E/mr)∗CP∞

(E/mr)∗−2CP∞,

δ∗

Φ∂

where the action of Φ is described by Φ(y) = [pj ]Γn(x) _ y.

Theorem 3: The Hopf algebra (E/mr)∗BZ/pj occurs as the kernel of Φ, a subalgebra of (E/mr)∗CP∞.

As an (E/mr)∗-module, it is free on generators ai, 0 ≤ i < pnj , reducing to βi in K(n)∗BZ/pj .2

Proof sketch. We show that Φ is surjective by producing classes yk so that Φ(yk) = βk; this follows from the

previous theorem by using the analogous result in E/mr−1, then using surjectivity in the case of E/m ∼= K(n)

to correct the classes sitting in mr−1/mr. Since Φ is surjective, ∂ vanishes and δ∗ is injective — moreover, as

δ is a map of H-spaces, δ∗ is an inclusion of Hopf algebras. The E/mr−1-homology of BZ/pj is generated by

elements a′k for k < nj which restrict to βk on K(n)-homology; we can apply the same corrective procedure

to produce elements ak which span the kernel in E/mr-homology and restrict to a′k. �

1In the case of r = 2, we compute β∗p
(k)

= vp
k+1−n

n β(k+1−n) for k + 1 ≥ n and β∗p
(k)

= vk+1β(0) for k + 1 < n.

2Set ym = v
−

∑j−1
i=0 p

in

n βm+pjn −
∑n−1
i=1 viv

p
i(j−1)+n

(j−1)(j−2)
2 −2

∑j−1
i=0 p

in

n βm+2pjn−i−p(j−1)n ; then Φ(ym) = βm. Hence,

the kernel is spanned by elements ak = βk for k ≤ p(j−1)n and ak = βk −
∑n−1
i=1 viv

κ(i,j,n)
n βk−i−p(j−1)n+pjn for p(j−1)n <

k < pjn and κ(i, j, n) = pi(j−1)+n
(j−1)(j−2)

2 −
∑j−1
m=0 p

mn. These ak satisfy the same −∗p relations as the βk.
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We will also need to understand how (E/mr)∗BZ/pj relate for various j. We have a diagram of short

exact sequences

Z Z Z/pj+1

Z Z Z/pj .

pj+1

p
pj

By delooping a bit, we have an induced diagram of circle bundles

S1 BZ/pj+1 CP∞

S1 BZ/pj CP∞,

rj p

and hence computing (E/mr)∗rj reduces to understanding the action of −∗p on (E/mr)∗CP∞, as above.

3.2. (E/mr)∗K(Z/pj , q) for q > 1.

3.2.1. The bar spectral sequence. Let G be an H-group and BG the bar complex model for its classifying

space:

BG =

∐
i≥0

Gi ×∆i

 / ∼,

where ∼ is some pushout identification gluing together faces of the simplices ∆i. This model has an evident

filtration

BkG =

 ∐
0≤i≤k

Gi ×∆i

 / ∼,

colim (B0G ↪→ B1G ↪→ · · · ↪→ BkG ↪→ · · · ) ' BG
with filtration quotients described by BkG/Bk−1G ' ΣkG∧k. For an arbitrary multiplicative cohomology

theory h satisfying h∗K(G, q)∧k ∼= h∗K(G, q)⊗k, this filtration gives rise to a spectral sequence with E1 page

E1
k,∗ = h∗K(G, q)⊗k — moreover, (E1, d1) is the bar resolution of h∗ in the category of h∗K(G, q)-comodules,

and hence

E2
∗,∗
∼= H∗,∗h∗K(G, q) := Torh∗K(G,q)

∗,∗ (h∗, h∗).

