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ABSTRACT. These are companion notes for a slide lecture I gave about the works of
Robert Langlands to an audience of experimental physicists. They are, more or less, the
words I said aloud.

1. INTRODUCTION

My goal in this talk is to describe to you the life and times of Robert Langlands, Abel
Prize laureate for this calendar year. To set the stage, the Abel Prize is the most pres-
tigious award given out in mathematics. There another prize, the Fields Medal, which
is more forward in the scientific-public’s consciousness, and which is often compared to
the Nobel Prize in the sciences, but which has some peculiarties that separate it from the
Abel Prize. The Fields Medal is awarded based on the strength of a single, crystallized
accomplishment: if someone resolves a conjecture that has stood open for decades and is
known to have important consequences for other areas of mathematics, then that’s the
kind of thing that puts them in the running for the Fields Medal. It also carries a quirk:
the Fields Medal is limited to those of age 40 and below.

By constrast, the Abel Prize is awarded based on the merit of a lifetime of work. The
sort of person who wins the Abel Prize is the sort of person whose name is still appearing
in math textbooks a century later, which is something that may or may not be true of a
Fields Medalist. By consequence, if you want to judge someone’s lifetime of work, you
have to wait until they’re old enough to tell, and so there’s correspondingly no age limit
imposed on the Prize—and, indeed, the average age of the 19 recipients thus far is 72.
Additionally, it’s difficult to accomplish a lifetime of such exceptionally important work
without having also proven some amazing theorems, and so it’s quite often been the case
that by the time someone wins an Abel Prize, they’ve already won a Fields Medal.

In Langlands’s case, he actually had a sense of what he was going to do with his life
in his 30s, and he wrote down his vision in a letter to another famous mid-20th century
geometer, Andre Weil. His 17 page research program was prefaced by the following:

“In response to your invitation to come and talk I wrote the enclosed
letter. After I wrote it I realized there was hardly a statement in it of
which I was certain. If you are willing to read it as pure speculation I
would appreciate that; if not—I am sure you have a waste basket handy.”

———Robert Langlands
You should read this in its embarrassed context: mathematicians are trained to speak only
hyper-rigorously, only in terms of things they can prove, and then only in terms of their
proofs. One isn’t supposed to write 17 pages of unfounded, fantastical conjecture and
address it to a famous geometer. Nonetheless, this is the material that he (and much of
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the rest of the mathematical world!) pursued for the rest of his life, and it’s the material
for which he was ultimately awarded the most prestigious prize in mathematics.

X

Additionally, before we really get started, I should say a few things about what this
talk is and what it isn’t. I’d like to start with this quote:

“Mathematics is the art of giving the same name to different things.”
———Henri Poincaré

Poincaré meant something very precise when he said this. As a mathematician, when
you begin your investigations into something, you typically have a very clear idea of
what you’re setting out to probe: you’re going to understand everything there is to know
about the Euclidean plane; or you’re going to figure out what the deal is with algebraic
equations; or whatever. As you start proving theorems, you look over at what your friend
is doing, and you notice that a bunch of your theorems look awfully similar: you can
perform a kind of word-substitution on them and trade all of your theorems for theirs,
and vice versa. Once you’ve noticed this, then the game is really on: the real object
of pursuit is the explanation as to why these seemingly disparate fields are, in fact, the
“same”.

This is why the following quote is so striking:
“...The Langlands Program is a Grand Unified Theory of mathematics.”

———Edward Frenkel
Robert Langlands’s work has this property in spades. As inspiring as this is, it should also
have a note of foreboding: mathematics is a very broad subject, and so a “Grand Unified
Theory” will necessarily have to cover a lot of ground. Accordingly, this talk may feel
like a bit of a whirlwind. Additionally, this talk covers an area of modern mathematical
research, and so the material is quite dense. If you were to stop the talk on a particular
slide and pour five years down whatever rabbit hole we’re currently circling, you’re liable
to end up with a PhD. You’re thus likely to feel lost at times, but I hope you hang on for
the ride, since the views are beautiful all the same. On top of that, I have a math PhD, but
it’s not in any of these fields—and so my understanding of some of the points I’ll present
is rather superficial. I’ve done my best to arrange the material in a way that makes sense
to me, and I hope that some of this transfers to the audience.

Finally, as a warning to any true mathematicians reading this document, I have cer-
tainly fudged the truth where I thought I could get away with it. In particular, I didn’t
want to mention such conceptually difficult objects as the adèles. Please forgive me, and
tread lightly.

