
Homework #8

Math 25b

Due: April 26th, 2017

Guidelines:

• You must type up your solutions to this assignment in LATEX. There’s a template available on the
course website.

• This homework is divided into four parts. You will turn each part in to a separate CA’s mailbox on
the second floor of the science center. So, be sure to do the parts on separate pieces of paper.

• If your submission to any particular CA takes multiple pages, then staple them together. If you don’t
own one, a stapler is available in the Cabot Library in the Science Center.

• Be sure to put your name at the top of each part, so that we know who to score!

• If you collaborate with other students, please announce that somewhere (ideally: next to the problems
you collaborated on) so that we don’t get suspicious of hyper-similar answers.

Failure to meet these guidelines may result in loss of points. (Staple your pages!)1

1 For submission to Thayer Anderson

Problem 1.1. Let g : A → Rp be a differentiable function defined on an open A ⊆ Rn, such that Dg is of
rank p everywhere on M = g−1(0), which we then know to be a manifold. Let f : Rn → R be an auxiliary
differentiable function which we hope to optimize on M . Show that if a maximum or minimum of f on M
occurs at a ∈M , show that there are λ1, . . . , λp ∈ R such that

∂f

∂xj
(a) =

p∑
i=1

λi
∂gi
∂xj

(a).

Start by giving a geometric interpretation of this condition.

Problem 1.2. You can try to use Problem 1.1 to solve for such points a: the system of equations involving
λ give n equations in (n+ 1) unknowns, and then the restriction g(a) = 0 gives an additional equation. Try
to apply this idea in the following problem:

1. Let T : Rn → Rn be self-adjoint under the usual inner product, and suppose that in the usual basis
it takes the matrix form A = (aij), so that aij = aji. Set f(x) = 〈Tx, x〉, and show Dkf(x) =
2
∑n

j=1 akjx
j . By consider the maximum of 〈Tx, x〉 on Sn−1, show that there is x ∈ Sn−1 and λ ∈ R

such that Tx = λx.

2. If V = {y ∈ Rn | 〈x, y〉 = 0}, show that T (V ) ⊆ V and T : V → V is self-adjoint.

3. Show that T has a basis of eigenvectors.

1This version of the homework dates from April 25, 2017.
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2 For submission to Davis Lazowski

Problem 2.1. 1. In class, we claimed that the zero-locus of a sufficiently nice function formed a manifold.
Show a partial converse to this: for M ⊆ Rn a k–manifold and x ∈M a point on it, show there exists an
open neighborhood A ⊆ Rn of x and a differentiable function g : A→ Rn−k such that g−1(0) = A∩M
and the derivative of g is of rank (n− k) on this locus.

2. If M ⊆ Rn is an orientable (n−1)–manifold, show that there is an open set A ⊆ Rn and a differentiable
function g : A→ R so that M = g−1(0) and g has nonvanishing derivative on M . (This globalizes the
previous problem: use orientation and partitions of unity to sew together the local solutions.)

Problem 2.2. Suppose that M ⊆ Rn is a compact (n − 1)–manifold, and let Mε be the following set of
points:

Mε =

{
x ∈ Rn

∣∣∣∣ there is a y ∈M such that x = y ± εny,
where ny is the normal vector to M at y

}
.

1. Show that ε can be taken small enough so that Mε is also a manifold.

2. Sketch what Mε looks like for the Möbius band. Is the resulting manifold orientable?

3. Inspired by this, show in general that Mε is always orientable, even if M is not.

3 For submission to Handong Park

Problem 3.1. Show that a tangent space of a manifold TxM consists exactly of tangent vectors (D0γ)(1)
where γ : (−ε, ε)→M is a curve in M with γ(0) = x.

Problem 3.2. Show that Stokes’s theorem for manifolds can fail if the manifold is not compact. (Hint: find
a manifold M that uses noncompactness to achieve ∂M = 0.)2

Problem 3.3. In the course of solving Practice Midterm #2.2, you found a way to (recursively) express the
volume of the unit ball in Rn. Use the divergence theorem to relate the volume of the unit ball in Rn to the
(n− 1)–dimensional area of the unit sphere in Rn. You will probably want to make use of the (n− 1)–form

((v1, . . . , vn−1) ∈ TxRn) 7→ det(v1| · · · |vn−1|x).

4 For submission to Rohil Prasad

Problem 4.1. Consider the element ω ∈ Ω2R3 defined by

ω =
x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

(x2 + y2 + z2)3/2
.

1. Show that ω is closed.

2. Let Sr = {v ∈ R3 : ‖v‖ = r} be the sphere of length r vectors, a 2–manifold. Verify the formula

ωp(h1, h2) =
〈h1 × h2, p〉
‖p‖3

,

and conclude that ω restricted to Sr is r−2 times the volume element.

2If you’re feeling really feisty, you should spend a little bit imagining how you could modify our set-up to eliminate this
behavior. The problem is that your example M wants to have boundary, but the place where the boundary belongs escapes
Rn. How could you modify Rn itself?
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3. Make the calculation
∫
Sr
ω = 4π, and conclude that ω is not exact. This element is the analogue of dθ

in R2 \ {0}, so we re-notate ω as dΘ.

4. Let p ∈ R3 be any point and let h ∈ TpR3 be a tangent vector collinear the origin, i.e., h = λp for some
λ ∈ R. Show dΘp(h, h′) = 0 for any h′ ∈ TpR3. Defining a generalized cone to be a manifold which is
a union of rays through the origin (cf. N in Figure 5-10 in the book), show that dΘ integrated over a
generalized cone always gives 0.

5. Suppose a manifold M has the property that every ray through the origin intersects M exactly once.
Define the generalized cone through M , C(M), to be the collection of these rays. The solid angle
subtended by M is defined to be the area of C(M) ∩ S1 (or, equivalently, r−2 times the area of
C(M) ∩ Sr for any r). Prove that the solid angle subtended by M can be computed by∫

M

dΘ.

(Note that this integral does not have a cone in it.) (Again, look at Figure 5-10 for a clue.)
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