
QuantumSci. Technol. 5 (2020) 024003 https://doi.org/10.1088/2058-9565/ab7559

PAPER

A quantum-classical cloud platform optimized for variational hybrid
algorithms

Peter JKaralekas ,Nikolas ATezak1 , Eric CPeterson , ColmARyan ,Marcus P da Silva2 and
Robert S Smith
Rigetti Computing, 2919 Seventh Street, Berkeley, CA 94710United States of America
1 Current address: OpenAI, 3180 18th St, San Francisco, CA 94110United States of America.
2 Current address:Microsoft Quantum,OneMicrosoftWay, Redmond,WA98052United States of America.

E-mail: peter@karalekas.com

Keywords: cloud-based quantum computing, near-term quantum algorithms, quantum software engineering

Supplementarymaterial for this article is available online

Abstract
In order to support near-term applications of quantum computing, a new compute paradigmhas
emerged—the quantum-classical cloud—inwhich quantumcomputers (QPUs)work in tandemwith
classical computers (CPUs) via a shared cloud infrastructure. In this work, we enumerate the
architectural requirements of a quantum-classical cloud platform, and present a framework for
benchmarking its runtime performance. In addition, wewalk through two platform-level enhance-
ments, parametric compilation and active qubit reset, that specifically optimize a quantum-classical
architecture to support variational hybrid algorithms, themost promising applications of near-term
quantumhardware. Finally, we show that integrating these two features into the Rigetti Quantum
Cloud Services platform results in considerable improvements to the latencies that govern algorithm
runtime.

1. Introduction

Thefirst experimental realizations of quantum algorithms date back to over a decade ago [1–4], but in the last
three years quantum computing has rapidly transitioned froma field of scientific research to a full-fledged
technology industry. The recent demonstration of quantum supremacy over classical computing [5] is a
considerablemilestone, but there is stillmuch progress to bemade on the road to solving real-world problems
with quantum computers and achieving quantum advantage. Improving the error rates of quantumdevices
[6, 7] and ultimately reaching the regime of fault tolerance [8] is necessary for unlocking themost powerful
known applications of quantum computers. At the same time, the industry has increased its focus onfinding
ways to solve valuable problems using the noisy intermediate-scale quantum (NISQ) processors that are
currently available [9].

The desire to provide the research community with access to scarce quantumhardware in order to shorten
the path to quantumadvantage resulted in the development of a new compute architecture—the quantum cloud.
As part of this architecture, the concept of an Internet-accessible data center has been extended to include
quantumdevices. Infrastructure for the quantum cloud requires a slew of new specialized hardware, for
example, dilution refrigerators to house superconducting qubits and racks ofmicrowave instruments to control
them. To build the quantum cloud, some developers of quantum computers have pivoted to being full-stack,
using in-house infrastructure to offer cloud-based access to their quantumdevices (e.g. IBMQuantum
Experience). In addition, some traditional cloud providers have begun to add quantumbackends through
strategic hardware-software partnerships.

Thefirst iteration of quantum cloud offerings employed a hybrid cloudmodel [10], inwhich users of the
service submitted quantumprograms using awebAPI to a queue hosted by the public cloud (e.g. AmazonWeb
Services). Then, a server colocatedwith a quantumprocessor would periodically pull jobs off of the queue,
execute them, and return results back to the user. This approachwas effective in offeringworldwide, public

RECEIVED

4December 2019

REVISED

9 February 2020

ACCEPTED FOR PUBLICATION

12 February 2020

PUBLISHED

26March 2020

© 2020 IOPPublishing Ltd

https://doi.org/10.1088/2058-9565/ab7559
https://orcid.org/0000-0001-6031-4800
https://orcid.org/0000-0001-6031-4800
https://orcid.org/0000-0002-5178-2298
https://orcid.org/0000-0002-5178-2298
https://orcid.org/0000-0002-1633-0050
https://orcid.org/0000-0002-1633-0050
https://orcid.org/0000-0001-9923-3354
https://orcid.org/0000-0001-9923-3354
https://orcid.org/0000-0002-6641-8712
https://orcid.org/0000-0002-6641-8712
https://orcid.org/0000-0002-6340-9589
https://orcid.org/0000-0002-6340-9589
mailto:peter@karalekas.com
https://doi.org/10.1088/2058-9565/ab7559
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/ab7559&domain=pdf&date_stamp=2020-03-26
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/ab7559&domain=pdf&date_stamp=2020-03-26

access to quantum resources, but suffers in terms of runtime efficiency due to the overhead of network
connections and the use of a shared queue. In addition, the traditional webAPImodel fails to capitalize on or
adapt to any properties specific to using a quantumdevice for computation.

In particular, themost promising approach to effectively using near-term quantumdevices is through
variational hybrid algorithms (VHAs) [11]which employ a quantum-classical architecture, essentially leveraging
the quantum computer as a co-processor alongside a powerful classical computer. These algorithms have been
applied to areas such as combinatorial optimization [12, 13], quantum chemistry [14, 15], andmachine learning
[16], and numerous proposals for applications of the variationalmethod continue to arise with increasing
frequency [17, 18]. However, VHAs require a tight coupling between quantum and classical resources, and using
a cloud-hosted queue is slowwith respect to the scale of quantumoperations, especially on a superconducting
device [19]. In addition, a quantum cloud architecturemust be specifically optimized in order to efficiently
support the variationalmodel of execution. In this work, we investigate architectural bottlenecks of this new
quantum-classical cloud, and provide a benchmarking framework to analyze its runtime performance.We then
use the benchmark to quantify the dramatic reduction in latency achieved by the Rigetti QuantumCloud
Services (QCS) platform via the implementation of specialized techniques for quantumprogram compilation
and qubit register reset.

2. Runtime bottlenecks in the quantum-classical cloud

The job of a quantum cloud platform is to ingest programswritten in a backend-independent high-level
quantumprogramming language [20, 21], compile them into a platform-specific representation, run themon
an available quantumdevice, and return the results to the user. Specifically, a quantum cloud platformhas four
essential components:

(i) An apparatus that houses the physical objects that act as qubits (e.g. an optical table and trapping system for
ions or neutral atoms).

(ii) A control system containing instruments for manipulating that apparatus in order to drive the desired
evolution and read out qubitmeasurement results.

(iii) An executor that orchestrates the control system to run quantum programs and returnmeasurement results
to the user.

(iv) A compiler that takes in quantumprograms and produces instrument binaries for the executor.