2. GEOMETRY AND NUMBER THEORY

Let’s begin with a discussion of complex geometry, and in particular the theory of
Riemann surfaces. This subject has the pleasant properties that I’m able to actually draw
some pictures1 as well as that we have a really firm grip of what’s going on in this area of
math.

A Riemann surface is an object that one can build by gluing together patches of the
complex plane (without getting any individual patch stuck on itself, and without edges).
The stereotypical example of this is a sphere: if I cut out a disk from the complex plane,

1See slides.
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I can wrap it up along the surface of the sphere, covering more and more of it. I can’t
cover everything, though, without overlapping myself—in fact, the best that I can do is
to cover everything except the north pole. On the other hand, I can do the same thing
by draping a disk over the top of the sphere and tugging it down to cover everything but
the south pole. Doing both of these together is what I mean by a Riemann surface: I have
two patches of the complex plane, and I’ve glued them along their overlap at the equator
in order to build a sphere out of them.

There are some restrictions to this process—I’m not allowed to just go gluing patches
willy-nilly. The main restriction here is that my complex plane pieces have an inherent
notion of “multiplication by i”, or counterclockwise rotation by 90 degrees. If I pick a
point in an overlap (e.g., on the equator of the sphere) and a tangent vector at that overlap,
my two complex patches give me two competing notions of what it means to “multiply
the tangent vector by i”, and I demand that I’ve glued these things together in a way that
the two notions agree.

It turns out that (topologically) we can give a total description of what Riemann sur-
faces look like: they’re all donuts with varying numbers of holes. The sphere is a donut
with no holes; a normal donut has one hole; then there are donuts with two, three,—
however many holes you like. What isn’t a Riemann surface is the Möbius band: the
whole business of the Möbius band is that it doesn’t have a consistent notion of the word
“counterclockwise”, and accordingly it can’t have a consistent notion of “multiplication
by i”. (Also, it has an edge, which isn’t allowed.)

Once you’ve settled on an object to study in mathematics, you always make the same
next move: supposing someone gave you two such objects, how would you tell if they’re
the same? This question presupposes an important notion: you have to have a definition
of what “the same” means. The typical way to approach this is to introduce a notion
of “function”, and then “the same” means that there exists an invertible function that
compares the two objects. In the context of complex geometry, the relevant brand of
functions are those which are determined by their Taylor expansions.

Fixing your favorite Riemann surface C , the set of functions from C to the sphere
P1 turns out to be especially important, not least because it has the following interesting
alternative description. First, a theorem from complex analysis says that a nonconstant
function f : C → P1 can only strike any particular point on the sphere at most finitely
many times—this is true, in particular, of the north pole. So, f mostly takes values in
the “bottom region” of the sphere. On the other hand, from our discussion of the sphere
as a Riemann surface above, we have a way to re-envision a point on the bottom region
of the sphere as a point in the complex plane—and so f can mostly be considered to be
a function valued in C. What do we do with those points that map to the north pole?
The north pole is where you end up on the sphere if you try to walk “to the edge” of
the bottom part of the sphere—which, in terms of the complex plane, means picking
a direction and walking towards infinity. This tells us how to interpret the remaining
points: they’re singularities of f . Mathematicians have vocabulary for everything, and
such complex functions f with singularities are referred to as meromorphic.

One of the pleasant features of meromorphic functions is that they can be drawn. In
the slides, you’ll find a picture of the “cubing function”, w = z3—but it’s not drawn as one
normally draws graphs. What we’ve done is take a “source” complex plane and a “target”
complex plane, and we’ve twisted up the source plane and moved it atop the target plane
in such a way that all the points that end up in the same place are all stacked on top of each
other. The center of the picture corresponds to the value 0, so if you move a bit away from
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0 you’ll find 1, so that the three points stacked above 1 correspond to the three complex
cube-roots of unity: e2πi/3, e2·2πi/3, and 1. At the center of the picture, you see a sort of
pinch point, and this corresponds to the fact that 0 has a unique cube root.

