Math 25b Lecture Notes

Rohil Prasad

January 27, 2017

1 More Topology on \mathbb{R}

Last time, we proved:

Theorem 1.1. (Heine-Borel) The set [a, b] is compact.

This had the following corollary:

Corollary 1.2. (Bolzano-Weierstrass) Every sequence inside of a compact set has a convergent subsequence.

However, note that in the proof of Bolzano-Weierstrass we actually used the *converse* to the theorem.

Lemma 1.3. A compact subset of \mathbb{R} decomposes into a finite union of closed intervals.

We will actually first show the following statement.

Lemma 1.4. Compact sets are closed and bounded.

Proof. Suppose X is compact.

First, we show X is bounded. Consider the open intervals $U_n = (-n, n)$.

Since the sets U_n cover the real line, we find that the sets U_n cover X. Since X is compact, there exists i_1, \ldots, i_k such that U_{i_1}, \ldots, U_{i_k} cover X. Therefore, if we set $M = \max(i_1, \ldots, i_k)$, by definition U_M covers X. Since $U_M = (-M, M)$ we find that X is bounded.

Next, we show X is closed. Suppose for the sake of contradiction that it is not closed. Then, $\mathbb{R} - X$ is not open, so there exists a point $s \notin X$ such that for every $\varepsilon > 0$ the open interval $(s - \varepsilon, s + \varepsilon)$ has nonempty intersection with X.

Then, we can pick open sets $U_n = (-\infty, s - 1/n)$ and $V_n = (s + 1/n, \infty)$. The union of these sets is $\mathbb{R} - \{s\}$, so they form a cover of X.

Note that any finite subset of these will at best cover $\mathbb{R} - [s - 1/N, s + 1/N]$ for some large N. Therefore, there is no finite subcover and we arrive at a contradiction.

Next, we will prove the converse.

Lemma 1.5. Closed subsets of compact sets are compact.

Proof. Let V be a closed subset of a compact set X. Suppose that $\{U_{\alpha}\}$ is an open cover of V.

Since V is closed, $\mathbb{R} - V$ is open. Then, the collection $\{U_{\alpha}\} \cup \mathbb{R} - V$ is an open cover of X. This has a finite subcover by compactness of X. This finite subcover covers V, and is contained in the cover $\{U_{\alpha}\}$ of V if and only if it does not contain $\mathbb{R} - V$. However, $\mathbb{R} - V$ has zero intersection with V, so removing it from the subcover gives us a finite subcover of V.

This allows us to show:

Lemma 1.6. Closed and bounded subsets are compact.

Proof. If X is bounded, then we have X is contained in some closed interval [-N, N] for $N \in \mathbb{R}$. By Heine-Borel, [-N, N] is compact. Since X is now a closed subset of a compact set, it is compact by our lemma.

We proceed to define the topological concept of connectedness.

Definition 1.7. A disconnect of a subset $X \subseteq \mathbb{R}$ is a pair of nonempty open sets U, V such that X is contained in their union and $U \cap V = \emptyset$. A set is called **connected** if it does not admit a disconnect.

Lemma 1.8. A connected subset $X \subseteq \mathbb{R}$ takes the form of an interval.

Proof. We will show that if X "fails to be an interval" then it is not connected.

We make this rigorous by saying that X "fails to be an interval" if we can find $a, b \in X$ and another point y such that $a \leq y \leq b$ and $y \notin X$.

Set $U = (-\infty, y)$ and $V = (y, \infty)$. These form a disconnect of X, so X is not connected.

Next we combine this notion with our earlier discussion on closedness and boundedness.

Lemma 1.9. Closed bounded connected subsets in \mathbb{R} are closed intervals.

Proof. Since X is bounded, it has an infimum inf X and a supremum $\sup X$. Since X is closed, these belong to X.

Because X is connected, by the above lemma it must be equal to $[\inf X, \sup X]$.

Corollary 1.10. A compact subset of \mathbb{R} decomposes as a finite union of disjoint closed, bounded intervals.

Proof. To be completed later.