To be categorized as quantum-classical cloud, a platformmust also include access to classical compute
resources. Depending on the particular qubit implementation used by the platform, theCPU-QPU interaction
could become the largest bottleneck in the variationalmodel of execution. For example, when using
superconducting qubits (with gate times in the tens of nanoseconds) the CPU andQPU should be physically
colocated in order to enable a low-latency link between the user and the quantumdevice. Although colocating
user and compute is not a new concept in cloud computing in general, it has yet to take hold broadly in quantum
computing, and drastically reduces overhead inVHAs. For Rigetti QCS, which uses superconducting qubits as
the backend, users interact with theQPUvia a preconfigured development environment called the quantum
machine image (QMI) (figure 1(a)). TheQMI is a virtualmachine running on a classical compute cluster located
inside theRigetti quantumdata center in Berkeley, CA, and contains the Forest SDK for building applications
using the quantum instruction languageQuil [21]. Oncewritten, quantumprograms are sent for compilation
into pulse-level instructions (figure 1(b)). The information that encodes this gate-to-pulsemapping is contained
within a calibration database, and is updatedwhenever the systemdrifts out of specification. The binaries that
are returned by the compiler are then sent to the executor (figure 1(c)), which loads themonto a collection of
Rigetti-custommicrowave arbitrary waveform generators (AWGs) and receivers, and triggers the instruments to
begin execution (figure 1(d)). The Rigetti AWGs then sendmicrowave pulses into a dilution refrigerator to
manipulate and read out the state of the Aspen-4 16-qubit quantumprocessor (figure 1(e)). Finally, the
bitstrings resulting from readout are returned to the user’s compute environment (figures 1(f)–(g)) for
processing and analysis.

In the variationalmodel of execution, one seeks tominimize an objective function that is expensive to
compute on classical hardware, by embedding it as a subroutine on a quantum computer. To begin, a classical
computer takes an initial guess and instructs a quantum computer to perform a predetermined computation.
Then, from the output statistics of sampling the quantumprogrammany times, a classical optimizer running on
theCPUupdates theQPU instructions for the next round of iteration. Depending on the difficulty of the

2

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

problem, and the quality of theQPU, this will repeatmany times beforefinding a potential solution [22]. Thus,
the structure of a variational hybrid algorithm is broken into two nested loops: an outer variational iteration loop,
and an inner quantum execution loop.We denote each roundtrip completion of the variational iteration loop as
an iteration step, and each roundtrip completion of the quantum execution loop as a shot. Each iteration step
includes communicating with theQPU,waiting for it to return results, and using an optimizer to decide what to
run on theQPUnext. Each shot is defined by running a single programof quantum instructions and getting
back a single bitstring ofmeasurement outcomes. This structure gives us away to think about the different
components that contribute to hybrid algorithm runtime—they either occur once per step in the variational
iteration loop, or once per shot in the quantum execution loop. In order to improve the performance ofQCS
and optimize it for the variationalmodel of execution, we began by constructing a latency budget for each of the
nested loops (table 1).

The components of the per-step latency budget are instrument initialization, network communication, and
compilation, which is the largest contributor by at least one order ofmagnitude. The contribution from
instrument initialization has already been substantially reduced by using custom control hardware. In addition,
the runtime of a single shot is split between gates (formanipulating and entangling qubit states), readout (for
measuring and extracting bitstring outcomes), and qubit reset. Qubit reset can be performed passively, by
waiting for all qubits to relax to their ground states. However, this relaxation process is the same decoherence
process that determinesT1, one of themetrics for qubit lifetime. Therefore, this passive qubit reset timewill only
increase as qubit performance improves [24, 25], and it already dominates the per-shot latency budget. Thus,
from examining the two latency budgets, compilation and qubit reset are the areas towhich improvements
would have the largest impact on algorithm runtime.

3.Optimizing for the variational executionmodel

Having identified compilation and qubit reset as potential bottlenecks for a quantum-classical cloud
architecture, wewalk through specific enhancementsmade tomitigate their contributions to the latency budgets
of Rigetti’s quantum cloud platform.

3.1. Parametric compilation
The underlying quantumprogram for a variational algorithm is parametric,meaning that from iteration step to
iteration step, the sequence of instructions is static and only the instruction arguments change. Thus, a
specialized compiler that preserves this parametric ansatz structure can leverage it to improve runtime. To build
such a compiler, we need to understand the physical implementation of a high-level quantumprogram in order
to determinewhich instructions are easy tomodify parametrically at runtime. For superconducting quantum
processors (andmany otherQPU implementations), qubits are controlled by shaped radio frequency (RF) or
microwave pulses typically generated by anAWG.The pulse amplitude, duration, and phase control the rotation
angle and axis effected on the qubits. Typically the phase of the pulse is determined by an abstract rotating

Figure 1. Schematic diagramof theQuantumCloud Services (QCS) data center. The classical compute (CPU) is connected over the
network to a collection of quantumprocessors (QPUs), which are composed of a classical host computer, control system rack, dilution
refrigerator, and quantum integrated circuit (QuIC). (a)Users write quantumprograms usingQuil on theQMI,which is located
inside the data center. (b)The quantumprogram is sent to the compiler. (c)The binaries produced in (b) are sent to the executor.
(d)The executor loads the binaries onto a collection of Rigetti AWGs. (e)Rigetti AWGs sendmicrowave pulses into the dilution
refrigerator containing theAspen-4 16Qdevice. (f)–(g)Bitstring results are returned to theQMI.

3

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

reference frame set to a frequency determined by the physics of the qubits.Z-rotations of a qubit then correspond
to instantaneous reference frame update events that change the phase of subsequentmicrowave pulses.Without
loss of generality, we can directly relate each parameter of a variational algorithm toZ-rotations or phase updates
for one ormore qubit reference frames. Previously, the arguments to theseSHIFT-PHASE [26] operations
were provided at compile-time, and hardcoded in the instrument binary. Thus, for every step in aVHA, new
instrument binaries would need to be compiled, such that these arguments could be updated.

To circumvent this need for re-compiling, we implemented a feature called parametric compilation. Like a
standard executablefile, each instrument binary includes a header and a collection of sections [27]. The
instructionmemory section contains executable code, and thewaveformmemory section contains pulse shapes
that are referenced by the instructionmemory. Rather than havingSHIFT-PHASE instructions use a static data
field as an argument, each instrument binary now additionally has a datamemory sectionwhich instructions can
access by reference. Like classical sharedmemory, the datamemory section can also be updated at runtime by an
external process in order to change the effect of the binary [28]. The datamemory section layout of a particular
binary is prescribed byQuil’sDECLARE syntax (figure 2), which can be used to initialize namedmemory
registers of various data types (BIT,OCTET,INTEGER, andREAL). Once initialized, thememory registers can
be provided as arguments to parameterized gates such asRZ.When these gates are compiled (figure 1(b)) they
becomeSHIFT-PHASE operations that reference entries in an empty datamemory section. Upon execution,
the user provides these parametric binaries alongwith amap ofmemory register assignments, for example,
variational parameters for the current iteration step of aVHA (figure 1(c)). Then, the executorfills in the data
memory section using thememorymap to produce patched binaries (figure 1(d)). For each step in aVHA, these
binaries can be re-patchedwith a new set of variational parameters, and thus the variational iteration loop can
repeat until terminationwithout the need for compilation. For details on how to implement a variational
algorithmusing parametric compilation, see appendix A.