This behavior is actually quite generic for meromorphic functions. Over almost all
points, the graph looks like a bunch of sheets collapsing cleanly down. At some stray
points, you’ll find some premature collapsing or “pinching” behavior; we call these points
ramified, and we call the general phenomenon ramification. Finally, there’s a more subtle
issue: even if you stay away from the ramified points and in the “good” region of the
graph, it’s impossible to pick consistent preimages. If you pick your favorite cube root of
1, you can use that choice to wander out and make a continuous choice of a cube root of
i , then continue on to infer a choice of cube root of −1, then one for −i , and when you
return to 1 you discover that you’re obligated to pick a different choice of cube root of 1.
This corresponds to the kind of “staircase” pattern of the graph, and this phenomenon is
referred to as monodromy.

The reason that we’ve belabored this example so long is the following result:

Theorem 1. The set of meromorphic functions totally determines the Riemann surface.

What I mean by this is that if you have a secret Riemann surface, and you reveal to
me only what meromorphic functions you can construct on it, I can determine what
Riemann surface you’re thinking of. In order to really make this precise, I have to name
some important properties of what collections of meromorphic functions generally look
like (lest you try to trick me by giving me an illegal set):

• I can scale them by complex numbers.
• I can do arithmetic with them: I can add, subtract, multiply, or divide them.

Such arithmetical contexts are called fields (and, unfortunately, this is not the
physicist’s use of the word). The last point is especially interesting; normally
you’re not allowed to do things like divide two functions because you’re worried
about dividing by zero, but we’ve already admitted singularities into our lives,
and so we’re not bothered by potentially picking up more poles.
• There’s a more technical condition: they’re of “transcendence degree 1”. Very

imprecisely, what this means is that there is (more or less) one choice of function
that is wholly unrelated to all other available functions.

The situation is actually more elaborate than what I’ve said so far: not only is there a
correspondence between Riemann surfaces and these complex fields through meromor-
phic functions, but if you have a map of Riemann surfaces then this produces a corre-
sponding map of complex fields. For example, the cubing function gets converted into
the inclusion into all rational functions of just those rational functions whose exponents
are divisible by 3.

X

Where else in math do fields show up? Well, if they’re all about adding, subtracting,
multiplying, and dividing, there’s a whole business of people interested in the same opera-
tions: the number theorists. A number field is what you get if you start with the rationals,
select a bunch of your favorite polynomials, and throw in some of the roots of those poly-
nomials into the mix as well. For instance, the polynomial (x2−2) has a root

p
2, and so

I can form the number field K =Q(
p

2) and start thinking about doing arithmetic in it.
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An interesting feature of this field is that if I grant myself access to
p

2, I automatically
also get access to the other root, −

p
2, since I’m allowed to multiply things in my field:

−
p

2 = −1 ·
p

2. These two roots have an interesting symmetry property: if I write
down a true sentence involving rational numbers and these two roots of 2, then I can
form another sentence by replacing all the instances of

p
2 with −

p
2 and vice versa, and

this new sentence also turns out to always be true. The total of these kinds of symmetry
properties, where I’m allowed to swap roots around, is tracked in the small Galois group
of the number field, gal(K). You can compute this in some other small examples. For
example, once you get tired of

p
2, you might move on to 3p2 and x3 − 2. Here it’s

possible to add one root without adding the others, and that number field has no small
Galois group: there are no interesting symmetries of a single thing. If you go ahead and
add all of the roots in, you end up with a small Galois group of Σ3, the full permutation
group.

In the previous section of complex geometry, not only did fields show up, but so did
inclusions of fields. Taking inspiration from this, we also note that there’s a relative ver-
sion of this construction: given a number field (i.e., the rationals with some extra roots),
we can construct a yet bigger number field that contains it by throwing in more roots of
more polynomials, and we can study those symmetries of the big root system that leave
invariant the small root system that we started with. These symmetries consistute the
relative Galois group. You can also take the auxiliary larger field out of the picture: by
throwing in more and more roots, you get bigger and bigger relative Galois groups, and
you can sort of “send the big field to infinity” by taking a union, and the corresponding
union of all the relative Galois groups is called the big Galois group, Gal(K). As its name
implies (and as indicated by the construction), the big Galois group is often very big.

One of the first theorems proven in an algebraic number theory course is:

Theorem 2. Given a surjection Gal(K) → G, there exists a number field L ⊃ K whose
relative Galois group is G.