The cup product map respects this filtration in the sense that the dashed arrow in the following diagram

exists (see Ravenel and Wilson [8, Theorem 1.9] for reference):

BkK(G, q) ∧K(G, q′) BkK(G, q + q′)

K(G, q + 1) ∧K(G, q′) K(G, q + q′ + 1).
◦

The compatibility of the cup product and the filtration tells us that this spectral sequence is compatible

with the cup product as well; we have maps

◦ : Es∗,∗K(G, q)⊗h∗ h∗K(G, q′)→ Es∗,∗K(G, q + q′)

converging to the cup product map on the E∞ page and interacting with the differentials via dr(x ◦ y) =

dr(x) ◦ y. This formula gives us an immense amount of control over the parts of the spectral sequence that

can be described using the ◦-product.

To illustrate how this spectral sequence works and to provide an inductive foothold, we will describe

H∗,∗(E/m
r)∗K(Z/pj , 0)⇒ (E/mr)∗BZ/pj .
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The space K(Z/pj , 0) is discrete, and so its homology is easy to compute: it’s the free (E/mr)∗-module on

that set. The ring structure of Z/pj gives us a ring-ring structure

(E/mr)∗K(Z/pj , 0) ∼= (E/mr)∗[Z/pj ].

This is a truncated polynomial algebra under the ∗-product, generated by the homology class [1]− [0]. The

homology of a truncated polynomial algebra is a well known calculation; we write x for [1]− [0] in

H∗,∗(E/m
r)∗K(Z/pj , 0) ∼= Λ[(x)]⊗ Γ[(x(p−1)pj−1

| xp
j−1

)].

We have already computed the Hopf algebra (E/mr)∗BZ/pj , and so we understand both the E2 and

E∞ pages in our spectral sequence; this gives us enough information to calculate what the differentials

must be, as for Ravenel and Wilson [8, Lemma 6.10]. In a bar spectral sequence with E2 page of the form

E2 ∼=
⊗

i∈I Λ[xi] ⊗ Γ[yi], the only possible nonvanishing differentials are of the form d2pni−1y
[pni ]
i = axj ,

inducing dy
[k]
i = axjy

[k−pni ]
i . If these generate all the differentials, then the E∞ page is generated by the

classes y
[pj ]
i , 0 ≤ j < ni; again, see Ravenel and Wilson [8, Lemma 6.9].

Continuing to write x for [1]− [0] in (E/mr)∗[Z/pj ], this determines the only differential in our spectral

sequence to be

d2pnj−1(xp−1 | x)[pnj ] = c(x)

for some c ∈ (π∗E/m
r)×. This means that the ideal generated by (x) and (xp−1 | x)[pk] for k ≥ nj vanishes,

and what’s left is generated by y[pk] for k < nj.

A priori, the interaction of the bar spectral sequence with the multiplicative structure of the target is

potentially nontrivial — and in our case this is so. In particular, the product of elements on the E∞ page

may appear in a lower filtration degree than the product of the individual filtration degrees. Figuring this out

is referred to as the multiplicative extension problem. In our case, we’ve seen that the classes y[pnj+r] vanish

for r ≥ 0, but this doesn’t mean that the class represented by (y[p(n−1)j ]) on the E∞ page has vanishing

pth ∗-power. Indeed, our previous analysis of (E/mr)∗BZ/pj has already produced representatives for a∗p(k);

these solve the multiplicative extension problem in our spectral sequence.

3.2.2. The first inductive step. Now we want to produce a result for (E/mr)∗K(Z/pj , q) by induction on q

and j, but the complexity of the argument necessitates that we first restrict to j = 1 and induct on q alone,

leaving j for later. Even with this reduction, the computation with the bar spectral sequence is quite involved

and our inductive hypothesis quite lengthy. We will require all of the following hypotheses of Theorem 4:

Theorem 4: The structure of the bar spectral sequence

H∗,∗(E/m
r)∗K(Z/p, q − 1)⇒ (E/mr)∗K(Z/p, q)

is described as follows:

(1) For I a multi-index of length q− 1, let aI denote aI1 ◦ · · · ◦ aIq−1
(for I = (), set a() = [1]− [0]). The

E2 page itself is computed to be

E2
∗,∗
∼=

 ⊗
0<I1<···<Iq−1≤n−1

Λ[(aI)]

⊗
 ⊗

0≤I1<···<Iq−1<n−1

Γ[γI ]

 ,

where γI reduces to (a
∗(p−1)
I | aI) in H∗,∗K(n)∗K(Z/p, q − 1).3

(2) Let 0 ≤ I1 < I2 < · · · < Iq < n, and write Ĩ = (I2, . . . , Iq). Then aI is represented in E∞∗,∗ by

γ
[pI1 ]

Ĩ−I1−1
, modulo decomposables.