3.2. Active qubit reset
Rather thanwaiting for qubits to passively reset, we can implement a protocol called active qubit reset that sets all
qubits to their ground states at the beginning of a computation. This has been previously demonstrated by
controllably transferring qubit excited state population to a systemwith amuch faster decay rate (such as the
readout resonators) [5, 29, 30], or by performing ameasurement and then quickly feeding back to conditionally
apply anX gate [31, 32]. But, for this protocol to be useful, the conditional control flowneeds to happen on a
timescale comparable to the quantumgates, and it cannot introduce significant error into proceeding
computations.

We chose to implement this classical feedback loop on our platformbecause it additionally unlocksmore
complex feedback/feedforward circuits that take advantage ofmid-circuitmeasurements. To support this, the

Table 1.Per-step and per-shot latency budgets for the Aspen-4QPUviaQCS, rounded to one
significant figure. The per-step budget was collected by runningMax-CutQAOA [12] on two
qubits, andmeasuring the completion time for each of the components. The per-shot budget
contains the average gate and readout times for Aspen-4 from the calibration database. The
reset time isfive times the longestT1 timemeasured onAspen-4 (seefigure 3 for details). The
compilation task is further broken down into two components: the first which converts
arbitrary quantumprograms into ones that use the gateset and topology of the target
quantumdevice (about 150 ms) [23]; and the secondwhich converts this nativized program
into pulse-level instrument binaries (about 50 ms).

Per-step latency budget

Task Time

Compilation 200 ms

AWG load and arm 8 ms

AWG trigger 10 ms

Network comms 5 ms

Per-shot latency budget

Task Time

Single-qubit gates 60 ns

Two-qubit gates 300 ns

Readout and capture 2 μs

Passive reset 100 μs

4

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

compilation toolchain can propagate control flow structures down to the hardware pulse sequencers. Coupled
with the ability to rapidly broadcast qubitmeasurement results across the control system, active reset is not a
special-case operation but instead a simpleif-then-else control flowbranching off of qubitmeasurement
results. By providing theRESET instruction at the top of aQuil program, users can signal to the compilation
toolchain that theywould like to enable active qubit reset.When ingested by the compiler, theRESET directive
is translated to control-flow graphs (CFGs) [33] for each qubit that encapsulate the branching and looping
structure of the active reset protocol.

Control-flowgraphs are composed of nodes called basic blocks, each of which includes a sequence of
instructions without branching and up to two directed edges, or jump targets, to follow once the instructions are
complete. If a block has two jump targets, it also contains a conditional expression for choosing between them.
Each single-qubitRESETCFG contains four basic blocks—a header block, ameasurement block, an idle block,
and a feedback block (figure 3(a)). The program starts at the header block, which initializes a counter to track the
number of active reset rounds performed, and then jumps to themeasurement block and increments the
counter. Themeasurement block contains readout and capture instructions for the qubit, and conditionally
jumps to either the idle or feedback blocks dependent on the bit result produced by themeasurement. If the
result is 1, the qubit is in the excited state, and therefore the feedback block containing theX gate program is
executed.Otherwise, if the result is 0, the program jumps to the idle block. After either the idle or feedback block
is completed, the program then jumps to themeasurement block again if the counter is less than the number of
reset rounds requested. After each single-qubit program traverses its active reset CFG, the program jumps to the
first basic block of themain body quantum circuit and proceeds until completion.

The time required to perform the active reset protocol is dependent on the underlying architecture of aQPU.
ForAspen-4, we require three rounds of feedback to achieve a reset performance comparable to that of passive
qubit reset (figures 3(b)–(e)). All active reset sequencesmust be completed before themain body program
begins, and the readout operations onAspen-4 are in the 2–3 μs range. Combinedwith a broadcast and feedback
latency of around 1 μs, this results in an active reset time of 9–12 μs, approximately a tenfold improvement over
passive reset times.

4. A volumetric framework for benchmarking runtime

Ausefulmetric for determining the runtime performance of a quantum-classical cloud platform isQPU latency,
which tells us how long theCPUhas towait between requesting execution on a quantumdevice and receiving
back the results. Generically, this latency depends on the number of qubits involved in the computation, the
number of shots requested, and the programbeing run.We can define a function () m n, , which returns
QPU latency and takes a number of qubitsm, a number of shots n, and a function  that produces a family of
quantumprograms for a given number of qubits. Some examples of  areGHZ_LINE, which produces the
straight-line program to create aGHZ state onm qubits [34], andMAXCUTQAOA_COMPLETE, which produces
aQAOAprogram to solveMax-Cut on a fully-connected graphwithm nodes [12]. In addition, by sweeping n
andmeasuring  withfixedm and  , we can determine two asymptotic latencies of a platform for a particular

Figure 2.Quantumprograms, written inQuil, forMax-CutQAOAon two qubits, and their corresponding circuit diagrams. ((a), top)
The program, using a specific set of values for variational parameters (β, γ). These showup as arguments toRZ gates, withβ=π/4
and γ=π/2. Thus, every iteration step, the program itself has to be updatedwith new variational parameters and re-compiled before
execution. ((b), bottom)The program, taking advantage of parametric compilation.Now, rather than providing values forβ and γ
whenwriting the program,we instead initialize real-valued classicalmemory registersbeta andgammausingQuil’sDECLARE
syntax, and use them as arguments for theRZ gates. This allows for their assignment to be deferred from compile-time to run-time,
and eliminates the need for re-compilation between variational iteration steps.

5

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

family of quantumprograms and number of qubits: the single-shot limit (n=1) tells us the variational step
latency (V) and the scaling of the latency in the limit of large n tells us the quantum shot latency (Q).More
formally, we assume that the total latency  is straightforwardly related to the two components in the following
manner

() () () ()= +     m n m n m, , , , . 1V Q

However, V and Q are still functions that depend on the number of qubits and the requested quantum
program, and therefore need further specification to be an effective cross-platformbenchmark. Naively
choosingm=1 and  to be circuits containing onlyMEASURE instructionsmakes it trivial to experimentally
benchmark the system. By sweeping the number of shots,measuring latency, and fitting the data to a linear
model, the resulting latency-axis intercept gives MEASURE() 1,V and the resulting slope gives

MEASURE() 1,Q . These numbers well-encapsulate some parts of the performance of a particular architecture,
but fail to capture how the architecture fares as the number of qubits increases or as the program complexity
changes. For example, potential pitfalls such as long gate times or a poorly scaling control system initialization
routine are entirely omitted by the benchmark. But, simply settingm to be themaximumdevice size available on
a particular platform is equallymisleading, as currentNISQdevices often have error rates such that they cannot
produce useful entanglement across the entireQPU.