This is rather opaquely stated, but I want you to take it as evidence for the following
maxim: if the big Galois group of K is very large and complicated, this means that it has
a high probability of admitting lots of interesting surjections. Using the Theorem, this
means that there exists a lot of number fields L that lie atop K . By consequence, if L is
constructed by adjoining roots to K , that must mean that K itself is missing a lot of roots.
If K is missing a lot of roots, that means it will be difficult to solve polynomial equations
over K . Altogether, then, the big Galois group can be taken as a measure of the relative
difficulty of getting things done internally to K .

It turns out that you can define a relative Galois group of a complex field as well, and
there the relative Galois group corresponds to the monodromy of the equivalent map of
Riemann surfaces. You can continue to port over other ideas from complex geometry,
including that of ramification. The main point of ramification is that the polynomial
we were studying, z3, had a repeated root at w = 0, whereas other values of w didn’t
have repeated roots. A critical feature of ramification is that it is a phenomenon that
happens “at a point”, which we encoded into the equations by setting w to a particular
value. The analogue of these observations on the number-theoretic side is not so obvious
without a more careful algebraic statement, but it turns out that the thing to do is to pass
from polynomials defined over the integers to polynomials modulo a particular prime.2

When you do this, your polynomial might accidentally pick up a repeated root where it
2Rather than setting w = 0, we are setting p = 0.
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previously had none. For example, working with the polynomial x3− 2 and modulo 2,
this polynomial becomes merely x3, which has a repeated root at zero. This has significant
consequences for how equations involving cube roots of 2 behave modulo 2.

X

We’ve started to see how one can give the same name to two very different sets of ideas,
in a way that bears conceptual fruit: we can move concepts from one arena to the other
as across a Rosetta stone connecting complex geometry and algebraic number theory,
often to great effect. What’s less obvious except through experiment is that not only
do the concepts transfer, but actual computations transfer. Sometimes the monodromy
group of a particular Riemann surface behaves very mysteriously like the Galois group
of a particular number field. This is actually not so mysterious: these two families of
objects have a common origin. Given a polynomial with integer coefficients (something
from the realm of Diophantine equations), one can extract two things from it: by setting it
equal to w and calculating the set of complex solutions, one produces a Riemann surface;
and by adjoining roots of this polynomial to Q, one produces a number field. Because
the individual objects in these two realms can be connected by a single background object
pulling the strings, it is not just the two ideas of (e.g.) ramification that line up, but its uses
in the two fields exert a kind of gravitational pull on each other. This is an exceedingly
fruitful technique: if you are confused about the behavior of some number field, you
can trade it for the corresponding Riemann surface, which you can study by drawing
pictures. Once you’re satisfied with your study of that particular surface, you can return
to the number field, where you find that “things work much the same way.”

3. ANALYSIS AND NUMBER THEORY

Now, for something completely different: there are other avenues of attack on the
questions of number theory, and a particularly fruitful one comes in the form of analytic
number theory. One of the basic objects in number theory enjoys popular fame: the
ζ –function,

ζ (s) =
∞
∑

n=1

1
n s
=

1
1s
+

1
2s
+

1
32
+

1
4s
+

1
5s
+

1
6s
+ · · · .

Calculus students actually learn some basic facts about this function:

• Setting s = 1 recovers the harmonic series, which is known to diverge.
• Setting s > 1 is approachable by the “ p–test”, which shows the series to converge.

A property that calculus students don’t learn about is the product formula

ζ (s) =
∏

p prime

1
1− p−s

=
∏

p

�

1+
1
p s
+

1
(p2)s

+
1
(p3)s

+ · · ·
�

.

Moving from the sum formula to the product formula is a little confusing; it is easier to
see what’s happening the other way around, if you take the product formula as given and
start expanding its terms out. How would you get the terms in the sum formula? Well,
for instance, the sixth term appears as

1
6s
=

1
2s
· 1

3s
· 1 · 1 · 1 · · · · .
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In general, the appearance of the nth term is governed by its prime factorization—indeed,
the product formula is a kind of analytic witness to the arithmetic idea of prime factor-
ization.

One can use these formulas to prove goofy results, like the following:

Theorem 3. There are infinitely many prime numbers.

This is something you all knew before you walked in the room, and it’s something that
Euclid knew back in the B.C.E. era. Still, you can use the above methods to produce a new
proof. The main idea is to apply a logarithm to the product formula; logs are supposed
to play well with products, so this is not a totally insane thing to do.

logζ (s) = log

 

∏

p prime

1
1− p−s

!

