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Major topic: Algebraic Topology (Constantin Teleman, geometry)

Homotopy: The fundamental group. Covering spaces and their automorphisms. Van Kampen. Classi-
fying spaces. Higher homotopy groups. Eilenberg-Mac Lane spaces. Relative homotopy. Fibrations and the
long exact sequence. The Freudenthal suspension theorem. Postnikov-Whitehead decomposition. White-
head’s theorem. Milnor’s theorem. Homotopy limits and colimits of spaces. Fiber and cofiber sequences in
the un/stable categories.

Homology: Axiomatic co/homology. Singular and simplicial co/homology. Cellular co/homology. Ex-
cision. Mayer-Vietoris. The Hurewicz isomorphism. Kiinneth and universal coefficient theorems. The stable
category. Examples of extraordinary theories, e.g. KU. Brown representability. Bott periodicity. The
Atiyah-Hirzebruch spectral sequence. Computations with the Serre spectral sequence. The Steenrod algebra
and its dual. Cup and cap products. The James construction, and the statement of James’ theorem. The
statement of the Dold-Thom isomorphism. The Gysin sequence of a spherical bundle.

References: Allen Hatcher’s Algebraic Topology. Robert Switzer’s Algebraic Topology: Homology and
Homotopy.

Major topic: Homological Algebra (Martin Olsson, algebra)

Category of chain complexes on an abelian category, its homotopy category, and its derived category.
Cones, cylinders, and suspensions. The structure of a triangulated category. Derived functors. Injective
and projective resolutions. The functors Ext, Tor, and Rlim for categories of modules, and their properties.
The relationship between the Ext functor in an abelian category and extensions. The ring structure on
Tor®(R/N, R/M). Spectral sequences associated to filtered complexes and bicomplexes. Hypercohomol-
ogy. The model category structure on nonnegatively-graded chain complexes. Simplicial methods in homo-
logical algebra: the Dold-Kan correspondence for abelian groups; simplicial rings; and the André-Quillen
co/homology of rings (definitions and computations).

References: Charles Weibel’s Homological Algebra.

Minor topic: Computational Complexity (Christos Papadimitriou, applied mathematics)

Definitions and containments of L, NL, P, NP, PH, and PSPACE. Hierarchy theorems for DTIME,
NTIME, and DSPACE. N P-completeness of SAT, 3-SAT, subset sum, vertex cover, and Hamiltonian
cycle problems. PSPACE completeness of TQBF and generalized geography games. Karp-Lipton. Savitch’s
theorem. Immerman-Szelepcsényi. Interactive proofs and IP = PSPACE.

References: Michael Sipser’s Introduction to the Theory of Computation. Sanjeev Arora and Boaz Barak’s
Computational Complexity: A Modern Approach. Christos Papadimitrou’s Computational Complexity.



What follows is a rough transcription of what happened during my qualifying exam. The speakers are
labelled as:

e MO: Martin Olsson

e CP: Christos Papadimitriou
e EP: Eric Peterson

e CT: Constantin Teleman

A reader should note that this transcript may make me sound more prepared than I actually was. There
were several long pauses and suggestions from the audience on what I should be doing next, and I was
dangerously stumble-y during the computational complexity section. Some advice for students looking at
this in preparation for their own quals would be to very deliberately bite off less than you can chew when
writing your syllabus.

1 Algebraic Topology

CT: Compute the fundamental group of a closed, oriented surface.

EP: A closed oriented surface ¥ decomposes as a connected sum of tori, and we induct on the number
of tori in the sum. In the genus 2 case, for instance, we have a pushout square of spaces with corners
handle < circle — handle and handle — ¥ < handle. Van Kampen states that this translates to a pushout
of fundamental groups. The fundamental groups of the two handles and the circle are known: they are Z x Z
and Z respectively. The pushout of these groups is an amalgamated free product:

mY = (Z*Z)x (Z=+7Z)/(aba't/ ~ cdd'd").

CT: Do you really mean cdc'd’, or might it be cd’c’d? These generate different subgroups. Abstractly it
doesn’t matter, but let’s draw these generators on the surface and see what we get.

EP: Start by drawing a gluing diagram for a torus and puncturing its center. Then, the loop that winds
around the puncture point deforms out to the loop that runs around the edges. In the glued-together picture
of the surface, this corresponds to taking the loop that winds around the disk removed for the connected
sum, marking it in four points, and pulling each of these quartered segments along the torus to a, b, a’, and
b’ respectively. [I did this in a way so that the obvious orientations on the gluing diagram and my surface
didn’t match, which caused some confusion.] Then, we rotate this figure around to get the other handle,
and the same loops on this rotated surface look like so. The important thing, then, is that the loop around
the excised holes on the two handles have opposite orientations, and so with the loops as I've labelled them
here, we have (Z x Z) x (Z x Z) /(aba’t’ ~ (edd'd")").