Although there is no unanimously supported benchmark forQPUperformancewithin the community (and
theremay never be), log quantum volume [35, 36] (Vlog Q2)has been proposed as a reasonable near-termmetric
for the number of qubits that can bemeaningfully used in a computation.We are interested in something that is
similar to quantum volume (so that the choice of number of qubits remains relevant), butmore appropriate for
the near-termVHAs. Variational algorithms contain structures known as phase gadgets [37], which areRZ gates
sandwiched betweenCNOTs. These structures are often the cornerstone of parametric-ansatz-style programs,
and therefore we propose using a volumetric family of circuits [38] that we call random phase gadgets (RPG) to
benchmark algorithm runtime. The RPG circuit family incorporates the permutation aspect of quantum
volume for exercising connectivity, parallelism, and gateset [39], but replaces the random2Qunitaries with
phase gadgets that haveRZ gates with randomly chosen arguments (figure 4). In addition, each permutation is
followed by a layer ofHadamard gates on all qubits, tomake itmore difficult to compile away the phase gadgets.
Setting =m Vlog Q2 and RPG= gives us the computationally relevant step (TV) and shot (TQ) latency of a
QPU

RPG RPG() () ()= = T V T Vlog , , log , . 2V V Q Q Q Q2 2

Fitting the resulting runtime data to the linearmodelT(n)=TV+nTQ then allows us to easily estimate
variational algorithm runtimes using the computationally relevantQPU latency for a particular device available
on a quantum cloud platform.

Figure 3.Active qubit reset on a single qubit. (a)TheRESET control-flow graph, containing loop and branch constructs. The program
starts at header block hc (which is initializedwith c, the number of active reset rounds to perform). It then jumps tomeasurement
blockM and increments the feedback counterκ. If themeasurement result is a 0, the program then jumps to idle block I; otherwise, it
jumps to feedback blockX. After I orX the program jumps back toM unlessκ=c. In that case it jumps toU, themain body block.
(b)–(e)Optimal quadrature histograms of IQ signal data from three successive rounds of active reset (c)–(e) on a single Aspen-4 qubit
starting from an equal superposition input state (b). OnAspen-4,T1 times range from10 to 20 μs. Thus, in order to achieve a reset
fidelity > 99% in the passive reset case, wemust wait for 5T1=100 μs between shots (as 1−e−5>0.99). If we instead use active
qubit reset, we can perform three rounds ofmeasurement and feedback on the order of 10 μs. By the third round (e), we achieve a reset
fidelity of = 99.6%.

6

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

5.QPU latency results onQuantumCloud Services

With a volumetric framework for benchmarking runtime, we calculateTV andTQ for four different versions of
the Rigetti quantum cloud platform. To demonstrate the initial performance improvements resulting from
simply colocatingCPU andQPU,wefirst analyzed runtime data fromover 851 000 quantumprograms run by
external users on the Acorn andAgaveQPUs via the ForestWebAPI, the initial version of Rigetti’s platform
(figure 5(a)). The ForestWebAPI used the first-generationmodel of quantum cloud access, routing each job
through a queue onAmazonWeb Services (AWS), which resulted in considerable latencies. Because the Forest
WebAPI programswere run by external users, there is no expectation that the average composition of these
programswouldmatch the composition of the benchmark programs described in section 4.However, on
average the ForestWebAPI programs used 3 qubits, 2CZ gates, and 14RX gates. A program from RPG()3 , upon
compilation to the native gateset available onAcorn andAgave, would havemore of both gates, and therefore
would take longer to execute. This, combinedwith the fact that the log quantum volume for Aspen-4 is

=Vlog 3Q2 , makes it reasonable to compare the data from the ForestWebAPI andQCS, and in fact skews the
comparison in favor of the former. Thus, usingmedian runtime data fromForestWebAPI, we calculate
TQ=270 μs andTV=1.0 s. If we instead use the benchmarking framework from section 4 and collect data via
QCS’s colocated architecture,TV=410 ms andTQ=110 μs for the Aspen-4QPU (figure 5(b)). Using
parametric compilation (figure 5(c)), we can remove the compile step fromour runtime calculations, resulting
in an improvement for small numbers of shots (TV=36 ms). For higher numbers of shots, passive reset times
still dwarf the constant improvement fromparametric compilation. Finally, by enabling active qubit reset
(figure 5(d)), we get an additional reduction in latencywithin the quantum execution loop. Thus, in this optimal
configuration of the platform,TV=36 ms andTQ=21 μs, resulting in greater than 27× and 12×
improvements, respectively, over the latencies of the first-generation accessmodel.

6. Conclusions

QuantumCloud Servicesmay be the first instance of a quantum-classical cloud platform, but this architectural
paradigmwill become increasingly common as the industry continues to progress toward useful applications of
quantum computers. Error rates and qubit count are well-known to be important systembenchmarks within
thefield, but asmore andmore hardware providers begin to offer access to quantum resources over the cloud,
the latencies that govern this access and the resulting application runtimes will also be critical considerations for
platformperformance. Addressing these latencies requires approaching systembottlenecks with an
interdisciplinary quantum software engineeringmindset, bridging the knowledge bases of classical and quantum
computing.We have shown that colocation, parametric compilation, and active qubit reset provide
considerable improvements over thefirst-generation of quantum cloud offerings, but they are just a few of the

Figure 4.Randomphase gadget (RPG) family of volumetric circuits, used for benchmarking runtime on a quantum-classical cloud
platform. (left)The qubits and layers are indexed starting at zero, and the angle valuesαi,j for qubit j and layer i are chosen at random.
Although the circuit family could be defined for an arbitrary number of layers d and qubitsm, we choose = =m d Vlog Q2 in order to
determine computationally relevant latencies. It is important to note, however, that this choice is arbitrary and onlymeant to simplify
the benchmark. As in quantumvolume, if the number of qubits is odd, the bottomqubit line has no gates. To benchmark a number of
qubitsm, we choose a set of permutations {πi}, run the resulting circuit r times, and compute the average runtime. For each run, we
randomize all theα values and collect n shots. This effectively emulates a VHA [40], as the permutations arefixed ahead of time, and
only the phase gadgets themselves change. Then, repeating this entire process formultiple permutation sets ensures that we get a good
estimate of the average runtime for a particular number of qubits. (right)ExampleQuil circuit fromRPG(2), meaningm=d=2,
and using parametric compilation to defer the assignment ofα.

7

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

many potential platform optimizations for accelerating industry progress and enabling the achievement of
quantumadvantage.

Acknowledgments

RSS designed the language constructs that support parametric compilation. PJK, ECP,NAT, andRSS built the
parametric compilation toolchain. NAT implemented the software for expressing active qubit reset as a control-
flow graph. CAR coordinated the integration of active reset into theQCS platform. PJK, ECP, andCAR
formulated the benchmark, and PJK collected and analyzed all runtime data. PJK andMPS architected the
framework for runningVHAs using parametric compilation. RSS supervised theQCS effort. PJK, CAR, and
MPSwrote themanuscript and prepared the figures3.