=
∑

p
log

�

1
1− p−s

�

=
∑

p

�

1
p s

�

+O(1)

After moving the product out past the log as a sum, we have also made use of the the Tay-
lor expansion of the logarithm: the leading term of the Taylor expansion is p−s , and the
remaining terms (owing, essentially, to the square in their exponent) all gather together
to form a function bounded in s . After this, we take the limit as s approaches 1:

∞ s→1+←−− logζ (s) =
∑

p

�

1
p s

�

+O(1) s→1+−−→
∑

p

1
p
+ const.

On the left, we know that ζ (1) diverges, and the logarithm of infinity is infinity. On the
right, replacing s with 1 gives us the exact sum of the prime reciprocals, plus whatever
junk constant value comes out of the bounded function. The main point is that the sum
must have infinitely many terms in order to get the infinity on the left: if the sum had
only finitely many terms, it would give a finite value. If nothing else, this is quaint.

Let’s try for something more serious. If we’re going to approach number theory via
analysis, then we should make use of real tools from analysis, and one of the most effective
such tools is harmonic analysis—Fourier theory, that is, by any other name. The basic
unit of the general theory of harmonic analysis is the character: a character on a group
G (where a group is a context in which you can multiply) is a multiplicative complex
function χ : G→C, i.e., it satisfies

χ (g · g ′) = χ (g ) ·χ (g ′).
The main theorem in this context is:

Theorem 4. A nice enough complex function on a nice enough commutative group can be
written as a sum of characters. (That is, the set of characters forms a basis for the space of
functions.) Using the inner product on the space of functions, this gives the formulas

f =
∑

χ

〈χ , f 〉 ·χ , 〈χ , f 〉=
∫

G
χ (g−1) f (g )dµ.

Let’s expand this in the most familiar example we can think of: let’s set G to be the real
line with addition. A character, then, is a complex function on the real line that carries
addition to multiplication—and the complex exponential χa(x) = eπi ·a·x is an example of
such a function. In fact, these are all such functions, and substituting this into the integral
formula shows that the expression

F{ f }(a) = 〈χa , f 〉=
∫

R
e−πiax f (x)dx
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considered as a function of a recovers the Fourier transform of f .
The point of setting this up in generality is not to restrict ourselves to this particular

example. The next most familiar thing you might do is think about the (positive) real
numbers with multiplication, which also form a commutative group. Characters in this
setting look like χa(x) = xa , owing to the formal property

χa(xy) = (xy)a = xa ya = χa(x)χa(y).

Writing out the multiplicative analogue of the Fourier transform in this setting gives rise
to what number theorists call the Mellin transform,M .

Once made aware of the Mellin transform, you might set about trying to compute
some examples for it. Here’s one:

M{e−πn2 z}(s) =π−sΓ (s)n−2s .

Something you can notice on the right is that there’s just one thing that depends on n:
the factor n−2s , which looks rather like a single summand of the ζ –function. Whatever
the mysterious function Γ (s) is, it at least has nothing to do with n. With this in mind,
you can try to get all the terms in the ζ –function just by summing together the right
exponentials:3

M
¨ ∞
∑

n=1

e−πn2 z

«

(s/2) =π−s/2Γ (s/2)ζ (s) =: Z(s).

This is a pretty interesting equation: number theory is all about the mix of additive and
multiplicative properties; just a moment ago, we were already talking about exponentials
in the context of additive characters; then we applied the mulitplicative transform; and,
lo’ and behold, some important number-theoretic object popped out.

This Fourier-theoretic perspective leads you to some other important identities. For
instance, this exponential has the property that it is self-dual under the additive Fourier
transform, and this combines with the Poisson summation formula

∑

n∈Z
f (n) =

∑

n∈Z
F{ f }(n)

to give the reflection equation
Z(s) = Z(1− s).

One sense in which this is interesting is that it extends the range of definition of the ζ –
function; we previously claimed only that it made sense for s with large positive real part,
but this equation also tells us that if s has large negative real part, we’re fine. Another
thing to come out of this set-up is a variant of the Riemann hypothesis, which states4

M{Dirac comb at zeroes of Z} ≈Dirac comb at log p.

Finally, a result known popularly as “Tate’s thesis” states that you can commingle these
ideas with those from algebraic number theory. He constructs the product formula

ζ (s) =
∏

p

1
1− p−s

one piece at a time: he develops a kind of Fourier transform which operates “at a prime”,
takes the multiplicative transform of an additive character, and what comes out is the

3There seems to be a perspective in the literature that the sum should be considered as a θ–function, but
trying to understand this gives me vertigo.