(3) Let 0 ≤ I1 < I2 < · · · < Iq−1 < n − 1 and set J = (I2 − I1 − 1, . . . , Iq−1 − I1 − 1, n − 2 − I1). The

differentials in the spectral sequence are determined by

d2pi1+1−1γ
[pi1+1]
J = rI(aI+1),

3In the case r = 2, we computed γI = (a
∗(p−1)
I | aI)− vIq−1+1v

−1
n (a

∗(p−1)
(I1,...,Iq−2,n−1)

| a(I1,...,Iq−2,n−1)).
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for various units rI .

The Hopf algebra structure of (E/mr)∗K(Z/p, q) is described as follows:

(1) As an algebra, (E/mr)∗K(Z/p, q) is described as the free (π∗E/m
r)-algebra on the aI , modulo the

action of the Frobenius.4

(2) (E/mr)∗K(Z/p, q) is free as an (π∗E/m
r)-module.

(3) The map F (aI) = a∗pI acts as a Frobenius, with Verschiebung determined by V (aI) = aI−1 whenever

aI−1 makes sense and V (aI) = 0 otherwise.

The work above demonstrates Theorem 4 for q = 1. Selecting a q > 1 and assuming the above are true

when q − 1 is substituted for q, we will outline a partial proof for each of these in turn in this section.

Theorem 5: The bar spectral sequence H∗,∗(E/m
r)∗K(Z/p, q − 1)⇒ (E/mr)∗K(Z/p, q) exists.

Proof. In Morava E-theory, we have a Künneth spectral sequence of type

Torπ∗E/m
r

∗,∗ ((E/mr)∗K(Z/p, q)∧s, (E/mr)∗K(Z/p, q)∧t)⇒ (E/mr)∗K(Z/p, q)∧(s+t).

This is constructed for an S-algebra spectrum by Elmendorf, Kriz, Mandell, and May [3, Ch. IV, Thm. 4.7].

The derived parts of Tor vanish in the presence of free modules, so our assumption that (E/mr)∗K(Z/p, q−1)

is an even-concentrated, free (E/mr)∗-module shows that the spectral sequence collapses, which yields the

desired isomorphism. This ensures the existence and convergence of the bar spectral sequence. �

Tate [9] specifies a method for attaching to any ideal I of a Noetherian ring A a differential graded-

commutative A-algebra which is free as an A-module and has H∗A = A/I concentrated in degree 0. In our

case, we have A = (E/mr)∗K(Z/p, q − 1), which is finite and hence Noetherian, and

I = 〈aI | 0 ≤ I1 < · · · < Iq−1 < n〉,

which has A/I = π∗E/m
r. We begin by introducing for each 0 ≤ I1 < · · · < Iq−1 < n an exterior class

eI of degree 1 with deI = aI . From these 1-chains, we can build two kinds of 1-cycles. First, the relator

aI ∗ aJ = aJ ∗ aI gives rise to the cycle eIaJ − aIeJ . This is easy to deal with; we calculate

d(eIeJ) = (deI)eJ + (−1)|eI ||eJ |eI(deJ)

= aIeJ − eIaJ .

Second, we have a complicated expression for a∗pI in terms of lower ∗-powers of other aI′ ; this gives rise

to a 1-cycle by taking the difference and replacing one aI′ with an eI′ in each summand.5 This is a genuine

obstruction to the exactness of d, so we introduce divided power generators fI so that df
[1]
I hits this 1-cycle.

This completes our resolution.