This workwas funded by Rigetti &Co Inc., dba Rigetti Computing.We thank theRigetti quantum software
team for providing tooling support, the Rigetti fabrication team formanufacturing the device, the Rigetti
technical operations team for fridgemaintenance, the Rigetti cryogenic hardware team for providing the chip
packaging, the Rigetti control systems and embedded software teams for creating the Rigetti AWGcontrol
system, and the Rigetti quantum engineering team for building the infrastructure for automatedQPUbringup
and recalibration.

In addition, the authors would like to specifically thank Lauren ECapelluto, StevenHeidel, andAnthonyM
Polloreno for their critical contributions to theQPU compiler toolchain, Glenn E Jones, Rodney F Sinclair, and
Blake R Johnson for their work on designing a control system capable of supporting active reset, AlexanderD
Hill, JosephAValery, andAlexaN Staley for theirmanagement ofQPUperformance and deployment, Zachary
PBeane, AdamDLynch,Nicolas JOchem, andChristopher BOsborn for their orchestration of theQMI
compute infrastructure, E Schuyler Fried, Diego Scarabelli, and Prasahnt Sivarajah for their crucial work on
experimental bringup of active qubit reset, JoshuaCombes, Kyle VGulshen, andNicholas CRubin for building
the readout errormitigation tools that enable the implementation of VHAs,MatthewPHarrigan andWilliam J
Zeng for their leadership in designing a quantumprogramming interface toQCS, andMatthew JReagor for
insightful discussions onmodeling and benchmarkingQPU latency.

AppendixA. Implementing hybrid algorithmswith parametric compilation

The structure of quantumprograms for variational hybrid algorithms can be segmented into two parts [42]:
parameterized ansatz preparation, andmeasurement in a variety ofmulti-qubit Pauli bases. Parametric

Figure 5.BenchmarkingQPU latency for Rigetti’s quantum cloud, plotted on a log–log scale to aid in visualization of the asymptotic
behavior. (a)Median runtime data from various quantumprograms run by external users via the ForestWebAPI, across the top ten
numbers of shots (1, 10, 50, 100, 500, 1000, 2000, 5000, 8000, 10 000) used on that version of the platform. (b)Median runtime data
collected according to the framework in section 4 via the Rigetti QuantumCloud Services (QCS) platform, using the Aspen-4QPU
which has =Vlog 3Q2 . TheQCSdata is taken for 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10 000, 20 000, 50 000, and
100 000 shots, and eachmedian is extracted from 100 runs of the benchmarkwith afixed permutation set. (c)Median runtime data
collected as in (b), but with parametric compilation enabled. (d)Median runtime data collected as in (c), but with active qubit reset
enabled. For this optimal platform configuration, we additionally note that the critical shot number (nc), which is the turning point
betweenTV-dominatedQPU latency andTQ-dominatedQPU latency, occurs at the 1700-shotmark.

3
All of the plotting and analysis from the paper can be recreated using the supplementary Jupyter notebooks and datasets [41], which are also

available on the notebook hosting serviceBinder.

8

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

https://mybinder.org/v2/gh/rigetti/qcs-paper/master?urlpath=lab/tree/Welcome.ipynb

compilation handles not only the parameterized ansatz component of aVHA, but can also be used to
encapsulatemeasurement in arbitrary bases and symmetrization of readout error—all in a single quantum
program. This allows for anyVHA to be expressed via a single parametric binarywithRZ arguments that are
provided and patched at runtime. To showhow this is possible, wewalk through three examples using pyQuil
[43], the Python library forwriting and executingQuil programs.

A.1. Readout error symmetrization andmitigation
Wecan describemeasurement imperfections in terms of a confusionmatrixM, which describes probabilities of
reportedmeasurement outcomes conditioned on the values of the true state of the qubits. For the case of a single
qubit, the confusionmatrix can bewritten as

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

(∣) (∣)
(∣) (∣)

()= =
-

-
 

 
M

Pr 0 0 Pr 1 0

Pr 0 1 Pr 1 1
1

1
. A.10 1

0 1

While generallyMwill not be symmetric with respect to the exchange of 0s and 1s, one can enforce such
symmetry by flipping bits beforemeasurement and subsequently flipping themeasurement outcomes. This
symmetrization procedure corresponds to a simple formof twirling [44, 45], and in principle can be performed
by randomly choosingwhich bits toflip independently each time ameasurement occurs4 .When averaging over
all the shots, this results in a new effective confusionmatrixM′, with ò0 and ò1 replaced by ò′, which is the
arithmeticmean of the two. This can be implemented inQuil (for a single qubit with index 0) by replacing the
measurement section of a programwith:

DECLARE symmetrization REAL 1
DECLARE ro BIT 1
RX symmetrization 0 0
MEASURE 0 ro 0

[]
[]

([])
[].

During the execution of the program, thesymmetrizationmemory region assignments 0 andπmust be
provided, and the results from theπ assignmentmust beflipped (i.e.XORing the results with the bit value of 1).

It is straightforward to check that the effect of symmetricmeasurement errors is to scale the expectation
value of a Pauli observable by factor that depends on the error rates. This immediately suggests how tomitigate
the effect of these errors: first characterize the error rates of the symmetrized readout, then rescale the observed
expectation values accordingly. Thefirst step is what we call readout calibration, while the second step is what we

Figure A1.Running 2QMax-CutQAOA for p=1 andfixedβ on qubits 1 and 2 of theAspen-4QPUusing parametric compilation
and pyQuil’sExperiment framework. (a)Max-CutQAOA expressed as anExperiment object. Theprogram section contains
theQuil program equivalent to theMax-CutQAOAansatz for p=1 andβ=π/8. The ansatz is composed of three parts: an initial
∣++ñ state preparation, themixer unitary () ()b = b- +U em

X Xi 0 1 , and the cost unitary ()g = g-U ec
Z Zi 0 1. As theMax-CutQAOA cost

function uses onlyZZ expectation values, thesettings section contains only one entry. (b)Results from runningMax-CutQAOA
for fixedβ using qubits 1 and 2 on theAspen-4QPU, sweeping γ for 100 values in [−π/2,π/2]. The symmetrized data points are
collected using exhaustive readout symmetrization, butwithout correcting for imperfect readout. The corrected data points are the
symmetrized data points, but rescaled using the results frompyQuil’scalibrationmethod on theZZ expectation value for the
qubits used in theExperiment.

4
More sophisticated approaches to symmetrization can be taken bymaking use of orthogonal arrays, as implemented inforest-

benchmarking [46], but a detailed description of those techniques is beyond the scope of this article.