4The “≈” should be taken seriously; there is a significant and obscuring error term which I have hidden.
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function (1 − p−s )−1. Additionally, he explains the extra factors in the function Z as
naturally occurring, and gives a compelling argument that Z is the truly natural func-
tion over ζ . Finally, he does this in a way that makes it possible to do this at all primes
simultaneously, and the product—i.e., function Z itself—pops out.

X

This isn’t the only ζ –function around; rather, number theorists have discovered that
this is but one member of a large class of them, though exactly what counts as a ζ –
function and what doesn’t has been uncovered through trial and error rather than through
a solid general definition.

The first generalization made is through Dirichlet characters, which are “characters”

χ : (N,×)→{complex roots of unity}.

These aren’t quite characters in the sense meant previously, since N isn’t a group, but we
still intend the same thing: χ is required to be a multiplicative function. Given one of
these objects, the associated Dirichlet ζ –function is given by the formula

ζχ (s) =
∞
∑

n=1

χ (n)
n s

,

where we’ve just thrown a rescaling by χ into the numerator. The first sign that this is a
sane thing to do comes from a corresponding product formula

ζχ (s) =
∏

p

1
1−χ (p)p−s

,

which is proved in basically the same way: when multiplying the terms out, you can lean
on the multiplicativity of χ to decompose its argument in the same way you’re decom-
posing the denominator of the relevant fraction. The first nontrivial theorem proven
about these functions is:

Theorem 5. For χ nontrivial, ζχ (1) converges.

In other words, the χ –analogue of the harmonic series, into which χ has stuck a bunch
of signs, is no longer divergent. This seemingly innocuous fact has a number of striking
consequences, including the following:

Theorem 6. For any fixed coprime d and r , there are infinitely many primes of the form
p = qd + r .

You should read this statement as a kind of even distribution of the primes through the
“space” of the integers. The right-hand side of this equation looks like the slope-intercept
form for a line, and so the claim is that any “line” you draw through the integers collides
with infinitely many primes.

The next step in generalization is to think of the target of χ , originally the complex
numbers, as 1 × 1 matrices and to replace those with n × n matrices instead. Such a
multiplicative function is called a representation (of the domain group G), and we denote
such a function by ρ. In the specific case that the representation has G = Gal(K) as
its domain for some number field K , there is a recipe which associates to this data a ζ –
function, called its Artin ζ –function.
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This is less arbitrary than it sounds: it turns out that number theory is positively lit-
tered with sources of Galois representations,5 and this ζ –function construction is super
well-behaved and indeed appears to capture interesting arithmetical data about the object
from which the representation was extracted—even though it’s two steps removed! The
construction also has an odd selectivity to it: if you write down a random Galois repre-
sentation and extract its Artin ζ –function, the function you get out appears to have essen-
tially random behavior and no discernable nice property. In some sense, the construction
is conscious of when (and how) the representation “came from geometry”. This is ob-
viously intriguing but also simultaneously discouraging: mathematicians are discovering
each day a new sense in which something ought to be considered “geometric”, which
means we have a very poor grasp of when the Artin ζ –function construction behaves
well and when it doesn’t. It is, correspondingly, very difficult to prove theorems about a
class of functions with no well-defined boundaries. One of the major open questions is
whether ζρ(1) converges—indeed, this was one of the questions that prompted Langlands
to begin his work.

Rather than describe the general recipe for Artin ζ –functions in detail, I would like to
illustrate them in an example: that of the elliptic curve

C = {y2+ y = x3− x2}.

Elliptic curves have risen to promenance in the scientifically literate public’s conscious-
ness through their applications in cryptography, but they also arise quite naturally in our
story: back when we were discussing Riemann surfaces, we completely covered the case
of a sphere (or a “donut with no holes”), and if we felt bold we might move on to the next
case: a donut with one hole. Elliptic curves are exactly this next case, and they’re given
in terms of equations that are quadratic in y and cubic in x.6

Given an arbitrary such elliptic curve C , it’s possible to extract a 2–dimensional Galois
representation from it, and from that extract an Artin ζ –function:

ζC =
∞
∑

n=1

an

n−s
.

The coefficients of this function have the following intriguing property:

Theorem 7. The number of solutions to the equation defining C over Fp is given by p−ap .7

(That is, ap tracks a kind of “defect” in the solution count.)