MO: What happened to the basepoints in all of these calculations?

EP: Van Kampen’s theorem is really a statement about fundamental groupoids: a pushout of spaces turns
into a pushout of II;-groupoids. If we pick our pushout to be one of pointed spaces, so that the basepoint
lives in both decomposition pieces and their intersection, we can trade for a pushout of fundamental groups
rather than groupoids. Additionally, I've been drawing the gluing seams on the handles as loops that don’t
touch this basepoint; I can pick any path from the excision edge to the basepoint to get the isomorphism I
want. This doesn’t ruin the argument I just gave if I pick the same, rotated path on the other handle.

CT: Describe the Atiyah-Hirzebruch spectral sequence.

EP: A CW-complex is a space that admits a filtration by subspaces sk”, where sk™ is formed out of sk™ !
by attaching n-cells, and such that the original space is the colimit of this filtration. The filtration quotients
(i.e., the homotopy cofibers of the inclusion of one filtration level into the next) are bouquets of spheres, and
so when we apply a homology functor E to the filtration we produce a filtration spectral sequence whose
El-page is as described and whose E?-page is the cellular homology of the space with coefficients in E, (pt).



CT: For a general pair of spaces X and Y, describe a spectral sequence computing 7, Maps(X,Y).
EP: One thing we can do is filter Y by a tower of fibrations — for example, the Postnikov-Whitehead
tower gives us a tower
o= Yn) =2 Y2y 2 YD) Y,

where each map occurs as the fiber of a map to an Eilenberg-Mac Lane space. A map X — Y (n) lifts
through Y (n + 1) — Y (n) if and only if the composite X — Y (n) — K(m,Y,n) vanishes. So, by general
spectral sequence machinery, we get a spectral sequence with F'-page given by

Maps(XP X, K (7Y, q)) = Maps(X, QP K (7,Y, q)) = Maps(X, K(7,Y,q — p)) = H"P(X; 7,Y).

CT: Can you compare these two spectral sequences?

MO: I see that of them arises from filtering the source, and the other from filtering the target; are those
comparable?

EP: Putting the two together should give you a bicomplex, and so maybe stably, so that m, is both a
homotopy- and a homology-functor to settle Martin’s doubts, we get a pair of spectral sequences related by
general bicomplex machinery. Would you like to work this out?

CT: No, thanks.

2 Homological Algebra

MO: Compute Tor%/p2 (Z/p,Z/p). [He also asked for Ext, but we never came back to it.]
EP: We build a free (and so projective) resolution of the complex 0 — Z/p — 0 by taking

Bz Bzt L np? —o,
with the map Z/p? £ Z/p relating the two. Tensoring this resolution with Z/p over Z/p?® gives the complex

- Z)p S 7/p S 7)p— 0.

Everything is in the kernel of these differentials and nothing is in the image, so the Tor groups are Z/p in
all nonnegative dimensions.

MO: Your syllabus says that this has a ring structure. Can you compute it in this example?

EP: The idea is that we can do better than resolve by a complex of free modules: we can resolve by a
whole DGA. In fact, all the groups are going to be the same, and we just need to give names to the things
in the resolution we’ve already constructed. We’ll write 1 for the generator of Z/p in degree 0, and b for the
generator of Z/p in degree 1, so that d(b) = 1. We have another generator in degree 2 to name, but b? is
no good, since b-b = —b-b = 0 by graded-commutativity, so we’ll call it a!'! instead with d(all) = b. The
generator in degree 3 is named: it is al'lb with d(allb) = b-b+al'l -1 = al'). The name (al')? is only maybe
good for the generator in degree 4, since d((al'))?) = 2al!l, which may vanish if p = 2. Even if it is a good
name, we will run into this problem eventually, with d((a[')?) = p(al)(p — 1) = 0, at which point we’ll
introduce a new generator al?!. This process is exhaustive, and in the end the DGA wraps up into the tensor
product Az,2[b] ® I'z/,,2[a] of an exterior factor and a divided-power factor, with al"l . qlm) = (”J;m)a[”‘Lm].

Then, we tensor this DGA with Z/p to get Tor%/p2 (Z/p,Z]p) = Az;plb] @ Tz p[al.

MO: Where does this ring structure come from, what theorem are you quoting?