9

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

call readout errormitigation. Since errors due to the single-qubit rotations associatedwithmapping one Pauli
observable to another are orders ofmagnitude smaller thanmeasurement errors, readout calibration can focus
on the expectation of tensor products ofZ observables only. Ideally the expectation of any of these tensor
products would be+1 for the ground state (the ∣  ñ00 0 state), but for symmetrized readout error the
expectation valuewill beλ. Simply dividing the expectation value of this same observable for other states byλ
corrects for the bias introduced by themeasurement errors. Note that, in general, evenwith symmetrization, a
differentλ for each different tensor product will be necessary, due to qubit-dependent readout signal-to-noise
ratio (SNR) and potential correlations in the readout errors.Moreover, while the bias in the estimation of the
expectation value is removed, the uncertainty is increased (as ∣ ∣l < 1), so this procedure is not scalable [47].
That being said, it is remarkably effective for small numbers of qubits.

Rather than handling symmetrizationmanually, we can use pyQuil’sExperiment framework.When
defining anExperiment in pyQuil, two arguments are required—aprogramwhich defines themain body
quantum circuit, and a list ofsettingswhich specify the different state preparations andmeasurements that
wewant towrap around themain program. In addition, theExperiment object also specifies the number of
shots to take, whether or not to perform active qubit reset, and how to symmetrize and calibrate readout. To
showhow these features are used, we implement readout symmetrization and correction for a 2QMax-Cut
QAOAprogram (figure A1).

A.2. Bell state tomography
An arbitrary single-qubit gateU can always be decomposed intowhat is in essence an Euler angle decomposition
[48]

() () () () () () ()a b g g p b p a= -U R R R R R, , 2 2 . A.2z x z x z

Although ourQPUs can only performmeasurements in the z basis (Mz), performing single-qubit rotations prior
tomeasurement allows us to effectivelymeasure in a different basis

() () ()p p= - = -M M R M U2 0, 2, 0 , A.3x z y z

() () ()p p p p= = -M M R M U2 2, 2, 2 . A.4y z x z

Thus, by pre-pending a qubitmeasurement with an Euler-decomposed single-qubit gate containingRz

arguments that can be changed at runtime, we can perform a collection of differentmeasurements with a single

Figure A2.Running Bell state tomography on qubits 1 and 2 of theAspen-4QPUusing parametric compilation and pyQuil’s
Experiment framework. (a)Bell state tomography, expressed as anExperiment object. Theprogram section contains the gates
required to generate the Bell state ∣ (∣ ∣)F ñ = ñ + ñ+ 00 111

2
. Thesettings section contains the 15 different non-identity Pauli

measurements required to tomograph a 2Q state, generated by the software libraryforest-benchmarking [46]. (b)Hinton plot
[49, 50] of the ideal densitymatrix ρ as defined by the state ∣F ñ+ . (c)Hinton plot of the estimated densitymatrix ρest extracted from
readout-corrected experimental data using the linear inversionmethod [51].We calculate a Bell state fidelity of =F+ 99.35% by
comparing ρ and ρest using thefidelity function fromforest-benchmarking.

10

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

parametric binary. InQuil, this is accomplished for a single qubit by adding the following snippet before the
measurement block:

DECLARE measurement alpha REAL 1
DECLARE measurement beta REAL 1
DECLARE measurement gamma REAL 1
RZ measurement alpha 0 0
RX pi 2 0
RZ measurement beta 0 0
RX pi 2 0
RZ measurement gamma 0 0

[]
[]

[]
([])
()
([])
()
([])
-

_
_
_

_

_

_ .

Additionally, this can be combinedwith readout symmetrization, allowing for any desired observable to be
symmetrized, calibrated, and corrected. To showhowmeasurement bases can be changed parametrically, we
runBell state tomography using a single binary (figure A2).

A.3. The variational quantumeigensolver
Finally, we combine the techniques from the previous two examples in order to run a full variational algorithm
using a single parametric binary. The variational quantum eigensolver (VQE) [15], which is one of the leading
VHAs for applications in quantum chemistry, can be used to compute the ground state energy of the hydrogen
molecule (H2). To do so, VQE employs a classicalminimization routine inwhich the objective function is
evaluated on theQPU. The procedure begins by preparing a parameterized ansatz wavefunction ∣ ()qY ñusing an
initial guess for the variational parameter θ. The parameterized ansatz wavefunction can be chosen to be
composed of the unitary coupled cluster (UCC) ansatzU(θ) and theHartree–Fock (HF) reference state ∣Fñ [14],
giving

∣ () ()∣ ∣ ()q qY ñ = Fñ = ñq-U e 01 . A.5X Yi 0 1

Then, the procedure continues by computing the expectation value of theH2Hamiltonian, which can be
formulated as a sumofmulti-qubit Pauli-basis expectation values with coefficients

Figure A3.Running the variational quantum eigensolver to compute the ground state energy of the hydrogenmolecule using
parametric compilation and pyQuil’sExperiment framework. (a)TheVQEH2 algorithm, expressed as anExperiment object.
Theprogram section contains the parameterizedUCC ansatzU(θ) (equation (A.5)), and thesettings section contains the three
measurement bases (expressed as Pauli strings) required to estimate the expectation value of theHamiltonian. TheHamiltonian
(equation (A.6)) also contains single-qubitZ terms, but they can be determined frommeasurement outcomes of theZZ setting.
(b)Results from running the VQEH2Experiment on theQuantumVirtualMachine (QVM) [52] aswell as qubits 1 and 2 on the
Aspen-4QPU.Weuse the table ofHamiltonian coefficients from the appendix ofO’Malley et al to convert our readout-corrected
Pauli expectations into expectation values for theH2Hamiltonian at different bond lengths. At theminimum-energy bond length
Rmin=0.750 Åwemeasure an energy differenceΔEmin=8±9 mHa. To demonstrate the framework, we simply scanned 250
values of θ in the range [−π/2,π/2], but the latency numbers would not differ if we instead used an optimizer to update θ each step.
Collecting the data took 248 s, compared to 266 s as predicted byT(2500)=88.5 ms repeated for 4 symmetrization settings, 3
measurement bases, and 250 values of θ (for a total of 3000 executions on theQPU). This slight improvement over the prediction is
consistent, asT(n) from section 5 is calculated for a higher number of qubits (3) and number of two-qubit gates than are used in this
VHA.

11

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

 ()= + + + + +H g g Z g Z g Z Z g Y Y g X X . A.60 1 0 2 1 3 0 1 4 0 1 5 0 1

Finally, the expectation value á ñH is fed to theminimizer to choose the variational parameter θ for the next
round of iteration, and this repeats until convergence. Following the protocol inO’Malley et al, we use
parametric compilation and pyQuil’sExperiment framework to simulate the ground state energy of theH2

molecule withVQE (figure A3).