This should give us pause: the whole business of elliptic curve cryptography is founded
on the idea that, for large primes, it is difficult to write out all the points associated to
an elliptic curve (and difficult to exhaustively write out their multiplication tables). This
gives strong indication that it will be difficult to figure out the coefficients in the ζ –
function; certainly we can’t approach this by brute force.

5Essentially any time you take any variant of “cohomology” of any arithmetic object defined over K , you
get such a representation.

6In the slides, you can see a graph of the real solutions to this equation. This corresponds to taking a vertical
cross-section of the donut, where the cut is placed just off-center enough so that you don’t see the hole in the
donut, but you still see the divot it makes in the altitude. The “point at infinity” is located at the far right of
the cross-section, which is why that half of the graph of the real points blooms open.

7Again, for mathematicians in the audience: this is an application of the arithmetician’s version of the
Lefschetz trace formula.
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For elliptic curves arising through a particular construction (for instance, our choice
of example curve C ), there is a related series fC (q), called a modular form, with a number
of very remarkable properties:

• The coefficients in the series expansion of fC (q) are precisely those of ζC (s):

fC (q) =
∞
∑

n=1

an qn , ζC (s) =
∞
∑

n=1

an

n−s
.

Thinking of q as the exponential e2πi z , one can interpret this as saying roughly
M{ fC }(s) = ζC (s), or that fC is a kind of “inverse Mellin-transform” to ζC .
• The series fC (q) converges on the complex unit disk to determine a complex func-

tion there. This function has incredible symmetry properties: given an Möbius
transformµ fixing the unit disk (i.e., when studying the action of SL2(Z)), the re-
lation between fC (q) and fC (µ · q) is given by a completely predictable rescaling.
This property is called modularity. There is no reason to expect this behavior to
come out of some random inverse Mellin-transformed function.
• fC (q) comes with a polite product expansion. In the specific case of our example

C above, this product expansion is given by

fC (q) = q
∞
∏

j=1

(1− q j )2(1− q11 j )2.

In particular, this means that the coefficients an—moments ago thought to be
quite difficult to compute—can be computed to arbitrary order, even by hand.

At this point, you might raise an objection to getting too excited about this auxiliary
function fC : I introduced it by claiming that we only have access to such a miraculous
function for certain nice C , and so perhaps I’m pulling the wool over your eyes by work-
ing through a particularly nice example. The following theorem (which won the Abel
Prize in 2016) rewards the optimistic viewpoint instead:

Theorem 8. For every elliptic curve C , there is an associated modular form fC with the
above properties. Additionally, if C and C ′ have the same modular form, they’re equivalent
as elliptic curves.

In other words, the above situation is generic over elliptic curves.

4. THE LANGLANDS PROGRAM

We now move into Langlands’s domain. His essential claim is that the above situation
is not just generic for elliptic curves, but for all geometric Galois representations. His
main observation is that, in the general case, we are missing an analogue of the Mellin
transform: n × n matrices for n ≥ 2 no longer form a commutative group, and in gen-
eral a big Galois group Gal(K) isn’t commutative either,8 which stifles the discussion of
harmonic analysis from earlier. Instead, Langlands proposes an analogue of the Mellin
transform that happens directly at the level of representations:

8For the mathematicians in the audience: the noncommutative big Galois group has been with us all along,
but when we were studying Dirichlet characters valued in mere complex numbers, our representation factored
through the abelianization of Gal(K), and hence we could employ classical Fourier theory.
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	 �

automorphic rep’s of d × d matrices
	

{ζ –functions} {ζ –functions}

noncomm.M

Artin

The idea is to replace the function fC with a kind of Mellin transformed representation
and to try to find the analogues of the “modularity” properties directly on it. The exact
definition of one of these resulting “automorphic representations” is extremely technical,
and so we will skip it—suffice it to say that that’s the idea.

He gave a recipe for how this correspondence should go, including a recipe for how
to extract a ζ –function from an automorphic representation, but couldn’t immediately
prove all of the nice properties he expected it to have—in particular, he couldn’t show
that it has the same “invertibility” property that the classical Mellin transform enjoys.
However, he could explore it in a number of special cases (including that of 2–dimensional
representations coming from elliptic curves) and see that it unified a great deal of classical
discussion about Artin ζ –functions.