EP: The theorem that Tor® (R/n, R/m) supports a ring structure basically says that this construction
exists: R/n has a surjective map R — R/n, which lets us start the process, and then we continue from there
using the recipe described above.

MO: Is it unique? What would happen if I used a different DGA?

EP: I actually don’t know. I know that in Cartan-Eilenberg there’s a section on how to compute this
product without invoking the DGA construction, so presumably there is a stronger uniqueness statement. I
don’t know it, though.



CT: Produce an example of a tower A, with nontrivial R! lim(A,).

EP: I don’t have an example on hand, but we can try to work one out. Let’s start by recalling an explicit
construction of the Rlim' functor for abelian groups: given a tower of abelian groups A,, we can form a
map A : J], A; — [, Ai by the formula

A("‘7an7an717"'7a27a1) = ("';a’n_an+17an71_an7'~'7a2_a37a1 _a2)7

where some elements are pushed down one level to live in the same group. Then, a short exact sequence of
towers 0 — A, — B, — C, — 0 gives a short exact sequence of groups 0 — [[, 4; — [[, Bi = [[,Cis — 0,
which maps to itself by applying these A maps to each tower. The snake lemma gives a sequence

0 — ker Ay — ker Ag — ker A¢ — coker Ay — coker Ag — coker Ag — 0,

which is the homological sequence of lim and lim! that we wanted. Hence, we want a tower A, with nontrivial
coker A 4. Obviously onto maps are no good; that’s covered by Mittag-Leffer. The zero map is also no good.
Maybe a sequence of injective maps, then, is the right thing to do, like the tower - - - 27 2 7. We can
write out a sequence of arithmetic expressions and try to guess an element not in the image. . .

CT: That sounds hard to do; I think truncating this tower at any finite stage when trying to solve the
arithmetic expressions will not show what’s going on. How might this sequence appear in topology?

EP: The reason a topologist cares about Rlim' is that it appears in the Milnor sequence. For a directed
system of spaces X4, it is a theorem that homology plays nice with the colimit: H, colim, X, = colim, H, X,.
This is not so for cohomology, where we instead have the short exact sequence

0 — Rlim'H" "X, — H" colim, X, — lim . H" X, — 0.
Another way to compute this middle term is the universal coefficient sequence
0 — Ext'(H, 1X,7) - H"X — Hom(H, X,Z) — 0.
Let’s assume that we have a sequence of spaces X, whose homology is Z, concentrated in dimension n — 1,
and with connecting maps inducing multiplication by p. We start calculating these groups:
e Hom(H,X,Z) = Hom(0,Z) vanishes.
e H, 1X =H,_;colimX, = colim(Z Loz .. ) =p1Z.

e To compute the Ext group, trying to resolve p~'Z by projectives will land us right back where we
started, so we replace Z by the complex of injectives 0 — Q — Q/Z — 0. Then, Hom(p~'Z,Q) = Q.
There is an evaluation map ev; : Hom(p~1Z,Q/Z) — Q/Z which acts by evi(f) = f(1). A point
in Hom(p~1Z,Q/Z is determined by where it sends the elements 1,p~%, p~2 ..., subject to the single
constraint that p"f(p~™) = f(p"~™); using this, one checks that kerev; = Z). Finally, the map
¢:Q — Q/Z induces a map from the exact sequence 0 — Z — Hom(p~'Z,Q) == Q/Z — 0 to the
exact sequence 0 — Z7 — Hom(p~'Z,Q/Z) £ Q/Z — 0, which is inclusion on the left-most factor,
¢, on the middle, and equality on the right. Applying the snake lemma to this diagram yields the long
exact sequence

0—0— kerc, — O—>Z;\/Z—>cokerc* —0—0,

giving Ext’(p~'Z,Z) = kerc, = 0 and Ext'(p~'Z,Z) = cokerc, = Zj /7. [It turns out that
Hom(p~'Z,Q/Z) = Q,, but this is not necessary to do the Ext calculation.]

o lim, H"X, = limy(--- & Z & Z) = 7).
Assembling this, we have a short exact sequence
0— Rlim'(--- 525 2Z) - Z)/Z - Z) -0,

which forces nontriviality of the Rlim" term. Such a sequence of spaces is given by localizing the circle away
from p.



3 Computational Complexity

CP: State the containments of the complexity classes listed on your syllabus.

EP: We have a tower L C NL C P C NP C PSPACE. PH contains NP, but does not contain
PSPACE.

CP: Insert Y5 into this tower.