ORCID iDs

Peter J Karalekas https://orcid.org/0000-0001-6031-4800
Nikolas ATezak https://orcid.org/0000-0002-5178-2298
Eric CPeterson https://orcid.org/0000-0002-1633-0050
ColmARyan https://orcid.org/0000-0001-9923-3354
Marcus P da Silva https://orcid.org/0000-0002-6641-8712
Robert S Smith https://orcid.org/0000-0002-6340-9589

References

[1] Chuang I L, GershenfeldN andKubinecM1998 Experimental implementation of fast quantum searching Phys. Rev. Lett. 80 3408–11
[2] DiCarlo L et al 2009Demonstration of two-qubit algorithmswith a superconducting quantumprocessorNature 460 240–4
[3] Gulde S, RiebeM, Lancaster GPT, Becher C, Eschner J, HäffnerH, Schmidt-Kaler F, Chuang I L andBlatt R 2003 Implementation of

the deutsch-jozsa algorithmon an ion-trap quantum computerNature 421 48
[4] Kwiat PG,Mitchell J R, Schwindt PDDandWhite AG2000Grover’s search algorithm: an optical approach J.Mod.Opt. 47 257–66
[5] Arute F et al 2019Quantum supremacy using a programmable superconducting processorNature 574 505–10
[6] BallanceC J,Harty TP, LinkeNM, SepiolMA andLucasDM2016High-fidelity quantum logic gates using trapped-ion hyperfine

qubitsPhys. Rev. Lett. 117 060504
[7] Hong S S, Papageorge AT, Sivarajah P, CrossmanG,DiderN, PollorenoAM, Sete EA, Turkowski SW, da SilvaMP and JohnsonBR

2020Demonstration of a parametrically activated entangling gate protected from flux noise Physical ReviewA 101
[8] Preskill J 2012Quantum computing and the entanglement frontier arXiv:1203.5813 [quant-ph]
[9] Preskill J 2018Quantum computing in theNISQ era and beyondQuantum 2 79
[10] Mell PMandGrance T 2011TheNIST definition of cloud computingTechnical Report SP 800-145Gaithersburg,MD,United States
[11] McClean J R, Romero J, Babbush R andAspuru-Guzik A 2016The theory of variational hybrid quantum-classical algorithmsNew J.

Phys. 18 023023
[12] Farhi E,Goldstone J andGutmann S 2014A quantum approximate optimization algorithm arXiv:1411.4028 [quant-ph]
[13] Otterbach J S et al 2017Unsupervisedmachine learning on a hybrid quantum computer arXiv:1712.05771 [quant-ph]
[14] O’Malley P J J et al 2016 Scalable quantum simulation ofmolecular energies Phys. Rev.X 6 031007
[15] PeruzzoA,McClean J, Shadbolt P, YungM-H, ZhouX-Q, Love P J, Aspuru-Guzik A andO’Brien J L 2014A variational eigenvalue

solver on a photonic quantumprocessorNat. Commun. 5 4213
[16] WilsonCM,Otterbach J S, TezakN, Smith R S, PollorenoAM,Karalekas P J,Heidel S, AlamMS,CrooksGE and da SilvaMP2018

Quantumkitchen sinks: An algorithm formachine learning on near-term quantum computers arXiv:1806.08321 [quant-ph]
[17] Bravo-Prieto C, LaRose R, CerezoM, Subasi Y, Cincio L andColes P J 2019Variational quantum linear solver: A hybrid algorithm for

linear systems arXiv:1909.05820 [quant-ph]
[18] VerdonG,Marks J, Nanda S, Leichenauer S andHidary J 2019Quantumhamiltonian-basedmodels and the variational quantum

thermalizer algorithm arXiv:1910.02071 [quant-ph]
[19] KjaergaardM, SchwartzME, Braumüller J, Krantz P,Wang J I J, Gustavsson S andOliverWD2019 Superconducting qubits: Current

state of play arXiv:1905.13641 [quant-ph]
[20] Cross AW, Bishop L S, Smolin J A andGambetta JM2017Open quantum assembly language arXiv:1707.03429 [quant-ph]
[21] Smith R S, CurtisM J andZengW J 2016Apractical quantum instruction set architecture arXiv:1608.03355 [quant-ph]
[22] McClean J R, Boixo S, Smelyanskiy VN, BabbushR andNevenH2018 Barren plateaus in quantumneural network training landscapes

Nat. Commun. 9 4812
[23] Smith R S, Peterson EC,Davis E J and SkilbeckMG2020Quilc: AnOptimizingQuil Compiler (Zenodo) (https://doi.org/10.5281/

zenodo.3677536)
[24] Gyenis A,Mundada P S,Di Paolo A,Hazard TM, YouX, SchusterD I, Koch J, Blais A andHouckAA 2019 Experimental realization of

an intrinsically error-protected superconducting qubit arXiv:1910.07542 [quant-ph]
[25] NersisyanA et al 2019Manufacturing lowdissipation superconducting quantumprocessors arXiv:1901.08042 [quant-ph]
[26] Smith R S 2020Quil: A Portable Quantum Instruction Language (Zenodo) (https://doi.org/10.5281/zenodo.3677540)
[27] TISCommittee et al 1995Tool interface standard (TIS) executable and linking format (ELF) specification version 1.2TISCommittee
[28] IEEE Standard for Information Technology–PortableOperating System Interface (POSIX(R))Base Specifications, Issue 7, in IEEE Std

1003.1-2017 (Revision of IEEE Std 1003.1-2008), pp.1–3951 (Accessed: 31 Jan. 2018)
[29] EggerD J,WerninghausM,GanzhornM, Salis G, Fuhrer A,Müller P and Filipp S 2018 Pulsed reset protocol forfixed-frequency

superconducting qubitsPhys. Rev. Appl. 10 044030
[30] Magnard P et al 2018 Fast and unconditional all-microwave reset of a superconducting qubit Phys. Rev. Lett. 121 060502
[31] RistèD, BultinkCC, Lehnert KWandDiCarlo L 2012 Feedback control of a solid-state qubit using high-fidelity projective

measurement Phys. Rev. Lett. 109 240502
[32] RyanCA, JohnsonBR, RistèD,Donovan B andOhki TA 2017Hardware for dynamic quantum computingRev. Sci. Instrum. 88

104703
[33] AhoAV, Sethi R andUllman JD1986Compilers: Principles, Techniques, and Tools (Boston,MA,USA: Addison-Wesley Longman

PublishingCo., Inc.)
[34] GreenbergerDM,HorneMAandZeilinger A 2007Going beyond bellʼs theorem arXiv:0712.0921 [quant-ph]