To compute Tor(E/mr)∗K(Z/p,q−1)
∗,∗ (π∗E/m

r, π∗E/m
r), we tensor this resolution with π∗E/m

r, considered

as an (E/mr)∗K(Z/p, q−1)-algebra. This has the effect of deleting the elements aI from our resolution, and

our differentials become

deI = aI ≡ 0, and df
[1]
I ≡ −

∑
J

eJcI,J .

for various coefficients cI,J ∈ π∗E/mr.6
In the Morava K-theory case when r = 1, we have a∗p(n−1) = vna(0), and we immediately see that all the

elements of the form e(0,I2,...,Iq) and f
[1]
(I1,...,Iq−1,n−1) vanish when we take homology of this chain complex,

as they’re connected by a differential of the form

df(I1,...,Iq−1,n−1) = (−1)qvne(0,I1,...,Iq−1).

4When r = 2, a∗pI = vIq+1(−1)q−1a(0,I1+1,...,Iq−1+1), and hence (E/m2)∗K(Z/p, q) is generated by aI as an π∗E/m2-

module, modulo 〈aI − vIq+1(−1)q−1a(0,I1+1,...,Iq−1+1)〉. Something like this will still be true; the Frobenius really just acts

on the first component and shifts the others, so it boils down to whatever the Frobenius looks like on (E/mr)∗BZ/p.
5When r = 2, these cycles look like a

∗(p−1)
I eI + (−1)q−1vIq−1+1e(0,I1+1,...,Iq−2+1).

6When r = 2, we have df
[1]
I = (−1)q−1vIq−1+1e(0,I1+1,...,Iq−2+1).
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Something similar must occur for r > 1, but here we begin to run into problems with our poor control on

the −∗p map.

The core of the issue is that we need to guarantee that the “fresh” part of the −∗p map consists only

of elements which we can cancel off using the inherited −∗p map from K(n) on mr−1/mr. We have not

established this control. It seems that a map of spectral sequences may help force this to be the case, but

this has not yet been reasoned out.

Assuming that this is possible, the elements fI for I not of the above form can be corrected to cycles by

using γI with γ
[1]
I restricting to f

[1]
I in the case r = 1. Transporting these classes to the bar construction is

not hard; the same analysis of the relators can be applied there. Tate’s construction was primarily useful in

organizing the higher order homology classes. We have thus computed H∗,∗(E/m
r)∗K(Z/p, q − 1).

Now we need to understand the differentials in this spectral sequence. Recall our pairing

(E/mr)∗K(Z/p, q − 2)⊗ (E/mr)∗BZ/p ◦−→ (E/mr)∗K(Z/p, q − 1).

In the spectral sequence, this induces a map

H∗,∗(E/m
r)∗K(Z/p, q − 2)⊗ (E/mr)∗BZ/p ◦−→ H∗,∗(E/m

r)∗K(Z/p, q − 1)

compatible with the differentials in that ds(x ◦ y) = ds(x) ◦ y. This means that the differentials present in

H∗,∗(E/m
r)∗K(Z/p, q − 2) help determine the differentials in H∗,∗(E/m

r)∗K(Z/p, q − 1), which we can use

once we understand the action of the ◦-product on the bar construction, i.e., on the E1 page.

Theorem 6: Let 0 ≤ I1 < · · · < Iq−1 < n be a multi-index and set Ĩ = (I2, . . . , Iq−1). Then we calculate

γĨ ◦ a(I1+1) = (−1)q−2γI .

Non-proof. Ravenel and Wilson use a degree argument, which we believe can be extended to the case of

E/m2; extending to arbitrary r > 1 seems much less feasible. They also note that they don’t think theirs is

the “right” way to handle this lemma, but we’ve had no better luck so far. �

But, once this has been handled, the following results should be straightforward:

Theorem 7: For I as above, we have γ
[pi]

Ĩ
◦ a(I1+i+1) = (−1)q−2γ

[pi]
I , modulo decomposables.

