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1 More Topology on R

Last time, we proved:

Theorem 1.1. (Heine-Borel) The set [a, b] is compact.

This had the following corollary:

Corollary 1.2. (Bolzano-Weierstrass) Every sequence inside of a compact set has a convergent

subsequence.

However, note that in the proof of Bolzano-Weierstrass we actually used the converse to the

theorem.

Lemma 1.3. A compact subset of R decomposes into a finite union of closed intervals.

We will actually first show the following statement.

Lemma 1.4. Compact sets are closed and bounded.

Proof. Suppose X is compact.

First, we show X is bounded. Consider the open intervals Un = (−n, n).

Since the sets Un cover the real line, we find that the sets Un cover X. Since X is compact,

there exists i1, . . . , ik such that Ui1 , . . . , Uik cover X. Therefore, if we set M = max(i1, . . . , ik), by

definition UM covers X. Since UM = (−M,M) we find that X is bounded.

Next, we show X is closed. Suppose for the sake of contradiction that it is not closed. Then,

R − X is not open, so there exists a point s 6∈ X such that for every ε > 0 the open interval

(s− ε, s + ε) has nonempty intersection with X.

Then, we can pick open sets Un = (−∞, s− 1/n) and Vn = (s + 1/n,∞). The union of these

sets is R− {s}, so they form a cover of X.

Note that any finite subset of these will at best cover R− [s− 1/N, s+ 1/N ] for some large N .

Therefore, there is no finite subcover and we arrive at a contradiction.
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Next, we will prove the converse.

Lemma 1.5. Closed subsets of compact sets are compact.

Proof. Let V be a closed subset of a compact set X. Suppose that {Uα} is an open cover of V .

Since V is closed, R − V is open. Then, the collection {Uα} ∪ R − V is an open cover of X.

This has a finite subcover by compactness of X. This finite subcover covers V , and is contained in

the cover {Uα} of V if and only if it does not contain R−V . However, R−V has zero intersection

with V , so removing it from the subcover gives us a finite subcover of V . �

This allows us to show:

Lemma 1.6. Closed and bounded subsets are compact.

Proof. If X is bounded, then we have X is contained in some closed interval [−N,N ] for N ∈ R.

By Heine-Borel, [−N,N ] is compact. Since X is now a closed subset of a compact set, it is compact

by our lemma. �

We proceed to define the topological concept of connectedness.

Definition 1.7. A disconnect of a subset X ⊆ R is a pair of nonempty open sets U, V such that

X is contained in their union and U ∩ V = ∅. A set is called connected if it does not admit a

disconnect.

Lemma 1.8. A connected subset X ⊆ R takes the form of an interval.

Proof. We will show that if X “fails to be an interval” then it is not connected.

We make this rigorous by saying that X “fails to be an interval” if we can find a, b ∈ X and

another point y such that a ≤ y ≤ b and y 6∈ X.

Set U = (−∞, y) and V = (y,∞). These form a disconnect of X, so X is not connected. �

Next we combine this notion with our earlier discussion on closedness and boundedness.

Lemma 1.9. Closed bounded connected subsets in R are closed intervals.

Proof. Since X is bounded, it has an infimum inf X and a supremum supX. Since X is closed,

these belong to X.

Because X is connected, by the above lemma it must be equal to [inf X, supX]. �

Corollary 1.10. A compact subset of R decomposes as a finite union of disjoint closed, bounded

intervals.

Proof. To be completed later. �
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