12

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

https://orcid.org/0000-0001-6031-4800
https://orcid.org/0000-0001-6031-4800
https://orcid.org/0000-0001-6031-4800
https://orcid.org/0000-0001-6031-4800
https://orcid.org/0000-0002-5178-2298
https://orcid.org/0000-0002-5178-2298
https://orcid.org/0000-0002-5178-2298
https://orcid.org/0000-0002-5178-2298
https://orcid.org/0000-0002-1633-0050
https://orcid.org/0000-0002-1633-0050
https://orcid.org/0000-0002-1633-0050
https://orcid.org/0000-0002-1633-0050
https://orcid.org/0000-0001-9923-3354
https://orcid.org/0000-0001-9923-3354
https://orcid.org/0000-0001-9923-3354
https://orcid.org/0000-0001-9923-3354
https://orcid.org/0000-0002-6641-8712
https://orcid.org/0000-0002-6641-8712
https://orcid.org/0000-0002-6641-8712
https://orcid.org/0000-0002-6641-8712
https://orcid.org/0000-0002-6340-9589
https://orcid.org/0000-0002-6340-9589
https://orcid.org/0000-0002-6340-9589
https://orcid.org/0000-0002-6340-9589
https://doi.org/10.1103/PhysRevLett.80.3408
https://doi.org/10.1103/PhysRevLett.80.3408
https://doi.org/10.1103/PhysRevLett.80.3408
https://doi.org/10.1038/nature08121
https://doi.org/10.1038/nature08121
https://doi.org/10.1038/nature08121
https://doi.org/10.1038/nature01336
https://doi.org/10.1080/09500340008244040
https://doi.org/10.1080/09500340008244040
https://doi.org/10.1080/09500340008244040
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevA.101.012302}
https://arxiv.org/abs/1203.5813
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1088/1367-2630/18/2/023023
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1712.05771
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1038/ncomms5213
https://arxiv.org/abs/1806.08321
https://arxiv.org/abs/1909.05820
https://arxiv.org/abs/1910.02071
https://arxiv.org/abs/1905.13641
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1608.03355
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.5281/zenodo.3677536
https://doi.org/10.5281/zenodo.3677536
https://arxiv.org/abs/1910.07542
https://arxiv.org/abs/1901.08042
https://doi.org/10.5281/zenodo.3677540
https://doi.org/10.1103/PhysRevApplied.10.044030
https://doi.org/10.1103/PhysRevLett.121.060502
https://doi.org/10.1103/PhysRevLett.109.240502
https://doi.org/10.1063/1.5006525
https://doi.org/10.1063/1.5006525
https://arxiv.org/abs/0712.0921

[35] Cross AW, Bishop L S, Sheldon S,Nation PD andGambetta JM2019Validating quantum computers using randomizedmodel
circuits Phys. Rev.A 100 032328

[36] MollN et al 2018Quantumoptimization using variational algorithms onnear-term quantumdevicesQuantumSci. Technol. 3 030503
[37] CowtanA,Dilkes S, DuncanR, SimmonsWand Sivarajah S 2019 Phase gadget synthesis for shallow circuits arXiv:1906.01734

[quant-ph]
[38] Blume-Kohout R andYoungKC2019A volumetric framework for quantum computer benchmarks arXiv:1904.05546 [quant-ph]
[39] Peterson EC,CrooksGE and Smith R S 2019 Fixed-depth two-qubit circuits and themonodromy polytope arXiv:1904.10541

[quant-ph]
[40] CrooksGE 2018 Performance of the quantum approximate optimization algorithmon themaximumcut problem arXiv:1811.08419

[quant-ph]
[41] Karalekas P J 2020 SupplementaryNotebooks andDatasets for: AQuantum-Classical Cloud PlatformOptimized for Variational Hybrid

Algorithms (Zenodo) (https://doi.org/10.5281/zenodo.3635021)
[42] McCaskeyA J, Parks Z P, Jakowski J,Moore SV,Morris TD,Humble T S and Pooser RC 2019Quantum chemistry as a benchmark for

near-term quantumcomputers npjQuantum Information 5 1–8
[43] Karalekas P J et al 2020PyQuil: QuantumProgramming in Python (Zenodo) (https://doi.org/10.5281/zenodo.3631770)
[44] Bartlett SD, Rudolph T and Spekkens RW2007Reference frames, superselection rules, and quantum informationRev.Mod. Phys. 79

555–609
[45] Bennett CH,DiVincenzoDP, Smolin J A andWoottersWK1996Mixed-state entanglement and quantumerror correction Phys. Rev.

A 54 3824–51
[46] GulshenKV et al 2019 Forest Benchmarking: QCVVusing PyQuil (Zenodo) (https://doi.org/10.5281/zenodo.3455848)
[47] RyanCA, JohnsonBR,Gambetta JM, Chow JM, da SilvaMP,DialOE andOhki TA 2015Tomography via correlation of noisy

measurement records Phys. Rev.A 91 022118
[48] NielsenMAandChuang I L 2011QuantumComputation andQuantum Information: 10thAnniversary Edition 10th edn (NewYork,

NY,USA: CambridgeUniversity Press)
[49] Hunter J D 2007Matplotlib: a 2d graphics environmentComput. Sci. Eng. 9 90–5
[50] Virtanen P et al 2020 SciPy 1.0: fundamental algorithms for scientific computing in PythonNatureMethods 17 261–72
[51] WoodC J 2015 Initialization and characterization of open quantum systems (http://hdl.handle.net/10012/9557)
[52] Smith R S 2020QuantumVirtualMachine (Zenodo) (https://doi.org/10.5281/zenodo.3677538)

13

QuantumSci. Technol. 5 (2020) 024003 P J Karalekas et al

https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1088/2058-9565/aab822
https://arxiv.org/abs/1906.01734
https://arxiv.org/abs/1904.05546
https://arxiv.org/abs/1904.10541
https://arxiv.org/abs/1811.08419
https://doi.org/10.5281/zenodo.3635021
https://doi.org/10.1038/s41534-019-0209-0
https://doi.org/10.1038/s41534-019-0209-0
https://doi.org/10.1038/s41534-019-0209-0
https://doi.org/10.5281/zenodo.3631770
https://doi.org/10.1103/RevModPhys.79.555
https://doi.org/10.1103/RevModPhys.79.555
https://doi.org/10.1103/RevModPhys.79.555
https://doi.org/10.1103/RevModPhys.79.555
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.5281/zenodo.3455848
https://doi.org/10.1103/PhysRevA.91.022118
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://hdl.handle.net/10012/9557
https://doi.org/10.5281/zenodo.3677538

	1. Introduction
	2. Runtime bottlenecks in the quantum-classical cloud
	3. Optimizing for the variational execution model
	3.1. Parametric compilation
	3.2. Active qubit reset

	4. A volumetric framework for benchmarking runtime
	5. QPU latency results on Quantum Cloud Services
	6. Conclusions
	Acknowledgments
	Appendix A.
	A.1. Readout error symmetrization and mitigation
	A.2. Bell state tomography
	A.3. The variational quantum eigensolver

	References