While in the neighborhood, he he did notice a couple of other very important proper-
ties of his proposed correspondence that weren’t classically visible. It is often the case that
a Galois representation doesn’t take values in arbitrary d×d complex matrices, but rather
that the matrices enjoy some extra structure—for instance, they might all be unitary ma-
trices. Langlands noticed that, when this is the case, the automorphic representation also
carries some extra structure—but this extra structure is different.

§

d -dim’l Galois rep’s
with extra structure

ª §

automorphic rep’s of d × d matrices
with different extra structure

ª

{ζ –functions} {ζ –functions}

noncomm.M

Artin

Here’s a table of some of the exchanges in structure:

left structure, G SLn SO(2n+ 1) S pi n(2n) SO(2n) SU (n) E8 · · ·
right structure, G∨ PGLn S p(2n) SO(2n)/Z SO(2n) SU (n)/Z E8 · · ·

For example, if your Galois representation consists of rotation matrices, then the auto-
morphic representation will involve symplectic matrices.9

X

This is quite inspiring, and teasing out all the details of this conjectured correspon-
dence illuminates a lot of yet-unexplored number theory. It’s also breath-taking in how
broad-reaching it is: it is a simultaneous application of harmonic analysis, analytic num-
ber theory, algebraic number theory, Lie theory, and representation theory. There is a
neglected aspect of this picture, though, which harkens back to the beginning of this talk:
we began by discussing a “Rosetta stone” that translated between algebraic number the-
ory and complex geometry. What happens if we try to push the whole of Langlands’s
ideas across that bridge and into complex geometry?

9In general, this correspondence is informed by behavior at the level of Lie algebras: a Lie algebra g and
its root system is graded for its linear dual g∨ and its coroot system, which again determines a Lie algebra and
hence a Lie group.
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In fact, this is possible, and the resulting body of conjectures is known as the “geo-
metric Langlands program”. The translation is not especially easy to follow, but we can
gesture at parts of it:

• The d–dimensional Galois representations from number theory are replaced by
d–dimensional vector bundles over the Riemann surface with a connection∇.

• The automorphic representation is replaced by “a D–module over the moduli of
d–dimensional vector bundles over the Riemann surface”. Just as automorphic
representations were impossible for us to pull apart into non-technical terms, this
is also inaccessible to us.

Just as in the number theoretic setting, you can introduce extra structure: the vector
bundle might carry an action of a Lie group G, in which case the data on the other side
of the correspondence also acquires some interaction with G∨, the same Langlands dual
group as before.

To an audience of physicists, this is pretty interesting: a vector bundle with a con-
nection and an action of a Lie group are precisely the ingredients of a gauge theory. To
set the stage for exploring this connection, there is a classical duality in physics between
electric and magnetic fields: if (E ,B) is a pair of electric and magnetic fields satisfying
Maxwell’s equations, then their transposition (B ,−E) also satisfies Maxwell’s equations.
One interesting feature of this exchange is that an electric monopole in E with electric
charge e becomes a magnetic monopole with magnetic charge 1/e .

There is also a quantum version of this statement, first observed by Montonen and
Olive and connected with the geometric Langlands program by Kapustin and Witten:
there is a sort of “toy model” of quantum electrodynamics: the N = 4 supersymmet-
ric Yang–Mills field theory, with a noncommutative gauge group G and complexified
coupling constant τ. They noticed that solutions to this field theory have a correspon-
dence with solutions forN = 4 Yang–Mills with gauge group G∨ and coupling constant
−1/(nGτ). This last statement is quite striking: a solution with strong coupling on one
side is governed by a solution with weak coupling on the other side. This is a computa-
tional physicist’s dream: solutions under strong coupling are very difficult to come by,
whereas solutions under weak coupling we have loads of methods to handle, all under the
broad heading of “perturbative methods”. That strong solutions for one system can be
extracted from weak solutions to another system is a really big deal. This is supposed to
be one instance of many of such exchanges, under the banner of “S–duality”—and so the
geometric Langlands program portends to have significant impact on our understanding
of physics.

Finally, there is one last intriguing exchange of ideas: rather than importing mathe-
matical ideas into physics, we can also try to export them. In number theory, we became
very concerned with Galois representations, and in the context of gauge theories we are
also very concerned with G–representations: irreducible such representations classify the
fundamental particles of the system. In some sense, then, what we are doing in mathe-
matics is trying to understand the “fundamental particles” of number theory. This, too,
is an intriguing analogy to pursue.