Theorem 8: Let 0 ≤ I1 < · · · < Iq < n, and let Ĩ = (I2, . . . , Iq). Then (−1)q−1γ
[pI1 ]

Ĩ−I1−1
supports no

nonvanishing differentials. Moreover, this class represents aI in the E∞ page.

Theorem 9: Select a multi-index satisfying 0 ≤ I1 < · · · < Iq−1 < n−1, and set K = (I2, I3, . . . , Iq−1, n−1).

Then

d2pI1+1−1γ
[pI1+1]
K−I1−1.

Proofs. These proofs are straightforward generalizations of several theorems of Ravenel and Wilson [8,

Lemma 9.6-7]. �

We have now completely described the structure of the bar spectral sequence, so we can read off what

it says about (E/m2)∗K(Z/p, q). For 0 ≤ I1 < · · · < Iq < n, the element aI certainly does appear in

(E/m2)∗K(Z/p, q). The Verschiebung can be described as V (aI) = aI−1 using ◦-equivariance, and its

interaction with the Frobenius describes the map −∗p by lifting the Frobenius from (E/mr)∗BZ/p. Finally,

the coproduct description follows from Hopf ring properties. Each aI is represented in E∞∗,∗ as explained in

the result above, and this computation of −∗p solves the multiplicative extension problem.

4. Future work

In addition to the gaps above, we list some questions left open by our investigation.

4.1. The second inductive step. Once the details above have been settled, the case j > 1 should follow

quickly, and this will complete the description of the tower of algebras (E/mr)∗K(Z/pj , q). Computing the

inverse limit will accomplish our original goal.
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4.2. Arbitrary square-zero deformations of derived local rings. Once we establish what kind of

control we need to complete the original argument, one generalization could be to work with an arbitrary

derived square-zero extension rather than E/mr → E/mr−1. Here are some conjectural theorem statements:

Theorem 10: Let R be a complex-oriented ring spectrum so that π−∗R is an Fp-algebra and CP∞R is p-

divisible. Then (BZ/pj)R is described by the kernel of the map −_ [pj ]R(x) : R∗CP∞ → R∗CP∞, where

x is the element of the complex orientation. (In fact, this ought to admit a coordinate-free description.)

Theorem 11: Let R, R0, and k be E∞-rings so that π∗R and π∗R0 are complete, local, augmented π∗k-

algebras. Let R → R0 be a map of complex oriented, E∞-ring spectra inducing a surjective, continuous,

formally smooth map π∗R � π∗R0 of rings, whose kernel a square-zero ideal M ⊂ π∗R. If K(Z/pj , q)R0 is

described by R-W, then so is K(Z/pj , q)R.

4.3. Connections and parallel transport. It would be nice to think of ΛqCP∞En
[p∞] as being like a

bundle over the Lubin-Tate space. Ravenel and Wilson computed the fiber of this bundle at the geometric

point corresponding to K(n), and what we are now trying is to use deformations to compute the rest of

this bundle; this is going to be very much like recovering a vector bundle from a connection on a manifold

without monodromy. It would also be nice to flesh out exactly what “bundle” means here, how the map

E/mr → E/mr−1 acts like bundle restriction, and how our computation is limiting the available connections

on the base scheme.

4.4. Spectral sequences from algebraic geometry. It may be possible to produce the bar spectral

sequence on the algebraic side, then to use a map of spectral sequences to control the topological bar spectral

sequence.

4.5. Dieudonné crystals and (En)∗K(Z, ∗). In the language of Dieudonné crystals, the move from Fp-
algebras to Z(p)-algebras has to do with the presence of Hodge structure; phrasing our results in the language

of crystals may provide insight on what to do here. See [1, 5].

4.6. Cohomology theories associated to p-divisible groups. Once the case of Morava E-theory has

been sorted, Lurie has recently produced a method for constructing cohomology theories associated to p-

divisible groups with nontrivial étale part; this is discussed intelligibly by Goerss [4], but the real reference

is somewhere in Lurie [7]. Translating our results to his derived setting is an ultimate, distant goal.
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