EP: X, consists of the class of alternating Turing machines which are allowed polynomially many dis-
junctive branchings to start and then can continue using conjunctive branchings. It therefore contains NP,
which consists of Turing machines which are allowed polynomially many disjunctive branchings and then no
conjunctive branchings.

CP: State Karp-Lipton and Immerman-Szelepcsényi.

EP: Karp-Lipton states that if SAT can be solved by a boolean circuit whose size is polynomial in the
size of the SAT problem, then the polynomial hierarchy collapses and ¥ = PH. Immerman-Szelepcsényi
states that NL = coN L, which you show by demonstrating that PATH is in NL, then adapting to the
general case.

CP: I see you have a probabilistic complexity class listed here: IP. Where does I P fit into the tower?

EP: 1t is equal to PSPACE.

CP: Can you prove this?

EP: To show PSPACE C IP, we take the TQBF problem, which is PSPACE-complete, and produce
an interactive proof protocol that solves it. The main idea of the proof is to convert a totally quantified
boolean formula with an arithmetization: a number which vanishes if and only if the formula is unsatisfiable.
To do this, we take our formula and replace all instances of the boolean variable z; with the polynomial
indeterminate y;, all instances of Z; with (1 — y;), A with -, V with +, Va; with Hmj:(),l’ and Jz; with

217:071. The verifier transmits this expression to the prover, who calculates the numeric value of the
expression, who strips off the leading quantifier from the expression and calculates the resulting polynomial,
and who transmits both of these pieces of information back to the verifier. The verifier evaluates the
polynomial at 0 and at 1, either adds or subtracts the values as indicated by the removed quantifier, and
checks that his answer matches the prover’s. Then, the verifier selects either 0 or 1 (whichever makes the
polynomial nonzero, or randomly if either works), makes the substitution into the boolean expression, and
transmits that new expression back to the prover. The cycle repeats until all quantifiers are removed and
a complete set of satisfying assignments is found. There are a lot of details omitted here; for instance, we
have to make sure that these polynomials never get too large. Should we go through them?

CP: No, that’s all right. What about the other direction, is there anything to say?

EP: Yes, there’s a bit to say, but it’s not so bad. The main idea is that once you’re given a description of
a machine in 7P, you can in polynomial space compute what the odds are that it accepts some given input,
by propagating values through a reachability tree.

CP: Good. Suppose we have a circuit which has n inputs and n outputs. State where in the tower the
decision problem falls of whether this circuit computes the successor function mod 2™.

EP: We can test whether for any particular input we get the right output, but it is hard to do all the
input simultaneously. That it’s easy to check that the circuit fails to give the right function means that
it belongs to coNP. Since each number up to 2" takes up only log2™ = n space, the problem is also in
PSPACE.

CP: Now, do the same for the decision problem of whether the function represented by the circuit is
onto.

EP: If the function represented by the circuit is onto, then it’s in fact a bijection, and so the reachability
graph, defined to have nodes length n strings of digits and an edge between n and m if C(n) = m, is a
disjoint union of cycles if it’s indeed onto. If it’s not, then there’s some vertex of degree at least 3, and
correspondingly two inputs ny and ny with C(n1) = C(nz2). Given two such numbers, it’s quick to check
that the circuit fails to be onto, and so this is again in coNP. We can also enumerate all such pairs of
numbers, this time using 2n space instead of n space, hence it is again in PSPACE.



CP: Do the same for the decision problem of whether sufficient iterations of the machine applied to the
string of all Os will yield the string of all 1s.

EP: This is an actual reachability problem, using the graph just described. Reachability is achievable in
NL, but our graph has 2™ nodes, so this reduction tells us checking this can be done in NPSPACE. But,
because NPSPACE(f(n)) = PSPACE(f(n)?) and polynomials are closed under squaring, NPSPACE =
PSPACE and this decision problem is a PSPACE problem.

CP: Consider the class NTIM E(n?). How are these related to the complexity classes P and NP?

EP: Certainly NTIM E(n?) is a subset of NP. It is not known whether P C NTIM E(n?) or the other
way around. Either is possible, in fact; if P = NP, for example, then NTIM E(n?) C P. The question is a
little more subtle than this, though, because of the hierarchy theorems for NTIME.

CP: OK, so is it possible that NTIM E(n?) = P?

EP: It isnot. NTIM E(n?)is a proper subset of N P, because, for instance, NTIM E(n?) C NTIM E(n*).
However, polynomials are closed under composition, and hence P is closed under polynomial-time reductions.
This is not true of NTIM E(n?), and so they cannot be equal.



